Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 5
Memory Access

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Overview

» How data is organized in memory!?
» Big-Endian vs Little-Endian

» How data is addressed!?

» Register offset
LDR rl, [ro, r3] ; offset
LDR rl, [r@, r3, LSL #2] ; offset
» Immediate offset
Pre-index: LDR rl1, [ro, #4]
Post-index: LDR rl, [r0], #4
Pre-index with update: LDR rl, [rO, #4]!

r3
r3 * 4

Logic View of Memory

» By grouping bits together we can 8 bits
store more values ’
» 8 bits = 1 byte High Address /\/
» 16 bits = 2 bytes = 1 halfword
. 0x20000007 | 01110010
» 32 bits = 4 bytes = 1 word X
, 0X20000006 | 00100101
» From software perspective,
, 0Xx20000005 | 11100010
memory is an addressable array of
0x20000004 | 10000100
bytes.
0Xx20000003 | 01100001
» The byte stored at the memory 020000002 P
address 0x20000004 is ©b10000100 X
0b10000100 o84 13 0X20000001 | 00010010
, , , 0Xx20000000 | 10010100
Binary Hexadecimal Decimal

Computer memory is byte-addressable! Low Address |~ _

Logic View of Memory

» When we refer to memory locations by address, we 8 bits
can only do so in units of bytes, halfwords or words N
» Words
) High Add /\/
» 32 bits = 4 bytes = 1 word = 2 halfwords ' ress
» A word can only be stored at an address 0X20000007 01110010
that s divisible by 4 (Word-address mod4=0, . 0000006 00100101
binary address ends with 00)
_ 0x20000005 11100010
Memory address of a word is the lowest address
of all four bytes in that word. 0x20000004 10000100
Two words at addresses: 9x20000000 and 0x20000003 01100001
9x20000004 ox20000002 || 16001111
» A ha}Ifw.orc? can only be stored at an address 020000001 00010010
that's divisible by 2 (Halfword-address mod 2
= 0, binary address ends with 0) 0x20000000 10010100

Memory address of a halfword is the lowest Low Address |~~~ __~
address of all 2 bytes in that word.

Logic View of Memory

» Halfwords

» 16 bits = 2 bytes = 1 halfword
» The right diagram has four halfwords at

addresses of:

0Xx20000000
0X20000002
0Xx20000004
0Xx20000006

High Address

0x20000007
0Xx20000006
0x20000005
0x20000004
0Xx20000003
0XxX20000002
0x20000001

0XxX20000000

Low Address

01110010

00100101

11100010

10000100

01100001

10001111

00010010

10010100

Offset

uint32_t X[4];
: offset
What are their memory °¢
address offsets!?
Offset
Offset

22?2

22?

22?

22?2

0015 High
Address
0014 4

0013
0012
0011
0010
0009
0008
0007

0006
0005

0004
0003
0002
0001
0000

Low

of' bytes

Quiz ANS

0015
0014
Ooffset = 12 0013
uint32_t X[4]; 0012
0011
: 0010
What are their memory Offset = 8 0009
address offsets!?
0008
0007
0006
If the array starts at address pAddr = 0000, Offset = 4
* Memory address of X[0] is pAddr = 0000 0005
Memory address of X[1l] is pAddr + 4 = 0004 0004
Memory address of X[2] is pAddr + 8 = 0008 0003
Memory address of X[3] is pAddr + 12 = 0012
Ooffset = O 0002
Sequential words are at addresses 0001
incrementing by 4, since each array element 0000

of type uint32 t is 4 bytes (32 bits)
""" [e——] Offset
> 7 o
1 byte ©of bytes

Endianess

High address

A

byte 3

byte 2

byte 1

byte 0
LSB is at MSB is at
lower address lower address

Low address

Gulliver’s Travels (by Jonathan Swift, published in 1726):
* Two religious sects of Lilliputians

* The Little-Endians crack open their eggs from the little end
* The Big-Endians break their on the big end

:Endianess Endian: byte order, not bit order!

High address

A

byte 3
byte 2
byte 1
byte 0
LSB is at MSB is at
lower address lower address
Low address
Little-Endian uint32_t a = 9x87654321 Big-Endian

High address High address

4 Reading from the top 4
0x87 byte 3 byte 2 byte 1 byte 0 0x21
oxeo 0x87 | 0x65 | 0x43 | 0x21 0x43
0x43 0x65
0x21 byte 0 byte1 byte 2 byte 3 0x87
Reading from the bottom

} 9 Low address

ndianess

» Little-Endian

» Least significant byte (LSB) is stored at lowest (least) address of a word
» Big-Endian

» Most significant byte (MSB) is stored at lowest (least) address of a word

9.

