
1

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 5

Memory Access

Fall 2025

Z. Gu

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Overview

2

 How data is organized in memory?

 Big-Endian vs Little-Endian

 How data is addressed?

 Register offset

 LDR r1, [r0, r3] ; offset = r3

 LDR r1, [r0, r3, LSL #2] ; offset = r3 * 4

 Immediate offset

 Pre-index: LDR r1, [r0, #4]

 Post-index: LDR r1, [r0], #4

 Pre-index with update: LDR r1, [r0, #4]!

Logic View of Memory

 By grouping bits together we can

store more values

 8 bits = 1 byte

 16 bits = 2 bytes = 1 halfword

 32 bits = 4 bytes = 1 word

 From software perspective,

memory is an addressable array of

bytes.

 The byte stored at the memory

address 0x20000004 is 0b10000100

3

01110010

00100101

11100010

10000100

01100001

10001111

00010010

10010100

Low Address

High Address

0x20000007

0x20000006

0x20000005

0x20000004

0x20000003

0x20000002

0x20000001

0x20000000

8 bits

0b10000100 0x84 132

Binary Hexadecimal Decimal

Computer memory is byte-addressable!

Logic View of Memory

 When we refer to memory locations by address, we

can only do so in units of bytes, halfwords or words

 Words

 32 bits = 4 bytes = 1 word = 2 halfwords

 A word can only be stored at an address

that‘s divisible by 4 (Word-address mod 4 = 0,

binary address ends with 00)

 Memory address of a word is the lowest address

of all four bytes in that word.

 Two words at addresses: 0x20000000 and
0x20000004

 A halfword can only be stored at an address

that‘s divisible by 2 (Halfword-address mod 2

= 0, binary address ends with 0)

 Memory address of a halfword is the lowest

address of all 2 bytes in that word.

4

01110010

00100101

11100010

10000100

01100001

10001111

00010010

10010100

Low Address

High Address

0x20000007

0x20000006

0x20000005

0x20000004

0x20000003

0x20000002

0x20000001

0x20000000

8 bits

Logic View of Memory

 Halfwords

 16 bits = 2 bytes = 1 halfword

 The right diagram has four halfwords at

addresses of:

 0x20000000

 0x20000002

 0x20000004

 0x20000006

5

01110010

00100101

11100010

10000100

01100001

10001111

00010010

10010100

Low Address

High Address

0x20000007

0x20000006

0x20000005

0x20000004

0x20000003

0x20000002

0x20000001

0x20000000

8 bits

Quiz Memory

What are their memory

address offsets?

X[3]

X[2]

X[1]

X[0]

uint32_t X[4];

6

0015

0014

0013

0012

0011

0010

0009

0008

0007

0006
0005

0004

0003

0002

0001

0000

1 byte

Offset

of bytes

Offset = ???

Offset = ???

Offset = ???

Offset = ???

Low

Address

High

Address

Quiz ANS
Memory

What are their memory

address offsets?

X[3]

X[2]

X[1]

X[0]

uint32_t X[4];

7

0015

0014

0013

0012

0011

0010

0009

0008

0007

0006
0005

0004

0003

0002

0001

0000

1 byte

Offset = 12

Offset = 8

Offset = 4

Offset = 0

Offset

of bytes

If the array starts at address pAddr = 0000,

• Memory address of X[0] is pAddr = 0000

• Memory address of X[1] is pAddr + 4 = 0004

• Memory address of X[2] is pAddr + 8 = 0008

• Memory address of X[3] is pAddr + 12 = 0012

Sequential words are at addresses

incrementing by 4, since each array element

of type uint32_t is 4 bytes (32 bits)

8

Endianess

High address

Low address

Little-

Endian

MSB

LSB

Big-

Endian

LSB

MSB

LSB is at

lower address

MSB is at

lower address

byte 0

byte 1

byte 2

byte 3

Gulliver’s Travels (by Jonathan Swift, published in 1726):

• Two religious sects of Lilliputians

• The Little-Endians crack open their eggs from the little end

• The Big-Endians break their on the big end

9

Endianess

High address

Low address

Little-

Endian

MSB

LSB

Big-

Endian

LSB

MSB

LSB is at

lower address

MSB is at

lower address

uint32_t a = 0x87654321

0x87 0x65 0x43 0x21

byte 0

byte 1

byte 2

byte 3

byte 3 byte 2 byte 1 byte 0

Little-Endian

0x21

0x43

0x65

0x87

High address

Low address

byte 0 byte 1 byte 2 byte 3

Big-Endian

0x87

0x65

0x43

0x21

High address

Low address

Endian: byte order, not bit order!

