

## **Chapter 5**

### **Memory Access**

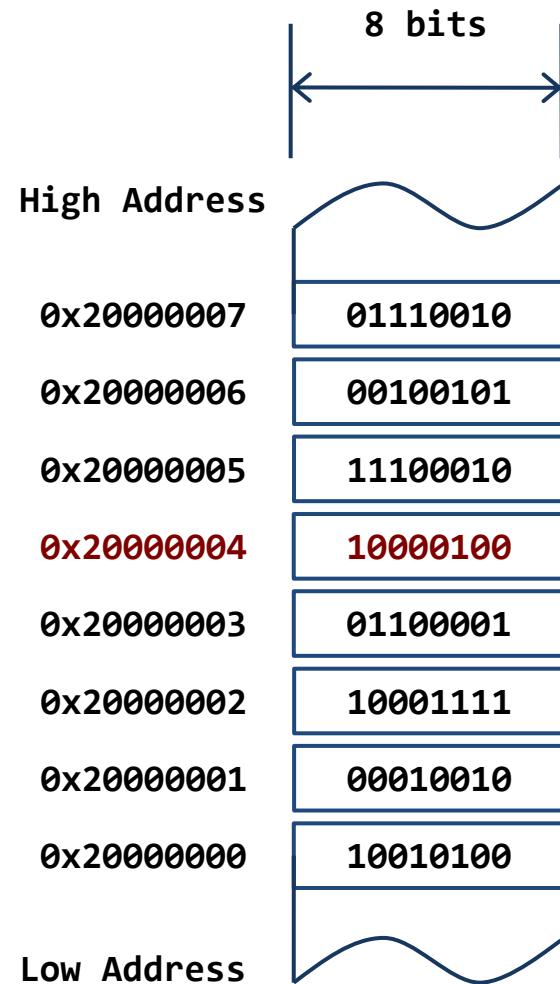
Z. Gu

Fall 2025

# Overview

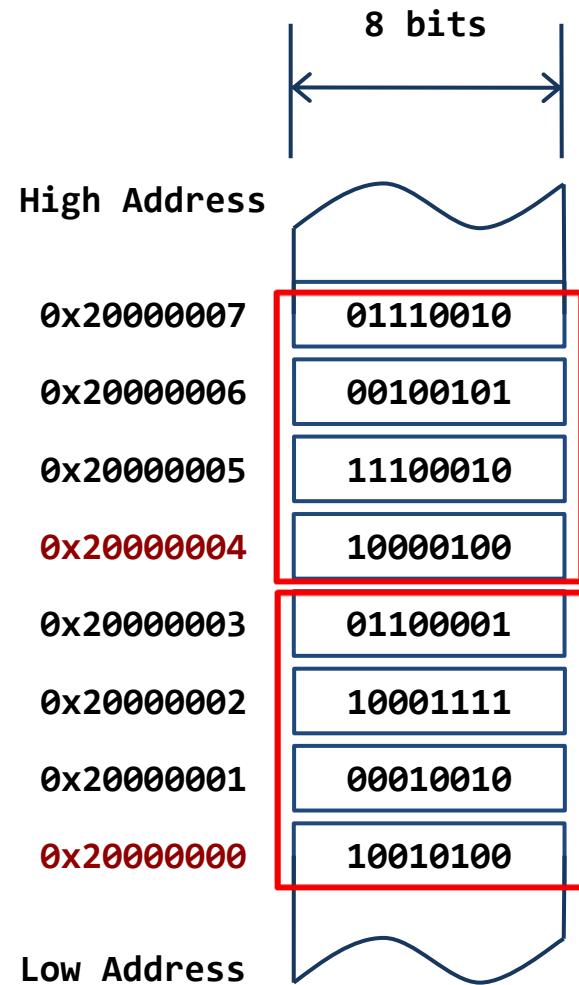
---

- ▶ How data is organized in memory?
  - ▶ Big-Endian vs Little-Endian
- ▶ How data is addressed?
  - ▶ Register offset
    - ▶ **LDR r1, [r0, r3]** ; offset = r3
    - ▶ **LDR r1, [r0, r3, LSL #2]** ; offset = r3 \* 4
  - ▶ Immediate offset
    - ▶ Pre-index: **LDR r1, [r0, #4]**
    - ▶ Post-index: **LDR r1, [r0], #4**
    - ▶ Pre-index with update: **LDR r1, [r0, #4]!**


# Logic View of Memory

- ▶ By grouping bits together we can store more values
  - ▶ 8 bits = 1 **byte**
  - ▶ 16 bits = 2 bytes = 1 **halfword**
  - ▶ 32 bits = 4 bytes = 1 **word**
- ▶ From software perspective, memory is an addressable array of bytes.
- ▶ The byte stored at the memory address 0x20000004 is 0b10000100

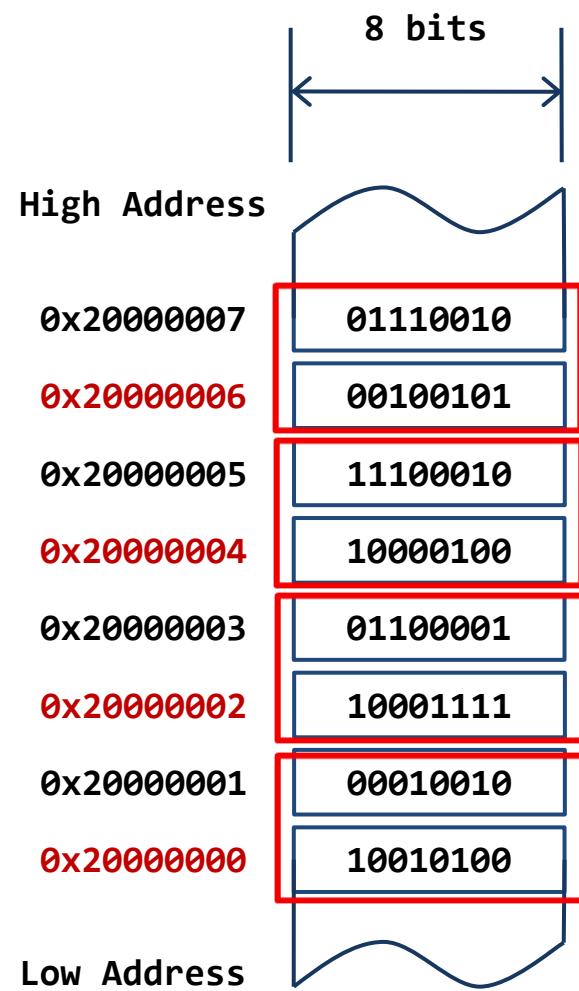
0b10000100 → 0x84 → 132


| Binary | Hexadecimal | Decimal |
|--------|-------------|---------|
|--------|-------------|---------|

Computer memory is *byte-addressable*!