» Regardless of endianness, the address of a word is defined as the lowest
address of all bytes it occupies.

» ARM is Little-Endian by default.

» It can be made Big-Endian by configuration.

Most Least
Significant Bit Significant Bit
A Word (32 bits) —————
Reading from I Byte 3 | Byte 2 I[:B t 3[Byte @ |
the top yje L Yo LA

31 - - - ’\j
Base Address + 3 [Byte 3 I < Byte @ |Base Address + 3
Base Address + 2 | Byte 2 [+~ Byte 1 |Base Address + 2
Base Address + 1| Byte 1 («~ -~ Byte 2 |Base Address + 1

Base Address | Byte @ |+~ Byte 3 |Base Address
.))) Reading from
Little Endian Big Endian

the bottom

2

ndianness Example

» Little-Endian * For uint8_t a and b, each with size of |

» LSB is at lower address Byte: No difference

Memory Value ° Little-endian:
offset (LSB) (MSB)

====== ==s=s=s=s== — For uintl 6_t c with size of 2 Bytes: LSB FF

31::::: b - ; orooee LR e is at lower address and MSB 00 is at higher
int16 t c = 255; // OXOOFF
3;:1:32_1: : = 0X1234567)8(; 0x0004 78 56 34 12 address
— For uint32_t d with size of 4 Bytes:LSB 78
. . is at lower address and MSB 12 is at higher
* Big-Endian address.
— MSB is at lower * Big-endian:
address bttor (Lsay (s) — For uintl6_t c with size of 2 Bytes: LSB FF
, m===== m=ssssmmses is at higher address and MSB 00 is at lower
uint8_t a = 1; 0x0000 01 02 00 FF
uints_t b = 2; address
uintl6_t c = 255; // Ox@OFF . . .
uint32_t d = @x12345678; 0x0004 12 34 56 78 — For uint32_t d with size of 4 Bytes:LSB 78
is at higher address and MSB 12 is at lower
address.

Example

If Big-Endian 1is

used, the word

stored at address

0x20008000 is Memory

Memory
Address Data
OX20008003 OxA7
If Little-Endian 1is
used, the word OXx20008002 0Ox90
stored at address OxX20008001 Ox8C
0x20008000 1s Ox20008000 OXEE

Example

.)] Endianness specifies byte
If Big-Endian 1is order, not bit order in a

used, the word byte!
stored at address

OXx20008000 is Memory Memory
OXEESC90A7 Address Data
Ox20008003 OxA7

If Little-Endian 1is
used, the word Ox20008002 0Ox90

stored at address OxX20008001 Ox8C
0x20008000 1s OXx20008000 OXEE

OxA7908CEE

Data Alignment

* Assume a byte-addressable memory with a data bus that is 32 bits (4 bytes) wide
* Consider 16 bytes of memory (addresses 0 to 15) arranged as four 32-bit words (4

bytes each)

Address 15 Address 14 | Address 13 | Address 12
Address 11 Address 10 | Address 9 | Address 8

Address 7 (MSbyte) | Address 6 | AddressS | Address 4 (LSbyte)
Address 3 Address 2 Address 1 Address 0

Address 15 | Address 14 Address 13 Address 12
Address 11 | Address 10 Address 9 (MSbyte) | Address 8
Address 7 Address 6 (LSbyte) | Address 5 Address 4
Address 3 Address 2 Address 1 Address 0

Well-aligned: each word begins on a mod-4
address, which can be read in a single memory
cycle

Ill-aligned: a word begins on address 6, not a
mod-4 address, which can be read in 2 memory

The first read cycle would retrieve 4 bytes from addresses
4 through 7; of these, the bytes from addresses 4 and 5

are discarded, and those from addresses 6 and 7 are [

moved to the far right;

The second read cycle retrieves 4 bytes from addresses 8
through 11; the bytes from addresses 10 and 11 are
discarded, and those from addresses 8 and 9 are moved
to the far left;

Finally, the two halves are combined to form the desired
32-bit operand.

cycles
Address 7 | Address 6 (LSbyte)
'/ Address 9 (MSbyte) | Address 8
Address 9 (MSbyte) | Address 8 | Address 7 | Address 6 (LSbyte)

Load-Modify-Store

C statement

X =X + 1;

Assume variable X resides in
memory and is a 32-bit integer

; Assume the memory address of x is stored in rl

LDR r@, [ri] ; load value of x from memory
ADD ro, ro, #1 ; X =X +1
STR ro, [rl1] ; store x into memory

3 Steps: Load, Modify, Store

Registers

Variable x resides in memory!