Reading from the top

Reading from the bottom

10

Endianess

 Little-Endian

 Least significant byte (LSB) is stored at lowest (least) address of a word

 Big-Endian

 Most significant byte (MSB) is stored at lowest (least) address of a word

 Regardless of endianness, the address of a word is defined as the lowest
address of all bytes it occupies.

 ARM is Little-Endian by default.

 It can be made Big-Endian by configuration.

Reading from

the top

Reading from

the bottom

Endianness Example

11

Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 FF 00
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 78 56 34 12

 Little-Endian

 LSB is at lower address

• Big-Endian

– MSB is at lower

address Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 00 FF
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 12 34 56 78

• For uint8_t a and b, each with size of 1

Byte: No difference

• Little-endian:

– For uint16_t c with size of 2 Bytes: LSB FF

is at lower address and MSB 00 is at higher

address

– For uint32_t d with size of 4 Bytes: LSB 78

is at lower address and MSB 12 is at higher

address.

• Big-endian:

– For uint16_t c with size of 2 Bytes: LSB FF

is at higher address and MSB 00 is at lower

address

– For uint32_t d with size of 4 Bytes: LSB 78

is at higher address and MSB 12 is at lower

address.

Example

12

Memory
Address

Memory
Data

0x20008003 0xA7

0x20008002 0x90

0x20008001 0x8C

0x20008000 0xEE

If Big-Endian is

used, the word

stored at address

0x20008000 is

If Little-Endian is

used, the word

stored at address

0x20008000 is

Example

13

Memory
Address

Memory
Data

0x20008003 0xA7

0x20008002 0x90

0x20008001 0x8C

0x20008000 0xEE

0xEE8C90A7

If Big-Endian is

used, the word

stored at address

0x20008000 is

If Little-Endian is

used, the word

stored at address

0x20008000 is

0xA7908CEE

Endianness specifies byte

order, not bit order in a

byte!

Data Alignment

14

• Assume a byte-addressable memory with a data bus that is 32 bits (4 bytes) wide

• Consider 16 bytes of memory (addresses 0 to 15) arranged as four 32-bit words (4
bytes each)

Well-aligned: each word begins on a mod-4
address, which can be read in a single memory
cycle

Ill-aligned: a word begins on address 6, not a
mod-4 address, which can be read in 2 memory
cycles

The first read cycle would retrieve 4 bytes from addresses
4 through 7; of these, the bytes from addresses 4 and 5
are discarded, and those from addresses 6 and 7 are
moved to the far right;
The second read cycle retrieves 4 bytes from addresses 8
through 11; the bytes from addresses 10 and 11 are
discarded, and those from addresses 8 and 9 are moved
to the far left;
Finally, the two halves are combined to form the desired
32-bit operand.

Load-Modify-Store

15

; Assume the memory address of x is stored in r1

LDR r0, [r1] ; load value of x from memory

ADD r0, r0, #1 ; x = x + 1

STR r0, [r1] ; store x into memory

x = x + 1;

C statement

Assume variable X resides in

memory and is a 32-bit integer

3 Steps: Load, Modify, Store

16

ALU

Registers

Memory

Modify

Load1

2

Store3x = x + 1;

Variable x resides in memory!
ALU cannot directly

operate memory data!