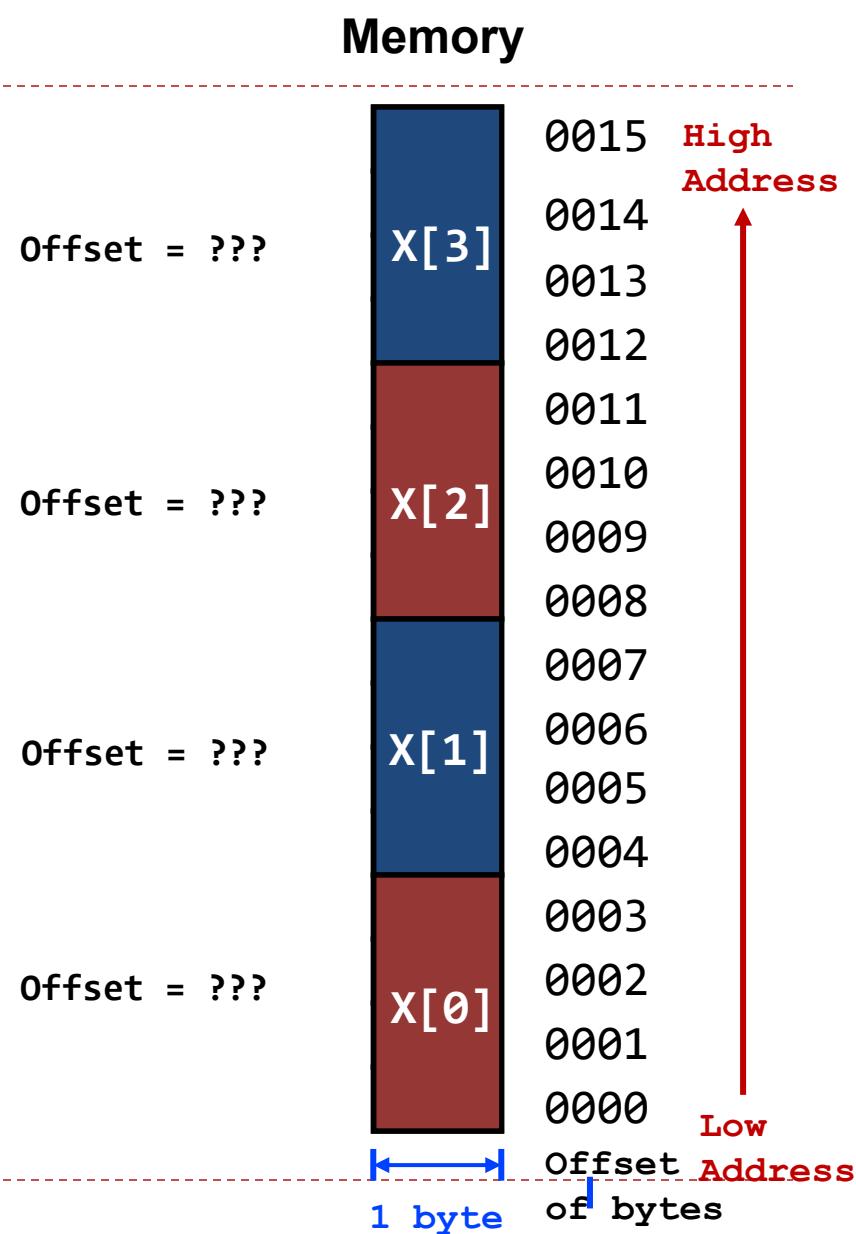
# Logic View of Memory


- When we refer to memory locations by address, we can only do so in units of bytes, halfwords or words
- Words
  - 32 bits = 4 bytes = 1 word = 2 halfwords**
  - A word can only be stored at an address that's divisible by 4 (Word-address mod 4 = 0, binary address ends with 00)
    - Memory address of a word is the lowest address of all four bytes in that word.
    - Two words at addresses: 0x20000000 and 0x20000004
  - A halfword can only be stored at an address that's divisible by 2 (Halfword-address mod 2 = 0, binary address ends with 0)
    - Memory address of a halfword is the lowest address of all 2 bytes in that word.



# Logic View of Memory

## ▶ Halfwords


- ▶ **16 bits = 2 bytes = 1 halfword**
- ▶ The right diagram has four halfwords at addresses of:
  - ▶ 0x20000000
  - ▶ 0x20000002
  - ▶ 0x20000004
  - ▶ 0x20000006



# Quiz

`uint32_t X[4];`

What are their memory address offsets?



# Quiz ANS

`uint32_t X[4];`

What are their memory address offsets?

If the array starts at address `pAddr = 0000`, `Offset = 4`

- Memory address of `X[0]` is `pAddr = 0000`
- Memory address of `X[1]` is `pAddr + 4 = 0004`
- Memory address of `X[2]` is `pAddr + 8 = 0008`
- Memory address of `X[3]` is `pAddr + 12 = 0012`

Sequential words are at addresses incrementing by 4, since each array element of type `uint32_t` is 4 bytes (32 bits)

`Offset = 12`

`Offset = 8`

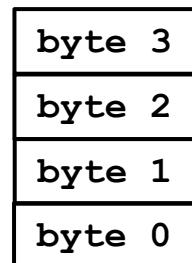
`Offset = 0`

Memory



# Endianess




Gulliver's Travels (by Jonathan Swift, published in 1726):

- Two religious sects of Lilliputians
- The Little-Endians crack open their eggs from the little end
- The Big-Endians break their on the big end

# Endianess

Endian: byte order, not bit order!