ALU cannot directly
operate memory data! Memory

Load Instructions

» LDR rt, [rs]
» Read from memory
» Mnemonic: LoaD to Register (LDR)
» rs specifies the memory address

» rt holds the 32-bit value fetched from memory

» For Example:

5 Assume re = 0x08200004
; Load a word:

LDR rl, [ro] ;3 rl = Memory.word[0x08200004]

Store Instructions

» STR rt, [rs]
» Write into memory
» Mnemonic: STore from Register (STR)
» rs specifies memory address

» Save the content of rt into memory

» For Example:

; Assume reo = 0x08200004
; Store a word

STR r1, [ro] 5 Memory.word[0x08200004] = ril

Load/Store a Byte, Halftword, Word

LDRxxx RO, [R1]
; Load data from memory into a 32-bit register

Load Word uint32_t/int32_t unsigned or signed int
Load Byte uint8_t unsigned char

Load Halfword uintle_t unsigned short int
Load Signed Byte int8_t signed char

Load Signed Halfword inti16_t signed short int

STRxxx RO, [R1]
; Store data extracted from a 32-bit register into memory

S0 Store Word uint32_t/int32_t unsigned or signed int
STRB Store Lower Byte uint8 t/int8 t unsigned or signed char

STRH Store Lower Halfword uintl16_t/intl6_t unsigned or signed short

Load a Byte,

Load a Byte

LDRB r1, [r@]

Half-word, Word (Little-Endian)

0x00 | 0x00 | Ox00

31

0x02000003 ox87
0x02000002 0x65
0x02000001 OxE3

Load a Halfword

LDRH r1, [r@]

0x00 | O0x00 | OxE3

OxE1l

31

0x02000000 OxE1

Little-Endian

Assume
r0 = 0x02000000

Load a Word

LDR r1, [ro]

Ox87 0x65 OxE3

31

LDRH "Load Register Halfword*: it loads a |6-bit
halfword value from the memory address pointed
to by register r0 into register rl.The loaded |6-bit
value is zero-extended to fill the 32-bit register rl.
This means the upper |6 bits of rl will be set to
zero regardless of the halfword data.

LDRB "Load Register Byte*: it loads 8-bit byte
value from the memory address pointed to by
register r0 into register rl, and zero-extends it.

Extension (Little-Endian)

Load a Signed Byte
LDRSB r1, [ro]

OxFF

OxXFF

OxFF

31

Load a Signed Halfword

LDRSH r1, [ro]

OxFF

OXFF

OxE3

OxE1l

31

0x20000003 ox87
0Xx20000002 0x65
0x20000001 OxE3
0Xx20000000 OxE1l

Little-Endian

r0

Assume
= 0x02000000

LDRSH "Load Register Signed Halfword*

LDRSB "Load Register Signed Byte*

Similar to LDRH and LDRB, except each sign-
extends the value to fill the 32-bit register, not zero-
extend. Facilitate subsequent 32-bit signed

arithmetic.

Address Modes: Offset in Register

» Address accessed by LDR/STR is specified by a base register
plus an offset

» Offset can be hold in a register

IDR r0,[rl,r2]

» Base memory address hold i1n register rl
» Offset hold rZ2

» Target address = rl + r2

LDR r0,[rl,r2,LSL #2]

» Base memory address hold i1in register rl
» Offset = r2, LSL #2

» Target address = rl + r2 * 4

Address Modes: Immediate Offset

» Address accessed by LDR/STR is specified by a base register
plus an offset

» Offset can be an immediate value

LDR rO, [rl, #8]

» Base memory address hold in register rl
» Offset 1s an immediate wvalue
» Target address = rl + 8

Three modes for immediate offset:
* Pre-index,
 Post-index,

* Pre-index with Update

Addressing Mode:
Pre-index vs Post-index

» Pre-index

LDR rl, [ro, Offset]
» Post-index

LDR rl, [ro], Offset
» Pre-index with Update

The table assumes r0 =

LDR r1, [r@, Offset]! 0x100, offset = 4 bytes (#4)