Load Instructions

 LDR rt, [rs]

 Read from memory

 Mnemonic: LoaD to Register (LDR)

 rs specifies the memory address

 rt holds the 32-bit value fetched from memory

 For Example:

17

; Assume r0 = 0x08200004
; Load a word:
LDR r1, [r0] ; r1 = Memory.word[0x08200004]

Store Instructions

 STR rt, [rs]

 Write into memory

 Mnemonic: STore from Register (STR)

 rs specifies memory address

 Save the content of rt into memory

 For Example:

18

; Assume r0 = 0x08200004
; Store a word
STR r1, [r0] ; Memory.word[0x08200004] = r1

Load/Store a Byte, Halfword, Word

19

LDR Load Word uint32_t/int32_t unsigned or signed int

LDRB Load Byte uint8_t unsigned char

LDRH Load Halfword uint16_t unsigned short int

LDRSB Load Signed Byte int8_t signed char

LDRSH Load Signed Halfword int16_t signed short int

STR Store Word uint32_t/int32_t unsigned or signed int
STRB Store Lower Byte uint8_t/int8_t unsigned or signed char
STRH Store Lower Halfword uint16_t/int16_t unsigned or signed short

LDRxxx R0, [R1]
; Load data from memory into a 32-bit register

STRxxx R0, [R1]
; Store data extracted from a 32-bit register into memory

Load a Byte, Half-word, Word (Little-Endian)

20

0x870x02000003

0x02000002

0x02000001

0x02000000 0xE1

0xE3

0x65

LDRB r1, [r0]

Load a Byte

0x00 0x00 0x00 0xE1

031

LDRH r1, [r0]

Load a Halfword

0x00 0x00 0xE3 0xE1

031

LDR r1, [r0]

Load a Word

0x87 0x65 0xE3 0xE1

031

Little-Endian

Assume

r0 = 0x02000000

LDRH "Load Register Halfword“: it loads a 16-bit

halfword value from the memory address pointed

to by register r0 into register r1. The loaded 16-bit

value is zero-extended to fill the 32-bit register r1.

This means the upper 16 bits of r1 will be set to

zero regardless of the halfword data.

LDRB "Load Register Byte“: it loads 8-bit byte

value from the memory address pointed to by

register r0 into register r1, and zero-extends it.

Sign Extension (Little-Endian)

21

0x870x20000003

0x20000002

0x20000001

0x20000000 0xE1

0xE3

0x65

LDRSB r1, [r0]

Load a Signed Byte

0xFF 0xFF 0xFF 0xE1

031

LDRSH r1, [r0]

Load a Signed Halfword

0xFF 0xFF 0xE3 0xE1

031

Little-Endian

LDRSH "Load Register Signed Halfword“

LDRSB "Load Register Signed Byte“

Similar to LDRH and LDRB, except each sign-

extends the value to fill the 32-bit register, not zero-

extend. Facilitate subsequent 32-bit signed

arithmetic.

Assume

r0 = 0x02000000

Address Modes: Offset in Register

 Address accessed by LDR/STR is specified by a base register
plus an offset

 Offset can be hold in a register

LDR r0,[r1,r2]

 Base memory address hold in register r1

 Offset hold r2

 Target address = r1 + r2

LDR r0,[r1,r2,LSL #2]

 Base memory address hold in register r1

 Offset = r2, LSL #2

 Target address = r1 + r2 * 4

22

Address Modes: Immediate Offset

 Address accessed by LDR/STR is specified by a base register
plus an offset

 Offset can be an immediate value

 LDR r0,[r1,#8]

 Base memory address hold in register r1

 Offset is an immediate value

 Target address = r1 + 8

23

Three modes for immediate offset:

• Pre-index,

• Post-index,

• Pre-index with Update

Addressing Mode:

Pre-index vs Post-index

24

 Pre-index

 LDR r1, [r0, Offset]

 Post-index

 LDR r1, [r0], Offset

 Pre-index with Update

 LDR r1, [r0, Offset]!

Mode Address used for

Load

Base register update Example (r0=0x100)

Pre-index

LDR r1, [r0, #4]
r0 + offset (0x104) No

r1 = data[0x104];

r0 = 0x100

Post-index

LDR r1, [r0], #4
r0 (0x100) Yes, after load

r1 = data[0x100];

r0 = 0x104

Pre-index w/ Update

LDR r1, [r0, #4]!
r0 + offset (0x104) Yes, before load

r1 = data[0x104];

r0 = 0x104

The table assumes r0 =
0x100, offset = 4 bytes (#4)

Pre-index

25

Pre-Index: LDR r1, [r0, #4]

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is -255 to +255
Assume: r0 = 0x20008000

• Calculates address by
adding the offset
(here, #4) to the base
register (r0) before the
load. Loads data from
the resulting address
r0+4 into r1. The base
register (r0) is not
updated.