High address



MSB

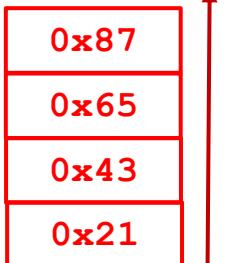
Little-Endian

LSB

LSB is at  
lower address

LSB

Big-Endian


MSB

MSB is at  
lower address

Low address

*Little-Endian*

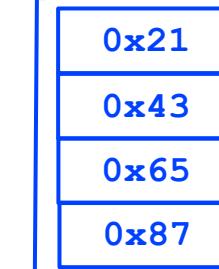
High address



`uint32_t a = 0x87654321`

Reading from the top

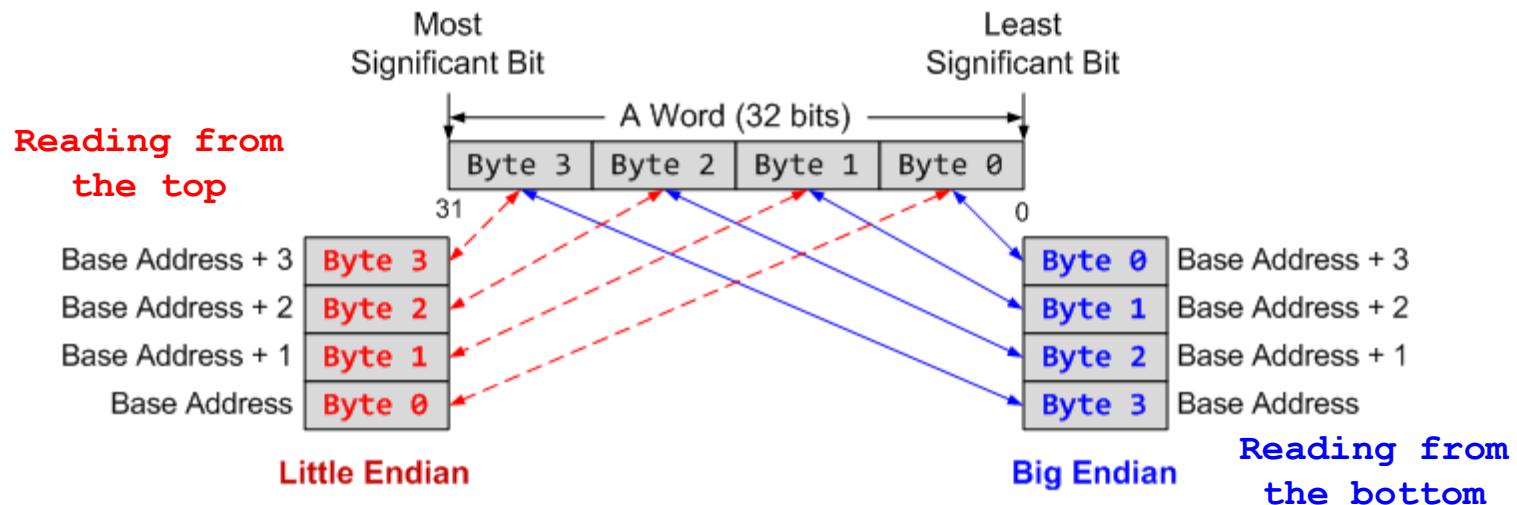
byte 3 byte 2 byte 1 byte 0




byte 0 byte 1 byte 2 byte 3

Reading from the bottom

*Big-Endian*


High address



Low address

# Endianess

- ▶ Little-Endian
  - ▶ Least significant byte (LSB) is stored at lowest (least) address of a word
- ▶ Big-Endian
  - ▶ Most significant byte (MSB) is stored at lowest (least) address of a word
- ▶ Regardless of endianness, the address of a word is defined as the lowest address of all bytes it occupies.
- ▶ ARM is *Little-Endian by default*.
  - ▶ It can be made Big-Endian by configuration.



# Endianness Example

## ▶ Little-Endian

### ▶ LSB is at lower address

```
uint8_t a = 1;
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678;
```

| Memory Offset | Value (LSB) | Value (MSB) |
|---------------|-------------|-------------|
| 0x0000        | 01 02       | FF 00       |
| 0x0004        | 78 56 34 12 |             |

## • Big-Endian

### – MSB is at lower address

```
uint8_t a = 1;
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678;
```

| Memory Offset | Value (LSB) | Value (MSB) |
|---------------|-------------|-------------|
| 0x0000        | 01 02 00 FF |             |
| 0x0004        | 12 34 56 78 |             |

- For `uint8_t a` and `b`, each with size of 1 Byte: No difference
- Little-endian:
  - For `uint16_t c` with size of 2 Bytes: LSB FF is at lower address and MSB 00 is at higher address
  - For `uint32_t d` with size of 4 Bytes: LSB 78 is at lower address and MSB 12 is at higher address.
- Big-endian:
  - For `uint16_t c` with size of 2 Bytes: LSB 01 is at higher address and MSB 02 is at lower address
  - For `uint32_t d` with size of 4 Bytes: LSB 12 is at higher address and MSB 34 is at lower address.

# Example

---

If Big-Endian is used, the word stored at address 0x20008000 is



If Little-Endian is used, the word stored at address 0x20008000 is



Memory Address

0x20008003  
0x20008002  
0x20008001  
0x20008000

Memory Data

|      |
|------|
| 0xA7 |
| 0x90 |
| 0x8C |
| 0xEE |

# Example

If Big-Endian is used, the word stored at address 0x20008000 is

**0xEE8C90A7**

If Little-Endian is used, the word stored at address 0x20008000 is

**0xA7908CEE**

Endianness specifies byte order, not bit order in a byte!