Mode Address used for Base register update | Example (r0=0x100)
Load

Pre-index rl = data[Ox|04];
LDR rl, [r0, #4] + offset (0x104) 0 = 0x100
Post-index rl = data[0Ox100];
LDR rl, [r0], #4 r0 (0x100) Yes, after load 0 = Ox| 04
Pre-index w/ Update rl = data[Ox|04];
LDR rl, [0, #4]! r0 + offset (0x104) Yes, before load 0 = Ox |04

Pre-index

Pre-Index: LDR rl1, [ro, |#4]]

L————» Offset: range is -255 to +255
Assume:

ro = 0x20008000

Memory
Address

0x20008007
0Xx20008006
0Xx20008005
0Xx20008004
0Xx20008003
0Xx20008002
0x20008001
0X20008000

Data
Ox88
Ox79
OX6A
Ox5B
Ox4C
Ox3D
Ox2E
Ox1F

e Calculates address by

adding the offset
(here, #4) to the base
register (r0) before the
load. Loads data from
the resulting address
rO+4 into rl. The base
register (rO) is not
updated.

Example: instruction
accesses memory at r0
+ 4 = 0x20008004, but
rO remains to be
0x20008000 after
execution.

Pre-index

Pre-Index: LDR rl1, [ro, |#4]]
I—» Offset: range is -255 to +255

Memory

Address Data
©Xx20008007 Ox88
OXx20008006 Ox79
0Xx20008005 OX6A
0x20008004 Ox5B
©x20008003 ox4C
Ox20008002 ox3D
0x20008001 Ox2E

ro | 0x20008000 > OxX20008000 Ox1F

Assume: ro = 0x20008000

Pre-index

Pre-Index: LDR rl1, [ro, |#4]]
I—» Offset: range is -255 to +255

Memory Memory

Address Data
Ox20008007 Ox88
Ox20008006 Ox79

0Xx20008005 OX6A
ro + offset —— 0x20008004 Ox5B

Assume: ro = 0x20008000

0x20008003 Ox4C

offset=4 0x20008002 @x3D
Ox20008001 OX2E

ro | 9x20008000 > 0x20008000 Ox1F

Pre-index

Pre-Index: LDR rl1, [ro, |#4]]
I—» Offset: range is -255 to +255

Memory Memory
Address Data

Assume: ro = 0x20008000

Ox20008007 ox88))

.
OX20008006 OX79

> | Ox88796A5B
OX20008005 OX6A
Assume Little-Endian
r0 + offset — 0x20008004 oxsB

0X20008003 OXAC
offset=4 0X20008002 0x3D
0X20008001 OX2E
r0 | 6x20008000 > 0Xx20003000 OX1F

Accessing an Array

» C code

uint32 _t array[10];
array[@] += 5;
array[1] += 5;

Assume the memory address of the
array starts at 90x20008000.

» Pre-index Assume ro = 0x20008000.
LDR r1, [roO] ; Read array[0]
ADD ri, ri, #5
STR rl, [ro] ; Write to array[Q]

LDR rl, [r@, #4] ; Read array[1]
ADD rl1, rl, #5
STR rl, [rO, #4] ; Write to array[1]

Post-index

Post-Index: LDR rl1, [r@], |#4

Assume:

ro = 0x20008000

Memory
Address

0x20008007
0Xx20008006
0Xx20008005
0Xx20008004
0Xx20008003
0Xx20008002
0x20008001
0X20008000

Data
Ox88
Ox79
OX6A
Ox5B
Ox4C
Ox3D
Ox2E
Ox1F

L————» Offset: range is -255 to +255

Loads data from the
address currently in rO
into rl1. After the load,
updates the base
register (rO) by adding
the offset (#4).

Example: instruction
accesses memory at rO
= 0x20008000, then
increments r0 by the
offsetof4tor0+4 =
0x20008004 after
execution.

Post-index

Post-Index: LDR rl1, [r@], |#4
I—» Offset: range is -255 to +255

Memory

Address Data
©Xx20008007 Ox88
OXx20008006 Ox79
0Xx20008005 OX6A
0x20008004 Ox5B
©x20008003 ox4C
Ox20008002 ox3D
0x20008001 Ox2E

ro | 0x20008000 > OxX20008000 Ox1F

Assume: ro = 0x20008000

Pre-index

Pre-Index: LDR rl1, [ro, |#4]]
I—» Offset: range is -255 to +255

Memory Memory

Address Data
Ox20008007 Ox88
Ox20008006 Ox79

0Xx20008005 OX6A
0Xx20008004 Ox5B

Assume: ro = 0x20008000

Ox20008003 Ox4C) .
r
9X20008002 ©x3D
>——» Ox4C3D2E1F
©Xx20008001 OXx2E
Assume Little-Endian
ro | 0x20008000 > DX20008000 OX1F D