• Example: instruction
accesses memory at r0
+ 4 = 0x20008004, but
r0 remains to be
0x20008000 after
execution.

Pre-index

26

Pre-Index: LDR r1, [r0, #4]

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is -255 to +255
Assume: r0 = 0x20008000

0x20008000r0

Pre-index

27

Pre-Index: LDR r1, [r0, #4]

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is -255 to +255
Assume: r0 = 0x20008000

0x20008000r0

offset=4

r0 + offset 0x20008004

Pre-index

28

Pre-Index: LDR r1, [r0, #4]

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is -255 to +255
Assume: r0 = 0x20008000

0x20008000

0x88796A5B

r1

r0

offset=4

r0 + offset 0x20008004
Assume Little-Endian

Accessing an Array

29

 Pre-index

uint32_t array[10];
array[0] += 5;
array[1] += 5;

 C code

LDR r1, [r0] ; Read array[0]
ADD r1, r1, #5
STR r1, [r0] ; Write to array[0]

LDR r1, [r0, #4] ; Read array[1]
ADD r1, r1, #5
STR r1, [r0, #4] ; Write to array[1]

Assume the memory address of the

array starts at 0x20008000.

Assume r0 = 0x20008000.

Post-index

30

Post-Index: LDR r1, [r0], #4

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is -255 to +255
Assume: r0 = 0x20008000

• Loads data from the
address currently in r0
into r1. After the load,
updates the base
register (r0) by adding
the offset (#4).

• Example: instruction
accesses memory at r0
= 0x20008000, then
increments r0 by the
offset of 4 to r0 + 4 =
0x20008004 after
execution.

Post-index

31

Post-Index: LDR r1, [r0], #4

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is -255 to +255
Assume: r0 = 0x20008000

0x20008000r0

Pre-index

32

Pre-Index: LDR r1, [r0, #4]

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is -255 to +255
Assume: r0 = 0x20008000

0x20008000

0x4C3D2E1F

r1

r0
Assume Little-Endian

Pre-index

33

Pre-Index: LDR r1, [r0, #4]

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is -255 to +255
Assume: r0 = 0x20008000

0x20008004

0x4C3D2E1F

r1

r0
Assume Little-Endian

r0 = r0 + offset

Update r0 after
reading memory

Pre-index with Update

34

Pre-Index with Update: LDR r1, [r0, #4]!

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F

Offset: range is

-255 to +255
Assume: r0 = 0x20008000

• First, adds the offset
(#4) to the base
register (r0), then
loads from this
updated address r0 +
4. Base register r0 is
set to r0 + 4
afterwards.

• Example: instruction
accesses memory at r0
+ 4 = 0x20008004, and
also sets r0 to
0x20008004 after
execution.

Pre-index

35

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F0x20008000

0x88796A5B

r1

r0

r0 + offset 0x20008004
Assume Little-Endian

Pre-Index with Update: LDR r1, [r0, #4]!
Offset: range is

-255 to +255
Assume: r0 = 0x20008000

Pre-index

36

Memory

Address

Memory

Data

0x20008007 0x88

0x20008006 0x79

0x20008005 0x6A

0x20008004 0x5B

0x20008003 0x4C

0x20008002 0x3D

0x20008001 0x2E

0x20008000 0x1F0x20008004

0x88796A5B

r1

r0

r0 + offset 0x20008004
Assume Little-Endian

Pre-Index with Update: LDR r1, [r0, #4]!
Offset: range is

-255 to +255
Assume: r0 = 0x20008000

Update r0 after
reading memory

Summary of Pre-index and Post-index

37

Index Format Example Equivalent
Pre-index LDR r1, [r0, #4] r1  memory[r0 + 4],

r0 is unchanged
Pre-index
with update

LDR r1, [r0, #4]! r1  memory[r0 + 4]
r0  r0 + 4

Post-index LDR r1, [r0], #4 r1  memory[r0]
r0  r0 + 4

In ARM Cortex-M/Thumb instruction set, for halfword and signed

byte/halfword load/store instructions, the offset is an unsigned

8-bit immediate (0–255), and the U bit selects addition or

subtraction, yielding an effective signed range of [−255, +255]

around the base register.