**Memory Address**

0x20008003

0x20008002

0x20008001

0x20008000

**Memory Data**

0xA7

0x90

0x8C

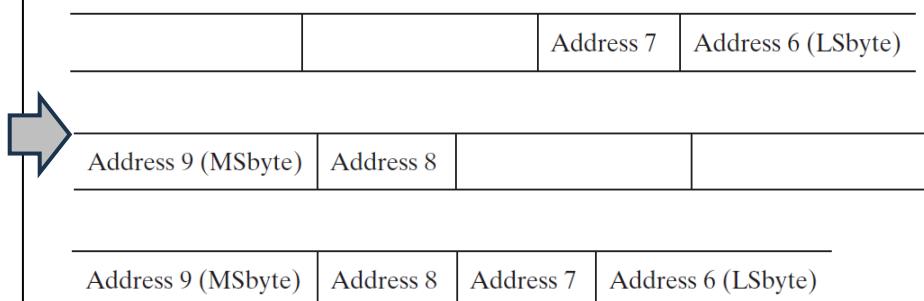
0xEE

# Data Alignment

- Assume a byte-addressable memory with a data bus that is 32 bits (4 bytes) wide
- Consider 16 bytes of memory (addresses 0 to 15) arranged as four 32-bit words (4 bytes each)

|                    |            |            |                    |
|--------------------|------------|------------|--------------------|
| Address 15         | Address 14 | Address 13 | Address 12         |
| Address 11         | Address 10 | Address 9  | Address 8          |
| Address 7 (MSbyte) | Address 6  | Address 5  | Address 4 (LSbyte) |
| Address 3          | Address 2  | Address 1  | Address 0          |

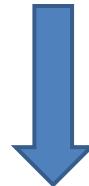
**Well-aligned:** each word begins on a mod-4 address, which can be read in a single memory cycle


The first read cycle would retrieve 4 bytes from addresses 4 through 7; of these, the bytes from addresses 4 and 5 are discarded, and those from addresses 6 and 7 are moved to the far right;

The second read cycle retrieves 4 bytes from addresses 8 through 11; the bytes from addresses 10 and 11 are discarded, and those from addresses 8 and 9 are moved to the far left;

Finally, the two halves are combined to form the desired 32-bit operand.

|            |                    |                    |            |
|------------|--------------------|--------------------|------------|
| Address 15 | Address 14         | Address 13         | Address 12 |
| Address 11 | Address 10         | Address 9 (MSbyte) | Address 8  |
| Address 7  | Address 6 (LSbyte) | Address 5          | Address 4  |
| Address 3  | Address 2          | Address 1          | Address 0  |

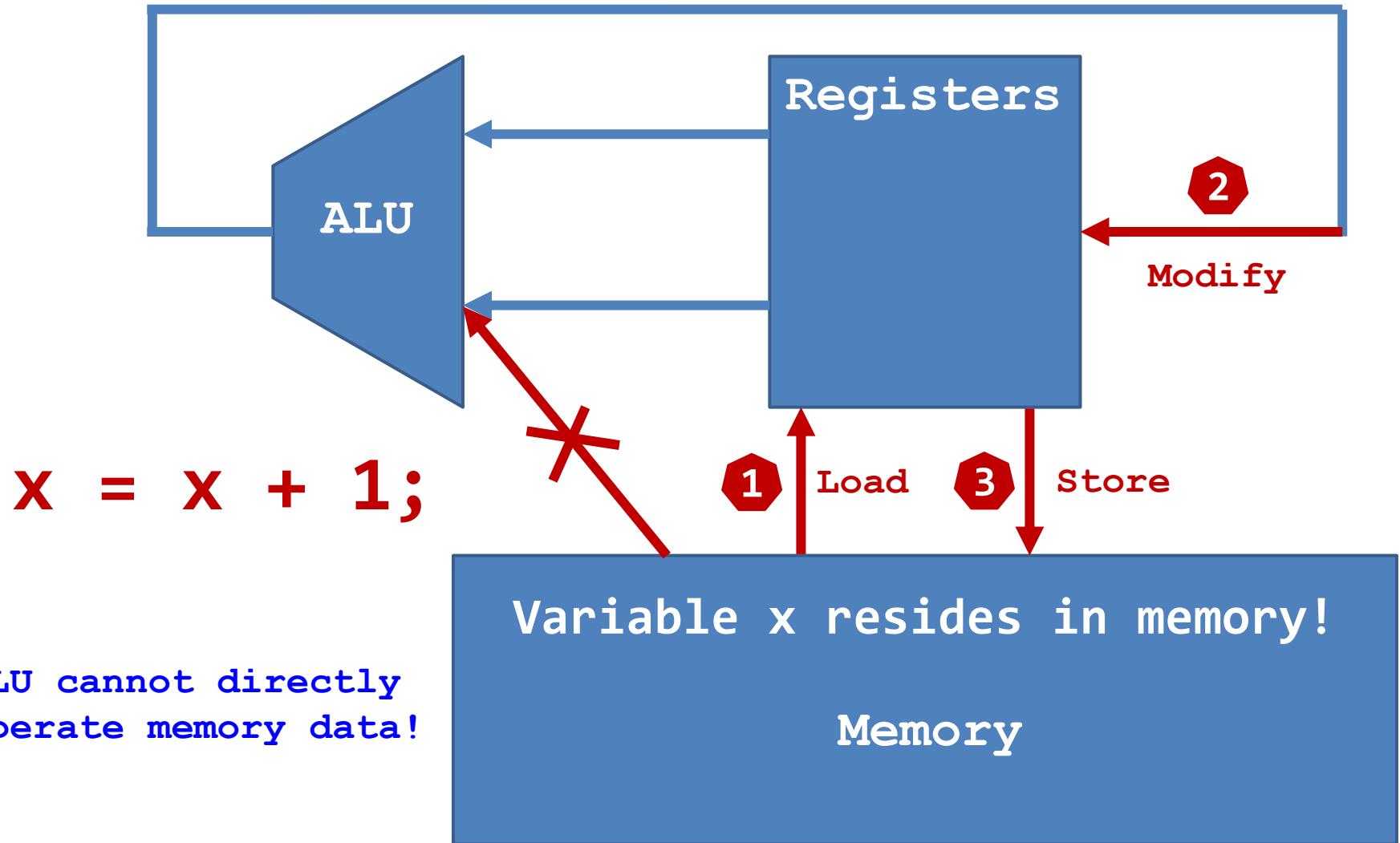

**Ill-aligned:** a word begins on address 6, not a mod-4 address, which can be read in 2 memory cycles



# Load-Modify-Store

C statement

**X = X + 1;**




Assume variable X resides in memory and is a 32-bit integer

; Assume the memory address of x is stored in r1

```
LDR r0, [r1]      ; load value of x from memory
ADD r0, r0, #1    ; x = x + 1
STR r0, [r1]      ; store x into memory
```