Pre-index

Pre-Index: LDR rl1, [ro, |#4]]
I—» Offset: range is -255 to +255

Memory Memory
Address Data
0x20008007 Ox88
Update r@ after 0X20008006 Ox79

reading memory 0x20008005 OX6A
ro = re + offset 0x20008004 Ox5B

Assume: ro = 0x20008000

Ox20008003 Ox4C) .
r
0Xx20008002 ox3D
>—— Ox4C3D2E1F
©Xx20008001 OXx2E
Assume Little-Endian
ro | 9x20008004 0Xx20008000 Ox1F p

Pre-index with Update

Pre-Index with Update: LDR ri1, [ro, |#4]]!

Assume:

ro = 0x20008000

Memory
Address

0x20008007
0Xx20008006
0Xx20008005
0Xx20008004
0Xx20008003
0Xx20008002
0x20008001
0X20008000

Offset: range is
-255 to +255

Data
Ox88
Ox79
OX6A
Ox5B
Ox4C
Ox3D
Ox2E
Ox1F

First, adds the offset
(#4) to the base
register (r0), then
loads from this
updated address rO +
4. Base register rO is
settorO+4
afterwards.

Example: instruction
accesses memory at r0
+ 4 = 0x20008004, and
also sets rO to
0x20008004 after
execution.

Pre-index

Pre-Index with Update: LDR ri1, [ro, |#4]]!

Assume: ro = 0x20008000

Offset: range is

-255 to +255
Memory Memory
Address Data
Ox20008007 ox88))
-
9X20008006 Ox79
>—— Ox88796A5B
9Xx20008005 OX6A
Assume Little-Endian
ro + offset —— 0x20008004 Ox5B p

0Xx20008003 0x4C
0Xx20008002 0x3D
0x20008001 OX2E
ro | 0x20008000 > 0XxX20008000 Ox1F

Pre-index

Pre-Index with Update: LDR ri1, [ro, |#4]]!

Assume: ro = 0x20008000

Offset: range is

-255 to +255
Memory Memory
Address Data
Ox20008007 ox88))
-
0x20008006 OX79
Ox88796A5B
0x20008005 OX6A —
Assume Little-Endian
ro + offset 0x20008004 ox5B
0x20008003 OXAC
Update r@ after 0x20008002 0x3D
reading memory 0x20008001 OX2E
ro | 9x20008004 Ox20008000 Ox1F

Summary of Pre-index and Post-index

Index Format

LDR r1, [r@, #4] rl1 <« memory[re + 4],
re is unchanged

LDR rl, [rO, #4]! rl < memory[r@ + 4]

with update roe < re + 4

LDR r1, [r@], #4 rl <« memory[ro]
ro < ro + 4

In ARM Cortex-M/Thumb instruction set, for halfword and signed
byte/halfword load/store instructions, the offset is an unsigned
8-bit immediate (0-255), and the U bit selects addition or
subtraction, yielding an effective signed range of [-255, +255]
around the base register.

In ARM (A32) instruction set, for word and unsigned byte LDR/STR,
the immediate 1s typically a 12-bit unsigned value (0-4095, with
an effective signed range of [-4095, +4095]

Example (Little-Endian ordering)

LDRH rl1, [rO]
; ro = 9x20008000

Memory Memory
1 bef load

0x12345678
0Xx20008003 0x89
rl after load 0Xx20008002 OxAB

0xX20008001 OxCD
0XxX20008000 OXEF

Example ANS (Little-Endian ordering)

LDRH rl1, [ro]
; ro = 9x20008000

Memory Memory
1 bef load

0x12345678
0Xx20008003 0x89
rl after load 0Xx20008002 OxAB

Ox0000CDEF 0xX20008001 OxCD
0XxX20008000 OXEF

Example (Endianness does not matter for
single byte)

LDRSB rl1, [ro]
; ro = 9x20008000

rl before load

0x12345678

rl after load

Memory
Address

0x20008003
0x20008002
0x20008001
0x20008000

Memory
Data

Ox89
OxXAB
OxCD
OXEF

Example ANS (Endianness does not matter
for single byte)