In ARM (A32) instruction set, for word and unsigned byte LDR/STR,

the immediate is typically a 12-bit unsigned value (0–4095, with

an effective signed range of [−4095, +4095]

Example (Little-Endian ordering)

LDRH r1, [r0]

; r0 = 0x20008000

38

r1 before load

0x12345678

r1 after load

Memory

Address

Memory

Data

0x20008003 0x89

0x20008002 0xAB

0x20008001 0xCD

0x20008000 0xEF

Example ANS (Little-Endian ordering)

LDRH r1, [r0]

; r0 = 0x20008000

39

r1 before load

0x12345678

r1 after load

0x0000CDEF

Memory

Address

Memory

Data

0x20008003 0x89

0x20008002 0xAB

0x20008001 0xCD

0x20008000 0xEF

Example (Endianness does not matter for

single byte)

LDRSB r1, [r0]

; r0 = 0x20008000

40

r1 before load

0x12345678

r1 after load

Memory

Address

Memory

Data

0x20008003 0x89

0x20008002 0xAB

0x20008001 0xCD

0x20008000 0xEF

Example ANS (Endianness does not matter

for single byte)

LDRSB r1, [r0]

; r0 = 0x20008000

41

r1 before load

0x12345678

r1 after load

0xFFFFFFEF

Memory

Address

Memory

Data

0x20008003 0x89

0x20008002 0xAB

0x20008001 0xCD

0x20008000 0xEF

Example (Little-Endian ordering)

STR r1, [r0, #4]

; r0 = 0x20008000, r1=0x76543210

42

r0 before the store

0x20008000

r0 after the store

Memory

Address

Memory

Data

0x20008007 0x00

0x20008006 0x00

0x20008005 0x00

0x20008004 0x00

0x20008003 0x00

0x20008002 0x00

0x20008001 0x00

0x20008000 0x00r0

Example ANS (Little-Endian ordering)

STR r1, [r0, #4]

; r0 = 0x20008000, r1=0x76543210

43

r0 before store

0x20008000

r0 after store

0x20008000

Memory

Address

Memory

Data

0x20008007 0x76

0x20008006 0x54

0x20008005 0x32

0x20008004 0x10

0x20008003 0x00

0x20008002 0x00

0x20008001 0x00

0x20008000 0x00r0

Example (Little-Endian ordering)

STR r1, [r0], #4

; r0 = 0x20008000, r1=0x76543210

44

r0 before store

0x20008000

r0 after store

Memory

Address

Memory

Data

0x20008007 0x00

0x20008006 0x00

0x20008005 0x00

0x20008004 0x00

0x20008003 0x00

0x20008002 0x00

0x20008001 0x00

0x20008000 0x00r0

Example ANS (Little-Endian ordering)

STR r1, [r0], #4

; r0 = 0x20008000, r1=0x76543210

45

r0 before store

0x20008000

r0 after store

0x20008004

Memory

Address

Memory

Data

0x20008007 0x00

0x20008006 0x00

0x20008005 0x00

0x20008004 0x00

0x20008003 0x76

0x20008002 0x54

0x20008001 0x32

0x20008000 0x10

r0

Example

STR r1, [r0, #4]!

; r0 = 0x20008000, r1=0x76543210

46

r0 before store

0x20008000

r0 after store

Memory

Address

Memory

Data

0x20008007 0x00

0x20008006 0x00

0x20008005 0x00

0x20008004 0x00

0x20008003 0x00

0x20008002 0x00

0x20008001 0x00

0x20008000 0x00r0

Example

STR r1, [r0, #4]!