# 3 Steps: Load, Modify, Store



# Load Instructions

---

- ▶ **LDR rt, [rs]**
  - ▶ **Read from memory**
  - ▶ Mnemonic: LoaD to RegisTer (**LDR**)
  - ▶ rs specifies the memory address
  - ▶ rt holds the 32-bit value fetched from memory
- ▶ For Example:

```
; Assume r0 = 0x08200004
; Load a word:
LDR r1, [r0]           ; r1 = Memory.word[0x08200004]
```

# Store Instructions

---

- ▶ **STR rt, [rs]**
  - ▶ **Write into memory**
  - ▶ Mnemonic: STore from Register (**STR**)
  - ▶ rs specifies memory address
  - ▶ Save the content of rt into memory
- ▶ For Example:

```
; Assume r0 = 0x08200004
; Store a word
STR r1, [r0]      ; Memory.word[0x08200004] = r1
```

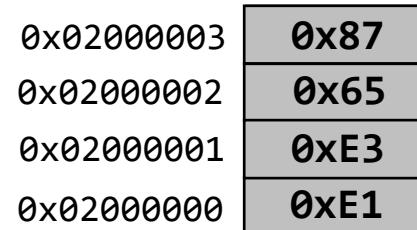
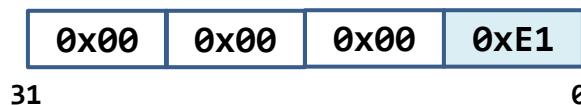
# Load/Store a Byte, Halfword, Word

**LDRxxx R0, [R1]**

; Load data from memory into a **32-bit** register

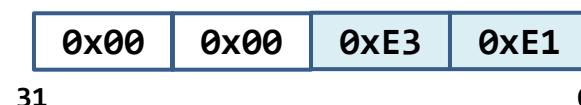
|              |                             |                  |                        |
|--------------|-----------------------------|------------------|------------------------|
| <b>LDR</b>   | Load Word                   | uint32_t/int32_t | unsigned or signed int |
| <b>LDRB</b>  | Load <b>Byte</b>            | uint8_t          | unsigned char          |
| <b>LDRH</b>  | Load <b>Halfword</b>        | uint16_t         | unsigned short int     |
| <b>LDRSB</b> | Load <b>Signed Byte</b>     | int8_t           | signed char            |
| <b>LDRSH</b> | Load <b>Signed Halfword</b> | int16_t          | signed short int       |

**STRxxx R0, [R1]**



; Store data extracted from a **32-bit** register into memory

|             |                             |                  |                          |
|-------------|-----------------------------|------------------|--------------------------|
| <b>STR</b>  | Store Word                  | uint32_t/int32_t | unsigned or signed int   |
| <b>STRB</b> | Store Lower <b>Byte</b>     | uint8_t/int8_t   | unsigned or signed char  |
| <b>STRH</b> | Store Lower <b>Halfword</b> | uint16_t/int16_t | unsigned or signed short |

# Load a Byte, Half-word, Word (Little-Endian)


## Load a Byte

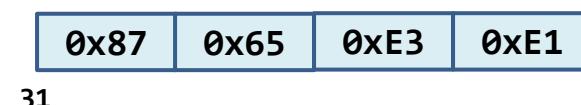
LDRB r1, [r0]



## Load a Halfword

LDRH r1, [r0]




Little-Endian

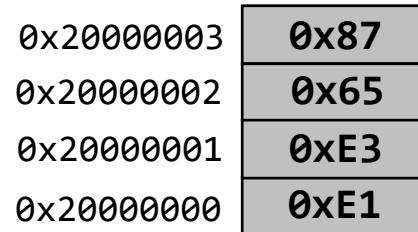
Assume

r0 = 0x02000000

## Load a Word

LDR r1, [r0]




LDRH "Load Register Halfword": it loads a 16-bit halfword value from the memory address pointed to by register r0 into register r1. The loaded 16-bit value is **zero-extended** to fill the 32-bit register r1. This means the upper 16 bits of r1 will be set to zero regardless of the halfword data.

LDRB "Load Register Byte": it loads 8-bit byte value from the memory address pointed to by register r0 into register r1, and zero-extends it.

# Sign Extension (Little-Endian)

Load a Signed Byte

LDRSB r1, [r0]



Load a Signed Halfword

LDRSH r1, [r0]



Little-Endian

Assume  
r0 = 0x02000000

LDRSH "Load Register Signed Halfword"  
LDRSB "Load Register Signed Byte"  
Similar to LDRH and LDRB, except each **sign-extends** the value to fill the 32-bit register, not zero-extend. Facilitate subsequent 32-bit signed arithmetic.

# Address Modes: Offset in Register

---

- ▶ Address accessed by **LDR/STR** is specified by a base register **plus an offset**
- ▶ Offset can be hold in **a register**

**LDR r0, [r1, r2]**

- ▶ Base memory address hold in register r1
- ▶ Offset hold r2
- ▶ Target address = r1 + r2

**LDR r0, [r1, r2, LSL #2]**

- ▶ Base memory address hold in register r1
- ▶ Offset = r2, LSL #2
- ▶ Target address = r1 + r2 \* 4

# Address Modes: Immediate Offset

---

- ▶ Address accessed by **LDR/STR** is specified by a base register plus an offset
- ▶ Offset can be **an immediate value**

**LDR r0, [r1, #8]**

- ▶ Base memory address hold in register r1
- ▶ Offset is an immediate value
- ▶ Target address = r1 + 8

Three modes for immediate offset:

- Pre-index,
- Post-index,
- Pre-index with Update

# Addressing Mode: Pre-index *vs* Post-index

- ▶ Pre-index

**LDR r1, [r0, Offset]**

- ▶ Post-index

**LDR r1, [r0], Offset**

- ▶ Pre-index with Update

**LDR r1, [r0, Offset]!**

The table assumes r0 = 0x100, offset = 4 bytes (#4)

| Mode                                     | Address used for Load | Base register update | Example (r0=0x100)              |
|------------------------------------------|-----------------------|----------------------|---------------------------------|
| Pre-index<br>LDR r1, [r0, #4]            | r0 + offset (0x104)   | No                   | r1 = data[0x104];<br>r0 = 0x100 |
| Post-index<br>LDR r1, [r0], #4           | r0 (0x100)            | Yes, after load      | r1 = data[0x100];<br>r0 = 0x104 |
| Pre-index w/ Update<br>LDR r1, [r0, #4]! | r0 + offset (0x104)   | Yes, before load     | r1 = data[0x104];<br>r0 = 0x104 |