LDRSB rl1, [ro]
; ro = 9x20008000

rl before load

0x12345678

rl after load

OXFFFFFFEF

Memory
Address

0x20008003
0x20008002
0x20008001
0x20008000

Memory
Data

Ox89
OxXAB
OxCD
OXEF

()

Example (Little-Endian ordering)

STR rl, [ro, #4]
; ro = 0x20008000, rl=0x76543210

Memory Memory
Address Data

ro before the store

0Xx20008007 0x00
0Xx20008000 0x20008006 0x00
0Xx20008005 0Xx00

re after the store 0x20008004 OXx00
0Xx20008003 0x00

0Xx20008002 OXx00

0x20008001 0x00

O) 0x20008000 0x00

Example ANS (Little-Endian ordering)

STR rl, [ro, #4]
; ro = 0x20008000, rl=0x76543210

Memory Memory
Address Data

ro before store

0Xx20008007 Ox76
0Xx20008000 0x20008006 0x54
0Xx20008005 0x32

ro after store 0Xx20008004 ox10
0x20008000 0Xx20008003 0x00
0Xx20008002 OXx00

0x20008001 0Xx00

O) 0x20008000 0x00

()

Example (Little-Endian ordering)

STR rl, [rO], #4
; ro = 0x20008000, rl=0x76543210

Memory Memory
Address Data

ro before store

0x20008007 0x00
0Xx20008000 0x20008006 0x00
0x20008005 0x00

ro after store 0Xx20008004 OXx00
0x20008003 0x00

0x20008002 0x00

0x20008001 0x00

O) 0x20008000 0x00

Example ANS (Little-Endian ordering)

STR rl, [rO], #4
; ro = 0x20008000, rl=0x76543210

Memory Memory
Address Data

ré before store 0X20008007 0x00
0Xx20008000 0x20008006 0x00
0Xx20008005 OXx00

re after store 0) 0x20008004 0x00
0x20008004 0Xx20008003 O0x76
0X20008002 Ox54

0Xx20008001 @x32

0X20008000 0x10

STR rl, [ro, #4]!
; ro = 0x20008000, rl=0x76543210

Memory Memory
Address Data

ro before store

0x20008007 0x00
0Xx20008000 0x20008006 0x00
0x20008005 0x00

ro after store 0Xx20008004 OXx00
0x20008003 0x00

0x20008002 0x00

0x20008001 0x00

O) 0x20008000 0x00

Example

STR rl, [ro, #4]!
; ro = 0x20008000, rl=0x76543210

Memory Memory
Address Data

ro before store

0Xx20008007 Ox76
0Xx20008000 0x20008006 0x54
0Xx20008005 0x32

re after store 0) 0x20008004 0x10
0x20008004 0Xx20008003 0Xx00
0Xx20008002 OXx00

0x20008001 0Xx00

0Xx20008000 0x00

Addressing Modes for
Load/Store Multiple Registers

STMxx rn{!}, {register list}
LDMxx rn{!}, {register list}
» xx = |A,IB, DA, or DB

Addressing Modes

IA Increment After STMIA, LDMIA
IB Increment Before STMIB, LDMIB
DA Decrement After STMDA, LDMDA
DB Decrement Before STMDB, LDMDB

e IA:addressis incremented by 4 after a word is loaded or stored.
e 1IB:addressis incremented by 4 before a word is loaded or stored.
e DA: address is decremented by 4 after a word is loaded or stored.
e DB: address is decremented by 4 before a word is loaded or stored.

Load/Store Multiple Registers

» The following are synonyms.
» STM = STMIA (Increment After) = STMEA (Empty Ascending)
» LDM = LDMIA (Increment After) = LDMFD (Full Descending)

» The order in which registers are listed does not matter

» For STM/LDM, the lowest-numbered register is stored/loaded
at the lowest memory address.

Store Multiple Registers

STMxx ro@!, {r3,ri,r7,r2} STMIA STMIB STMDA STMDB
Increment After Increment Before Decrement After Decrement Before
High Memory /\/\ /\/\ /\/\ /\/\ /\/\
Addresses
ro —» ro —»| r7
r7 r3
r3 r2
r2 ri
ro —p — 5 rl — P — | r7 — >
r3 r7
r2 r3
ri r2
ro —p» ro—» ri
Low Memory

Addresses (~/ (S Vo N N2

Empty Full Empty Full
Ascending Ascending Descending Descending

Load Multiple Registers

LDMxx r@!, {r3,rl,r7,r2}

High Memory /\/\

Addresses
16

12

r0O —p| 0

Low Memory \/ﬁv/

Addresses

LDMIA
Increment After

P

rO —p 16
12
8

-
N
imn 1
=
N

Increment Before

LDMIB

J

roO —p»