; r0 = 0x20008000, r1=0x76543210

47

r0 before store

0x20008000

r0 after store

0x20008004

Memory

Address

Memory

Data

0x20008007 0x76

0x20008006 0x54

0x20008005 0x32

0x20008004 0x10

0x20008003 0x00

0x20008002 0x00

0x20008001 0x00

0x20008000 0x00

r0

Addressing Modes for

Load/Store Multiple Registers

48

STMxx rn{!}, {register_list}

LDMxx rn{!}, {register_list}

 xx = IA, IB, DA, or DB

Addressing Modes Description Instructions

IA Increment After STMIA, LDMIA

IB Increment Before STMIB, LDMIB

DA Decrement After STMDA, LDMDA

DB Decrement Before STMDB, LDMDB

• IA: address is incremented by 4 after a word is loaded or stored.

• IB: address is incremented by 4 before a word is loaded or stored.

• DA: address is decremented by 4 after a word is loaded or stored.

• DB: address is decremented by 4 before a word is loaded or stored.

Load/Store Multiple Registers

49

 The following are synonyms.

 STM = STMIA (Increment After) = STMEA (Empty Ascending)

 LDM = LDMIA (Increment After) = LDMFD (Full Descending)

 The order in which registers are listed does not matter

 For STM/LDM, the lowest-numbered register is stored/loaded

at the lowest memory address.

Store Multiple Registers

50

STMxx r0!, {r3,r1,r7,r2}

r0

High Memory

Addresses

Low Memory

Addresses

r1

r2

r0

r3

r7

r1

r2

r3

r7

r7

r1

r2

r3

r1

r2

r3

r7

STMIA
Increment After

STMIB
Increment Before

STMDA
Decrement After

STMDB
Decrement Before

Empty

Ascending

r0

Full

Ascending

Empty

Descending

Full

Descending

r0 r0

Load Multiple Registers

51

LDMxx r0!, {r3,r1,r7,r2}

r0

High Memory

Addresses

Low Memory

Addresses

r0

LDMIA
Increment After

LDMIB
Increment Before

LDMDA
Decrement After

LDMDB
Decrement Before

r0

r0 r0

0

-4

-8

-12

-16

8

4

12

16

0

-4

-8

-12

-16

8

4

12

16

0

-4

-8

-12

-16

8

4

12

16

0

-4

-8

-12

-16

8

4

12

16

0

-4

-8

-12

-16

8

4

12

16

r1 = 0
r2 = 4
r3 = 8
r7 = 12

r1 = 4
r2 = 8
r3 = 12
r7 = 16

r1 = -12
r2 = -8
r3 = -4
r7 = -0

r1 = -16
r2 = -12
r3 = -8
r7 = -4

Cortex-M3 & Cortex-M4 Memory Map

 32-bit Memory Address

 232 bytes of memory space

(4 GB)

 Harvard architecture:

physically separated

instruction memory and

data memory

Code

SRAM

Peripheral

External RAM

External

Device

Vendor Specific

External Peripheral Bus

Internal Peripheral Bus

0x00000000

0x20000000

0x40000000

0x60000000

0xA0000000

0xE0040000

0xE0000000

0xE0100000

0xFFFFFFFF

0.5GB

1GB

1GB

0.5GB

0.5GB

0.5GB

52

53

Cortex-M3

Fixed

Memory

Map

54

Cortex-M4

Fixed

Memory Map

Pseudo-instructions

55

 Pseudo instruction: available to use in an assembly

program, but not directly supported by hardware.

 Pseudo → not real

 Compilers translate it to one or multiple actual machine

instructions

 Pseudo instructions are provided for the convenience of

programmers.

LDR Pseudo-instruction

56

LDR Rt, =expr

LDR Rt, =label
 If the value of expr can be loaded with MOV, MVN (16-bit instruction) or MOVW (32-bit

instruction), the assembler uses that instruction.

 MOV supports all 8-bit immediate numbers ranging in [0 – 255]. For numbers out of this range,
some patterns can be encoded.

 If a valid MOV, MVN, MOVW instruction cannot be used (due to out of range), or if the
label_expr syntax is used, the assembler places the constant in a literal pool and
generates a PC-relative LDR instruction that reads the constant from the literal
pool.

LDR r1,=0xFF0 ; loads 0xFF0 into R1
 ; => MOV r1,#0xFF0
LDR r2,=0xFFF ; loads 0xFFF into R2
 ; => MOVW r2, #0xFFF
LDR r3,=array ; loads the address of array into R3
 ; => LDR r3,[pc, offset_to_litpool]
 ; ...
 ; litpool DCD array

Software uses this pseudo instruction to set a register to

some value without worrying about the size of the value.