# Pre-index

Pre-Index: **LDR r1, [r0, #4]**

Assume: r0 = 0x20008000

[#4]

Offset: range is -255 to +255

| Memory Address | Memory Data |
|----------------|-------------|
| 0x20008007     | 0x88        |
| 0x20008006     | 0x79        |
| 0x20008005     | 0x6A        |
| 0x20008004     | 0x5B        |
| 0x20008003     | 0x4C        |
| 0x20008002     | 0x3D        |
| 0x20008001     | 0x2E        |
| 0x20008000     | 0x1F        |

- Calculates address by adding the offset (here, #4) to the base register (r0) before the load. Loads data from the resulting address r0+4 into r1. The base register (r0) is not updated.
- Example: instruction accesses memory at r0 + 4 = 0x20008004, but r0 remains to be 0x20008000 after execution.

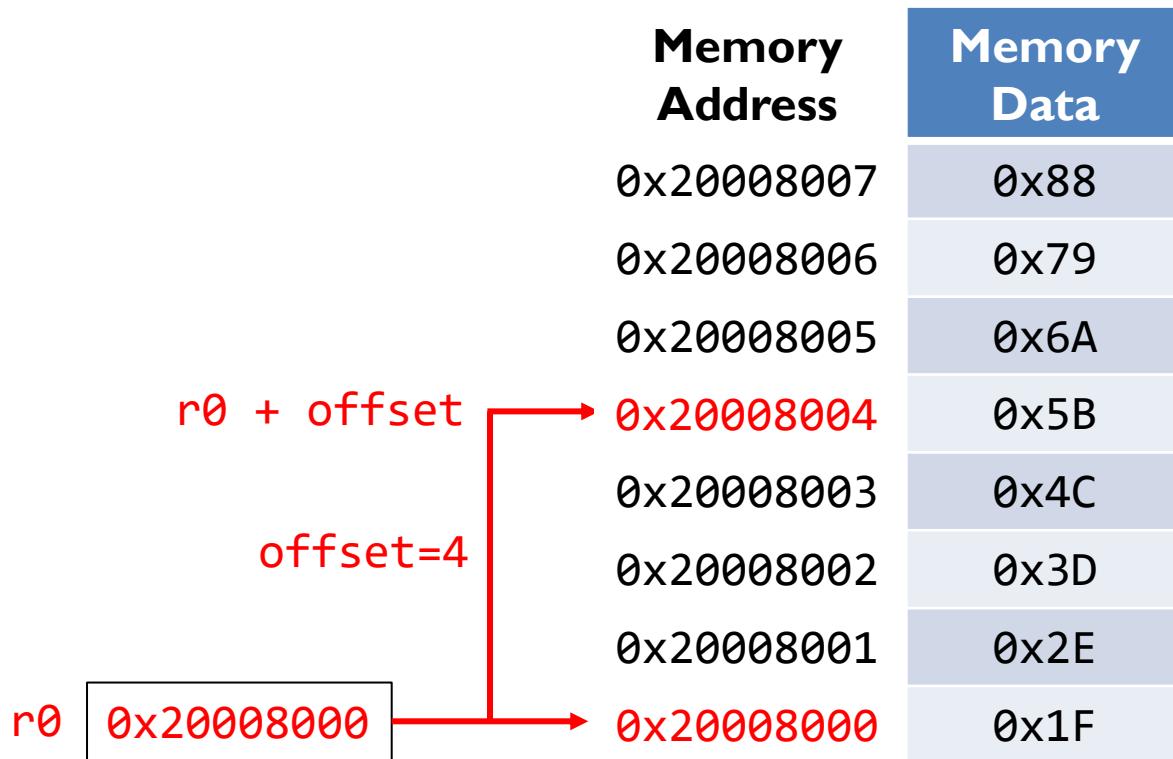
# Pre-index

Pre-Index: LDR r1, [r0, #4]

Assume: r0 = 0x20008000

Offset: range is -255 to +255

| Memory Address | Memory Data |
|----------------|-------------|
| 0x20008007     | 0x88        |
| 0x20008006     | 0x79        |
| 0x20008005     | 0x6A        |
| 0x20008004     | 0x5B        |
| 0x20008003     | 0x4C        |
| 0x20008002     | 0x3D        |
| 0x20008001     | 0x2E        |
|                | 0x1F        |

