Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 5
Memory Access
Exercises

Zonghua Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

2

ndianness

What are the memory address of
these four words?

Word 3

Word 2

Word 1

Addr

27

Addr

?7

2

ndianness

* Q:Assume Big-Endian ordering. If a 32-bit

word resides at memory address N, what is N+3 LSB
the address of: N+2
— (a) The MSB (Most Significant Byte) Blg-Endian
N+1
— (b) The 16-bit half-word corresponding to the most
significant half of the word N MSB
* Q: Redo the question assuming Little-Endian
ordering.
N+3 MSB
Little-Endian N2
N+1
N LSB

Endianness

The word stored at
address 0x20008000
with Big-Endian

ordiflng 1s Memory Memory Data
: Address

The word stored at 0x20008003 OXA7
address 90x20008000 OX20008002 0x90
ordering 1is

OXx20008000 OXEE

Endianness

LDR rll, [roO]

; MO = 0x20008000
rll before load

0x12345678 Memory Memory
rll after load w/ Address Data

Big-Endian ordering 0x20008003 OXA7
r1l after load w/ 0xX20008002 0x90
Little-Endian ordering ©0X20008001 Ox8C

0XxX20008000 OXEE

Memory Address

— d 0x20008003 OXA7
=
LShdlanness o 0x20008002 0x90
» Assume little endian for the following 9x20008001 Ox8C
questions: 10 = 020008000 X X
» LDRH rl, [r0] 0x20008000 OXEE

» rl after load:

» LDSB rl, [r0]

» rl after load:
» STRrl,[r0],#4

» Assume rl = 0x76543210

» rO0 after store:

» Memory content after store:
» STRrl,[r0,#4]

» Assume rl| =0x76543210

» r0 after store:

» Memory content after store:
» STRrl,[r0,#4]!

» Assume rl = 0x76543210

» rO0 after store:

» Memory content after store:

Data Alignment

* Q: Assume a byte-addressable memory with a data bus that is 32 bits (4
bytes) wide. Consider |6 bytes of memory (addresses 0 to |15) arranged as
four 32-bit words (4 bytes each). How many memory cycles are required
to read each of the following from memory?

— (a) A 2-Byte operand read from decimal address 5

— (b) A 2-Byte operand read from decimal address |15
— (c) A 4-Byte operand read from decimal address 10
— (d) A 4-Byte operand read from decimal address 20

Address 111

Address 110

Address 109

Address 108

Address 106

Address 105

Address 104

Data Alignment Address 107

--- Address 103

Address 102

Address 101

Address 100

Address 99

Address 98

Address 97

Address 96

* Q: Assume a byte-addressable memory with a data bus that is 32 bits (4
bytes) wide. Consider |6 bytes of memory (addresses 0 to |15) arranged as

four 32-bit words (4 bytes each).

— (a) What is the address of MSB of the word at address 102, assuming Little-Endian

ordering!?

— (b) What is the address of LSB of the word at address 102, assuming Little-Endian

ordering!?

— (b) How many memory cycles are required to read the word at address 102?

— (c) How many memory cycles are required to read the half word at address 102?

Memory Cycles

Address 15 | Address 14 | Address 13 | Address 12
Address 11 | Address 10 | Address9 | Address 8
Address 7 Address 6 Address 5 | Address 4
Address 3 Address 2 Address 1 | Address 0

* Q: Assume a byte-addressable memory with a data bus that is
32 bits (4 bytes) wide.

It takes
It takes
It takes
It takes

memory cycle(s) to read a Byte from memory
memory cycle(s) to read a half-word from memory
memory cycle(s) to read a word from memory

memory cycle(s) to read a double word from memory

* Q: If the first element of a one-dimensional array x[] is stored
at memory address 0x12345678, what is address of the
second element if the array x[] contains

— (a) chars
— (b) shorts
— (c) ints

— (d) longs

» Assume that memory and registers rO through r3 appear
as follows. Suppose r3 = 0x8000. Describe the memory
and register contents after executing each instruction

(individually, not sequentially): Memory
» LDMIA r3!,{r0, rl, r2} Address Data

» Or LDMIB r3!, {r2, r, r0} xsoe - R
X800cC OXFEEDDEAF

» Or LDMIB r3!,{rl, r2, r0} 0x3008 R
0X8004 0x12340000

3 m) 0x8000 OXBABE00OO

» Suppose R2 and R5 hold the values 8 and 0x23456789
After following code runs with big-endian ordering, what
value is in R7? How about with little-endian ordering?

» STR R5, [R2, #0]

» LDRB R7,[R2,#1]
» LDRSH R7,[R2, #1]
» LDRSH R7,[R2, #2]

Program Understanding 1

» Compute register and memory values at each step of this program, given initial
register values and memory contents, assuming little-endian ordering. (Memory
addresses increase from top to bottom, and from left to right in the table.)

RO | 0x00000000

RI 0x10000200

R2 | 0x0000FFFF

MOVW RO, #OxAFE1 R3 | 0x18675309
MOVT RO, #0xBADC R4 0x00000000
MOVT R2, #OxABCD R5 0x00000000

STR R3, [R1]

LDRSH R4, [R1, #0xC]

Initial Register Values | RI3 | 0x10000200

0x10000200 | 60 | IB| Il |12 |EE|FF | 11|22 |33 |44 |55 |66 |77 |88 |99 | 92
Ox100001F0 | 10 | Il |12 |13 |14 | I5| 16|17 |18 |19 |IA|IB|IC|ID| IE| IF
0x100001E0 | 00 | Ol {02 |03 |04 | 0506|0708 |09 |0A|OB|0OC|OD| OE | OF

» 13 Initial Memory Contents

4

Program Understanding 2

Show all updates to registers as the
assembly code shown below runs,

assuming little-endian ordering.
(Memory addresses increase from
top to bottom, and from left to

right in the table.) Show the NZCV

flags next to the instruction if they
change. Each instruction is 32 bits.

RO R4 R8 RI2
RI R5 R9 RI3
R2 Ré6 RIO RI4
R3 R7 RI RI5

LDR R1, =0x10000010
LDR R2, [R1]

LDR R3, [R1,#4]

BL max

SUBS R4, R2, RO @NZCV

MOVW R5, #1
LSL R6, R5, #4
BIC R7, R2, R6

ANDS R8, R7, R6 @NZCV

ROR R9, R3, #12
REV R10, R9
RBIT R11, R10

ADDS R12, R3, R9 @NZCV

STR R12, [R1,#8]

loop B loop
ENDP

max PROC

CMP R2, R3 @NzZCVv

BLT second
first MOV RO, R2
B done
second MOV RO, R3
done BX LR
ENDP

0x10000010 FF | EF | CD | AB | 00

00

CD| AB | 00 | OO

00

00

	Slide 1: Zonghua Gu
	Slide 2: Endianness
	Slide 3: Endianness
	Slide 4: Endianness
	Slide 5: Endianness
	Slide 6: Endianness
	Slide 7: Data Alignment
	Slide 8: Data Alignment
	Slide 9: Memory Cycles
	Slide 10: Arrays
	Slide 11: LDM
	Slide 12: LDR
	Slide 13: Program Understanding 1
	Slide 14: Program Understanding 2