Summary

57

 Memory address is always in terms of bytes.

 How data is organized in memory?

 How data is addressed?
Addressing Format Example Equivalent

Pre-index LDR r1, [r0, #4]
r1  memory[r0 + 4],
r0 is unchanged

Pre-index with update LDR r1, [r0, #4]!
r1  memory[r0 + 4]
r0  r0 + 4

Post-Index LDR r1, [r0], #4
r1  memory[r0]
r0  r0 + 4

References

58

 Lecture 22. Big-Endian and Little-Endian

 https://www.youtube.com/watch?v=T1C9Kj_78ek&list=PLRJhV
4hUhIymmp5CCeIFPyxbknsdcXCc8&index=22

 Lecture 23. Load and Store Instructions

 https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLRJh
V4hUhIymmp5CCeIFPyxbknsdcXCc8&index=23

 Lecture 24. Addressing mode: pre-index, post-index, and
pre-index with update

 https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLRJhV4
hUhIymmp5CCeIFPyxbknsdcXCc8&index=24

 ARM Instruction Set - Stack Instructions STMFD, STMFA ,
STMED, STMEA,Vishal Gaikwad

 https://www.youtube.com/watch?v=H4xoaOlNSJo

https://www.youtube.com/watch?v=T1C9Kj_78ek&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=22
https://www.youtube.com/watch?v=T1C9Kj_78ek&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=22
https://www.youtube.com/watch?v=T1C9Kj_78ek&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=22
https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=23
https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=23
https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=23
https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=24
https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=24
https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=24
https://www.youtube.com/watch?v=H4xoaOlNSJo
https://www.youtube.com/watch?v=H4xoaOlNSJo

	Slide 1: Z. Gu
	Slide 2: Overview
	Slide 3: Logic View of Memory
	Slide 4: Logic View of Memory
	Slide 5: Logic View of Memory
	Slide 6: Quiz
	Slide 7: Quiz ANS
	Slide 8: Endianess
	Slide 9: Endianess
	Slide 10: Endianess
	Slide 11: Endianness Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Data Alignment
	Slide 15: Load-Modify-Store
	Slide 16: 3 Steps: Load, Modify, Store
	Slide 17: Load Instructions
	Slide 18: Store Instructions
	Slide 19: Load/Store a Byte, Halfword, Word
	Slide 20: Load a Byte, Half-word, Word (Little-Endian)
	Slide 21: Sign Extension (Little-Endian)
	Slide 22: Address Modes: Offset in Register
	Slide 23: Address Modes: Immediate Offset
	Slide 24: Addressing Mode: Pre-index vs Post-index
	Slide 25: Pre-index
	Slide 26: Pre-index
	Slide 27: Pre-index
	Slide 28: Pre-index
	Slide 29: Accessing an Array
	Slide 30: Post-index
	Slide 31: Post-index
	Slide 32: Pre-index
	Slide 33: Pre-index
	Slide 34: Pre-index with Update
	Slide 35: Pre-index
	Slide 36: Pre-index
	Slide 37: Summary of Pre-index and Post-index
	Slide 38: Example (Little-Endian ordering)
	Slide 39: Example ANS (Little-Endian ordering)
	Slide 40: Example (Endianness does not matter for single byte)
	Slide 41: Example ANS (Endianness does not matter for single byte)
	Slide 42: Example (Little-Endian ordering)
	Slide 43: Example ANS (Little-Endian ordering)
	Slide 44: Example (Little-Endian ordering)
	Slide 45: Example ANS (Little-Endian ordering)
	Slide 46: Example
	Slide 47: Example
	Slide 48: Addressing Modes for Load/Store Multiple Registers
	Slide 49: Load/Store Multiple Registers
	Slide 50: Store Multiple Registers
	Slide 51: Load Multiple Registers
	Slide 52: Cortex-M3 & Cortex-M4 Memory Map
	Slide 53
	Slide 54
	Slide 55: Pseudo-instructions
	Slide 56: LDR Pseudo-instruction
	Slide 57: Summary
	Slide 58: References