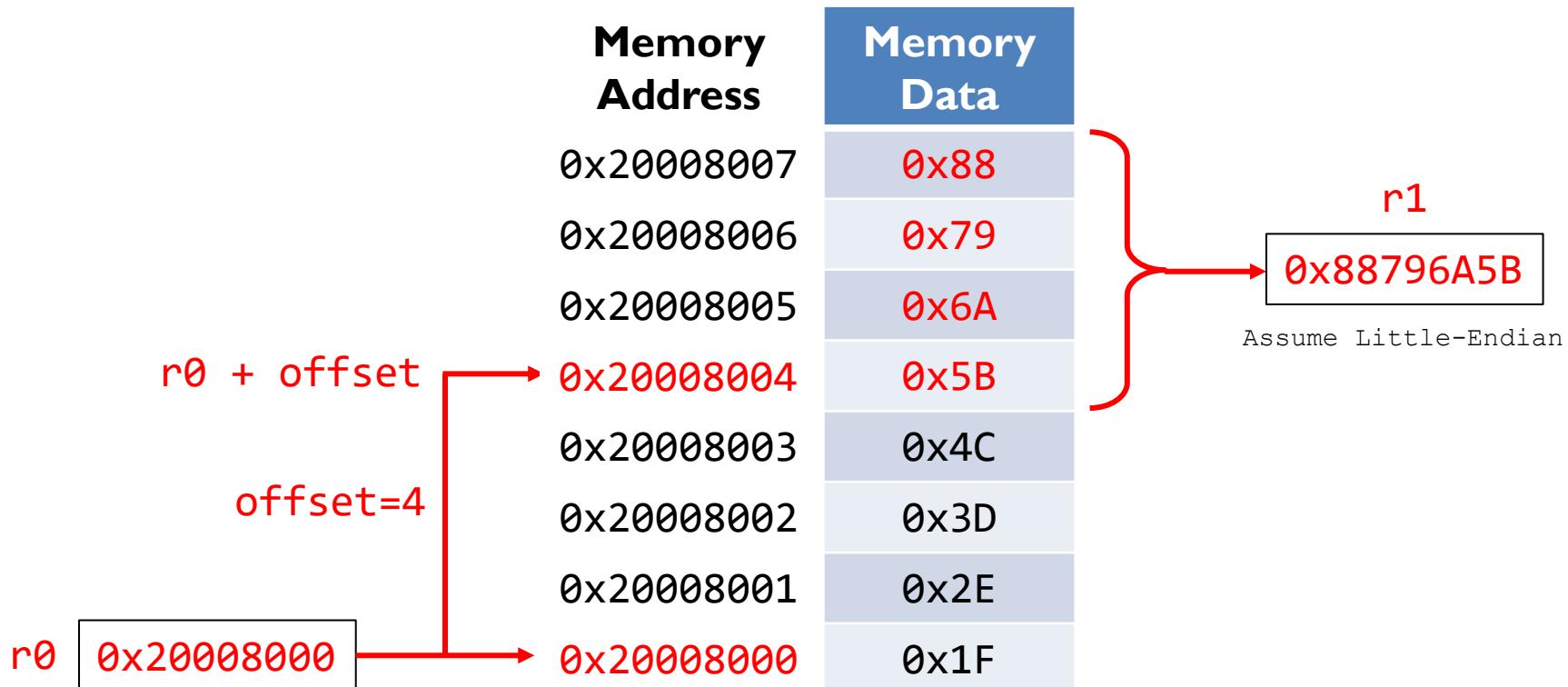

r0 0x20008000 → 0x20008000

# Pre-index

Pre-Index: LDR r1, [r0, #4]

Assume: r0 = 0x20008000

Offset: range is -255 to +255




# Pre-index

Pre-Index: LDR r1, [r0, #4]

Assume: r0 = 0x20008000

Offset: range is -255 to +255



# Accessing an Array

## ▶ C code

```
uint32_t array[10];  
array[0] += 5;  
array[1] += 5;
```

Assume the memory address of the array starts at 0x20008000.

## ▶ Pre-index

Assume  $r0 = 0x20008000$ .

```
LDR r1, [r0]      ; Read array[0]  
ADD r1, r1, #5  
STR r1, [r0]      ; Write to array[0]
```

```
LDR r1, [r0, #4] ; Read array[1]  
ADD r1, r1, #5  
STR r1, [r0, #4] ; Write to array[1]
```

# Post-index

Post-Index: LDR r1, [r0], #4

Assume: r0 = 0x20008000

#4

Offset: range is -255 to +255

| Memory Address | Memory Data |
|----------------|-------------|
| 0x20008007     | 0x88        |
| 0x20008006     | 0x79        |
| 0x20008005     | 0x6A        |
| 0x20008004     | 0x5B        |
| 0x20008003     | 0x4C        |
| 0x20008002     | 0x3D        |
| 0x20008001     | 0x2E        |
| 0x20008000     | 0x1F        |

- Loads data from the address currently in r0 into r1. After the load, updates the base register (r0) by adding the offset (#4).
- Example: instruction accesses memory at r0 = 0x20008000, then increments r0 by the offset of 4 to r0 + 4 = 0x20008004 after execution.

