
1

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 5

Memory Access

Exercises

Fall 2025

Zonghua Gu

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Endianness

0015

0014

0013

0012

0011

0010

0009

0008

0007

0006
0005

0004

32-bit

Words
Bytes Addr.

0003

0002

0001

0000

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

What are the memory address of

these four words?

Word 3

Word 2

Word 1

Word 0

2

Endianness

3

• Q: Assume Big-Endian ordering. If a 32-bit

word resides at memory address N, what is

the address of:
– (a) The MSB (Most Significant Byte)

– (b) The 16-bit half-word corresponding to the most

significant half of the word

• Q: Redo the question assuming Little-Endian

ordering.

MSB

LSB

Big-Endian

N

N+1

N+2

N+3

LSB

MSB

Little-Endian

N

N+1

N+2

N+3

Endianness

4

Memory
Address

Memory Data

0x20008003 0xA7

0x20008002 0x90

0x20008001 0x8C

0x20008000 0xEE

?

The word stored at

address 0x20008000
with Big-Endian

ordering is

?

The word stored at

address 0x20008000
with Little-Endian

ordering is

Endianness

LDR r11, [r0]

; r0 = 0x20008000

5

Memory
Address

Memory
Data

0x20008003 0xA7

0x20008002 0x90

0x20008001 0x8C

0x20008000 0xEE

r11 before load

0x12345678

r11 after load w/

Big-Endian ordering

r11 after load w/

Little-Endian ordering

Endianness

6

 Assume little endian for the following
questions: r0 = 0x20008000

 LDRH r1, [r0]

 r1 after load:

 LDSB r1, [r0]

 r1 after load:

 STR r1, [r0], #4

 Assume r1 = 0x76543210

 r0 after store:

 Memory content after store:

 STR r1, [r0, #4]

 Assume r1 = 0x76543210

 r0 after store:

 Memory content after store:

 STR r1, [r0, #4]!

 Assume r1 = 0x76543210

 r0 after store:

 Memory content after store:

Memory Address Memory Data

0x20008003 0xA7

0x20008002 0x90

0x20008001 0x8C

0x20008000 0xEE

Data Alignment

7

• Q: Assume a byte-addressable memory with a data bus that is 32 bits (4

bytes) wide. Consider 16 bytes of memory (addresses 0 to 15) arranged as

four 32-bit words (4 bytes each). How many memory cycles are required

to read each of the following from memory?

– (a) A 2-Byte operand read from decimal address 5

– (b) A 2-Byte operand read from decimal address 15

– (c) A 4-Byte operand read from decimal address 10

– (d) A 4-Byte operand read from decimal address 20

Data Alignment

8

• Q: Assume a byte-addressable memory with a data bus that is 32 bits (4

bytes) wide. Consider 16 bytes of memory (addresses 0 to 15) arranged as

four 32-bit words (4 bytes each).

– (a) What is the address of MSB of the word at address 102, assuming Little-Endian

ordering?

– (b) What is the address of LSB of the word at address 102, assuming Little-Endian

ordering?

– (b) How many memory cycles are required to read the word at address 102?

– (c) How many memory cycles are required to read the half word at address 102?

9

• Q: Assume a byte-addressable memory with a data bus that is

32 bits (4 bytes) wide.

– It takes ____ memory cycle(s) to read a Byte from memory

– It takes ____ memory cycle(s) to read a half-word from memory

– It takes ____ memory cycle(s) to read a word from memory

– It takes ____ memory cycle(s) to read a double word from memory

Memory Cycles

Arrays

10

• Q: If the first element of a one-dimensional array x[] is stored

at memory address 0x12345678, what is address of the

second element if the array x[] contains
– (a) chars

– (b) shorts

– (c) ints

– (d) longs

LDM

11

Memory

Address

Memory

Data

0x8010 0x00000001

0x800c 0xFEEDDEAF

0x8008 0x00008888

0x8004 0x12340000

0x8000 0xBABE0000r3

 Assume that memory and registers r0 through r3 appear

as follows. Suppose r3 = 0x8000. Describe the memory

and register contents after executing each instruction

(individually, not sequentially):

 LDMIA r3!, {r0, r1, r2}

 Or LDMIB r3!, {r2, r1, r0}

 Or LDMIB r3!, {r1, r2, r0}

LDR

12

 Suppose R2 and R5 hold the values 8 and 0x23456789

After following code runs with big-endian ordering, what

value is in R7? How about with little-endian ordering?

 STR R5, [R2, #0]

 LDRB R7, [R2, #1]

 LDRSH R7, [R2, #1]

 LDRSH R7, [R2, #2]

Program Understanding 1

13

0x10000200 60 1B 11 12 EE FF 11 22 33 44 55 66 77 88 99 92

0x100001F0 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

0x100001E0 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

R0 0x00000000

R1 0x10000200

R2 0x0000FFFF

R3 0x18675309

R4 0x00000000

R5 0x00000000

…

R13 0x10000200

MOVW R0, #0xAFE1
MOVT R0, #0xBADC
MOVT R2, #0xABCD
STR R3, [R1]
LDRSH R4, [R1, #0xC]

 Compute register and memory values at each step of this program, given initial
register values and memory contents, assuming little-endian ordering. (Memory
addresses increase from top to bottom, and from left to right in the table.)

Initial Register Values

Initial Memory Contents

Program Understanding 2

14

 Show all updates to registers as the

assembly code shown below runs,

assuming little-endian ordering.

(Memory addresses increase from

top to bottom, and from left to

right in the table.) Show the NZCV

flags next to the instruction if they

change. Each instruction is 32 bits.

LDR R1, =0x10000010
LDR R2, [R1]
LDR R3, [R1,#4]
BL max
SUBS R4, R2, R0 @NZCV =
MOVW R5, #1
LSL R6, R5, #4
BIC R7, R2, R6
ANDS R8, R7, R6 @NZCV =
ROR R9, R3, #12
REV R10, R9
RBIT R11, R10
ADDS R12, R3, R9 @NZCV =
STR R12, [R1,#8]

loop B loop
ENDP

max PROC
CMP R2, R3 @NZCV =
BLT second

first MOV R0, R2
B done

second MOV R0, R3
done BX LR

ENDP

R0 R4 R8 R12

R1 R5 R9 R13

R2 R6 R10 R14

R3 R7 R11 R15

0x10000010 FF EF CD AB 00 00 CD AB 00 00 00 00

	Slide 1: Zonghua Gu
	Slide 2: Endianness
	Slide 3: Endianness
	Slide 4: Endianness
	Slide 5: Endianness
	Slide 6: Endianness
	Slide 7: Data Alignment
	Slide 8: Data Alignment
	Slide 9: Memory Cycles
	Slide 10: Arrays
	Slide 11: LDM
	Slide 12: LDR
	Slide 13: Program Understanding 1
	Slide 14: Program Understanding 2