16

12

8

LDMDA

SN

16
12
8

rO —p| -16

rl = -12
r2 = -8
r3 = -4
r7 = -0

LDMDB

Decrement After Decrement Before

P

16
12
8

rO —p» -16

r2 = -12
r3 = -8
r7 = -4

Cortex-M3 & Cortex-M4 Memory Map

» 32-bit Memory Address

0.5G
» 23?2 bytes of memory space ®
(4 GB)
» Harvard architecture: LGB
physically separated
instruction memory and
data memory 1GB
0.5GB
0.5GB
0.5GB

Vendor Specific

External Peripheral Bus

Internal Peripheral Bus

External
Device

External RAM

Peripheral

SRAM

OXFFFFFFFF

0xE0100000
0xE0040000
OxE0000000

0xA0000000

0x60000000

0x40000000

0Xx20000000

0x00000000

0xEOOFFO000
OxEOQOFEFFF
0xE0042000
0xE0041000
0xE0040000

OxEQ03FFFF
0xE000F000
0xEOOOEO000
0xEOOODFFF
0xE0003000
0xE0002000
0xE0001000
0xE0000000

0x43FFFFFF

0x42000000
0x41FFFFFF
0x40100000

0x40000000

0x23FFFFFF

0x22000000
0x21FFFFFF
0x20100000

0x20000000

ROM table
External private peripheral bus Vendor specific
ETM
TPIU Private peripheral bus:
Debug/external
Reserved Private peripheral bus:
Internal
NVIC
Reserved
External device
FPB
DWT
IT™ 1GB
External RAM
Bit-band alias
32 MB 1GB
31 MB]
Peripherals
Bit-band region
1 MB 0.5GB
SRAM
. . 0.5GB
Bit-band alias
32 MB
Code
31 MB 0.5GB
Bit-band region
1 MB

OXFFFFFFFF

0xE0100000
OxEOOFFFFF
0xE0040000
OxEOO3FFFF
0xE0000000
OxDFFFFFFF

0xA0000000
OX9FFFFFFF

0x60000000

OX5FFFFFFF

0X40000000
OX3FFFFFFF

0x20000000
ox1FFFFFFF

0x00000000

Cortex-M3

Fixed
Memory
Map

0xE0100000
OxEOOFFO00
0xE0042000
0xE0041000
0xE0040000

0xE0040000
OxEOOOFO000
OxEOOOEOO00
O0xE0003000
0xE0002000
0xE0001000
0xE0000000

0x44000000

0x42000000

0x40100000
0x40000000
0x24000000

0x22000000

0x20100000
0x20000000

|4 - -

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

ROM Table
External PPB
ETM
TPIU
Reserved
SCS
Reserved
FPB
DWT
I™
32MB Bit band alias
31MB
1MB Bit band region
32MB Bit band alias
31MB
1MB Bit band region

Code 05GB

OXFFFFFFFF

0xE0100000

0xE0040000

0xEO0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

Cortex-M4

Fixed

Memory Map

Pseudo-instructions

» Pseudo instruction: available to use in an assembly
program, but not directly supported by hardware.

» Pseudo — not real

» Compilers translate it to one or multiple actual machine
instructions

» Pseudo instructions are provided for the convenience of
programmers.

LDR Pseudo-instruction

LDR Rt, =expr
LDR Rt, =label

» If the value of expr can be loaded with MOV, MVN (| 6-bit instruction) or MOVW (32-bit
instruction), the assembler uses that instruction.

» MOV supports all 8-bit immediate numbers ranging in [0 — 255]. For numbers out of this range,
some patterns can be encoded.

» If a valid MOV, MVYN, MOVW instruction cannot be used (due to out of range), or if the
label_expr syntax is used, the assembler places the constant in a literal pool and
generates a PC-relative LDR instruction that reads the constant from the literal
pool.

loads OxFFO into R1

=> MOV ri1,#0xFFO

loads OxFFF into R2

=> MOVW r2, #OXFFF

loads the address of array into R3
=> LDR r3,[pc, offset_to_litpool]

LDR ri1,=0xFFO
LDR r2,=0xFFF

LDR r3,=array

we We e e e Wwe we wo

litpool DCD array

Software uses this pseudo instruction to set a register to

some value without worrying about the size of the value.

» Memory address is always in terms of bytes.

» How data is organized in memory!?

Most Least
Significant Bit Significant Bit
) A Word (32 bits) ————{
Byte 3 | Byte 2 | Byte 1 | Byte @

3, - "\.ﬂ
Base Address + 3 | Byte 3 o - Byte @ |Base Address +3
Base Address + 2 | Byte 2 e Byte 1 |Base Address + 2
Base Address + 1| Byte 1 |+~ : Byte 2 |Base Address + 1

Base Address | Byte @ [+ - Byte 3 |Base Address
Little Endian Big Endian

» How data is addressed?
Addressing Format

Example | Equivalent

) rl < memory[r@ + 4],
Pre-index LDR r1, [ro, #4] r@ is unchanged
.) rl < memory[r@ + 4]
: I
Pre-index with update LDR r1, [ro, #4]! "0 < 10 + 4
rl < memory[ro]
Post-Index LDR r1, [ro], #4 O« ro + 4

References

» Lecture 22. Big-Endian and Little-Endian

» https://www.youtube.com/watch?v=T | C9K|_78ek&list=PLR]hV
4hUhlymmp5CCelFPyxbknsdcXCc8&index=22

» Lecture 23. Load and Store Instructions

» https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLR|h
V4hUhlymmp5CCelFPyxbknsdcXCc8&index=23

» Lecture 24.Addressing mode: pre-index, post-index, and
pre-index with update

» https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLR]hV4
hUhlymmp5CCelFPyxbknsdcXCc8&index=24

» ARM Instruction Set - Stack Instructions STMFD, STMFA ,
STMED, STMEA, Vishal Gaikwad

» https://www.youtube.com/watch?v=H4x0aOINSJo

https://www.youtube.com/watch?v=T1C9Kj_78ek&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=22
https://www.youtube.com/watch?v=T1C9Kj_78ek&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=22
https://www.youtube.com/watch?v=T1C9Kj_78ek&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=22
https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=23
https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=23
https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=23
https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=24
https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=24
https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=24
https://www.youtube.com/watch?v=H4xoaOlNSJo
https://www.youtube.com/watch?v=H4xoaOlNSJo

	Slide 1: Z. Gu
	Slide 2: Overview
	Slide 3: Logic View of Memory
	Slide 4: Logic View of Memory
	Slide 5: Logic View of Memory
	Slide 6: Quiz
	Slide 7: Quiz ANS
	Slide 8: Endianess
	Slide 9: Endianess
	Slide 10: Endianess
	Slide 11: Endianness Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Data Alignment
	Slide 15: Load-Modify-Store
	Slide 16: 3 Steps: Load, Modify, Store
	Slide 17: Load Instructions
	Slide 18: Store Instructions
	Slide 19: Load/Store a Byte, Halfword, Word
	Slide 20: Load a Byte, Half-word, Word (Little-Endian)
	Slide 21: Sign Extension (Little-Endian)
	Slide 22: Address Modes: Offset in Register
	Slide 23: Address Modes: Immediate Offset
	Slide 24: Addressing Mode: Pre-index vs Post-index
	Slide 25: Pre-index
	Slide 26: Pre-index
	Slide 27: Pre-index
	Slide 28: Pre-index
	Slide 29: Accessing an Array
	Slide 30: Post-index
	Slide 31: Post-index
	Slide 32: Pre-index
	Slide 33: Pre-index
	Slide 34: Pre-index with Update
	Slide 35: Pre-index
	Slide 36: Pre-index
	Slide 37: Summary of Pre-index and Post-index
	Slide 38: Example (Little-Endian ordering)
	Slide 39: Example ANS (Little-Endian ordering)
	Slide 40: Example (Endianness does not matter for single byte)
	Slide 41: Example ANS (Endianness does not matter for single byte)
	Slide 42: Example (Little-Endian ordering)
	Slide 43: Example ANS (Little-Endian ordering)
	Slide 44: Example (Little-Endian ordering)
	Slide 45: Example ANS (Little-Endian ordering)
	Slide 46: Example
	Slide 47: Example
	Slide 48: Addressing Modes for Load/Store Multiple Registers
	Slide 49: Load/Store Multiple Registers
	Slide 50: Store Multiple Registers
	Slide 51: Load Multiple Registers
	Slide 52: Cortex-M3 & Cortex-M4 Memory Map
	Slide 53
	Slide 54
	Slide 55: Pseudo-instructions
	Slide 56: LDR Pseudo-instruction
	Slide 57: Summary
	Slide 58: References