# Post-index

Post-Index: LDR r1, [r0], #4

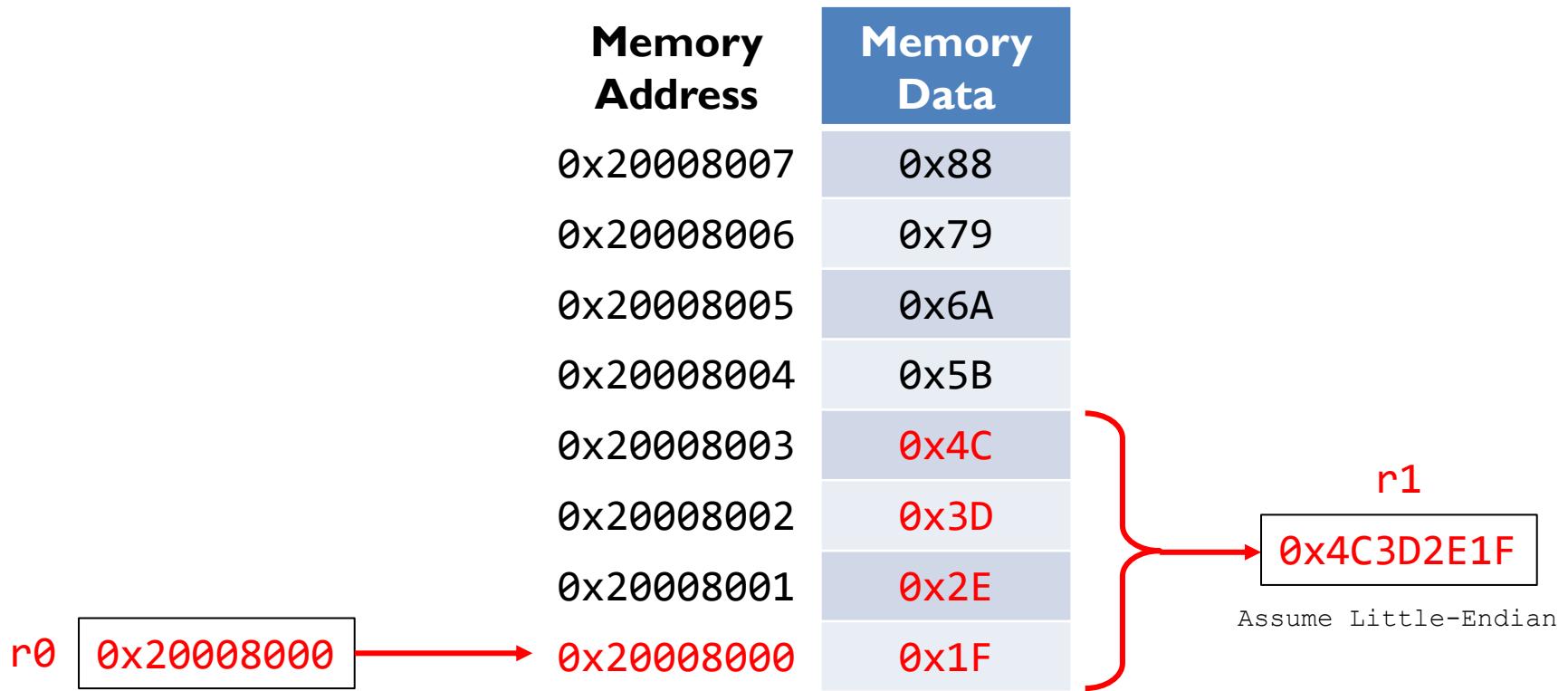
Assume: r0 = 0x20008000

#4

Offset: range is -255 to +255

| Memory Address | Memory Data |
|----------------|-------------|
| 0x20008007     | 0x88        |
| 0x20008006     | 0x79        |
| 0x20008005     | 0x6A        |
| 0x20008004     | 0x5B        |
| 0x20008003     | 0x4C        |
| 0x20008002     | 0x3D        |
| 0x20008001     | 0x2E        |
|                | 0x1F        |

r0 0x20008000


→ 0x20008000

# Pre-index

Pre-Index: LDR r1, [r0, #4]

Assume: r0 = 0x20008000

Offset: range is -255 to +255



# Pre-index

Pre-Index: LDR r1, [r0, #4]

Assume: r0 = 0x20008000

[#4]

Offset: range is -255 to +255

Update r0 after  
reading memory

$r0 = r0 + \text{offset}$

r0 0x20008004

| Memory Address | Memory Data |
|----------------|-------------|
| 0x20008007     | 0x88        |
| 0x20008006     | 0x79        |
| 0x20008005     | 0x6A        |
| 0x20008004     | 0x5B        |
| 0x20008003     | 0x4C        |
| 0x20008002     | 0x3D        |
| 0x20008001     | 0x2E        |
| 0x20008000     | 0x1F        |

r1 0x4C3D2E1F

Assume Little-Endian

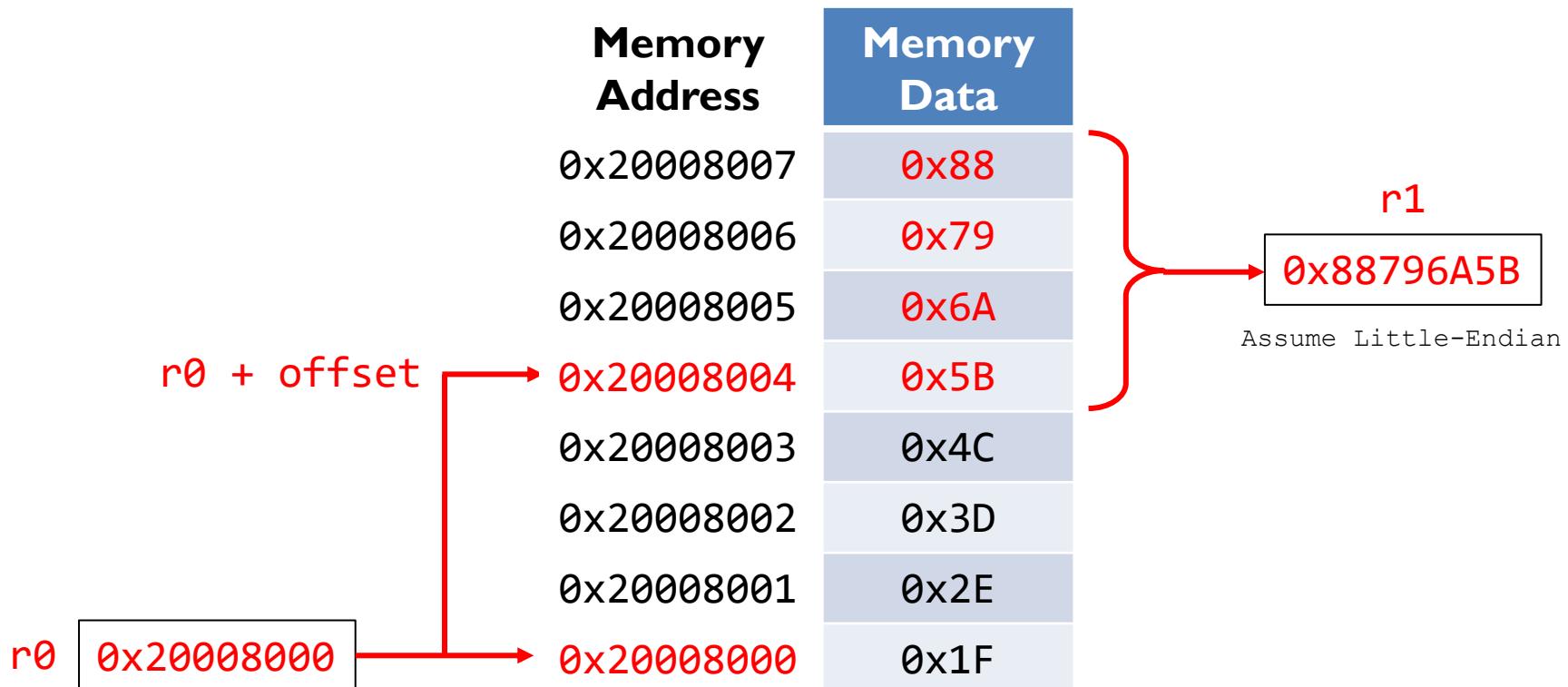
# Pre-index with Update

Pre-Index with Update: **LDR r1, [r0, #4]!**

Assume: r0 = 0x20008000

*Offset: range is  
-255 to +255*

| Memory Address | Memory Data |
|----------------|-------------|
| 0x20008007     | 0x88        |
| 0x20008006     | 0x79        |
| 0x20008005     | 0x6A        |
| 0x20008004     | 0x5B        |
| 0x20008003     | 0x4C        |
| 0x20008002     | 0x3D        |
| 0x20008001     | 0x2E        |
| 0x20008000     | 0x1F        |

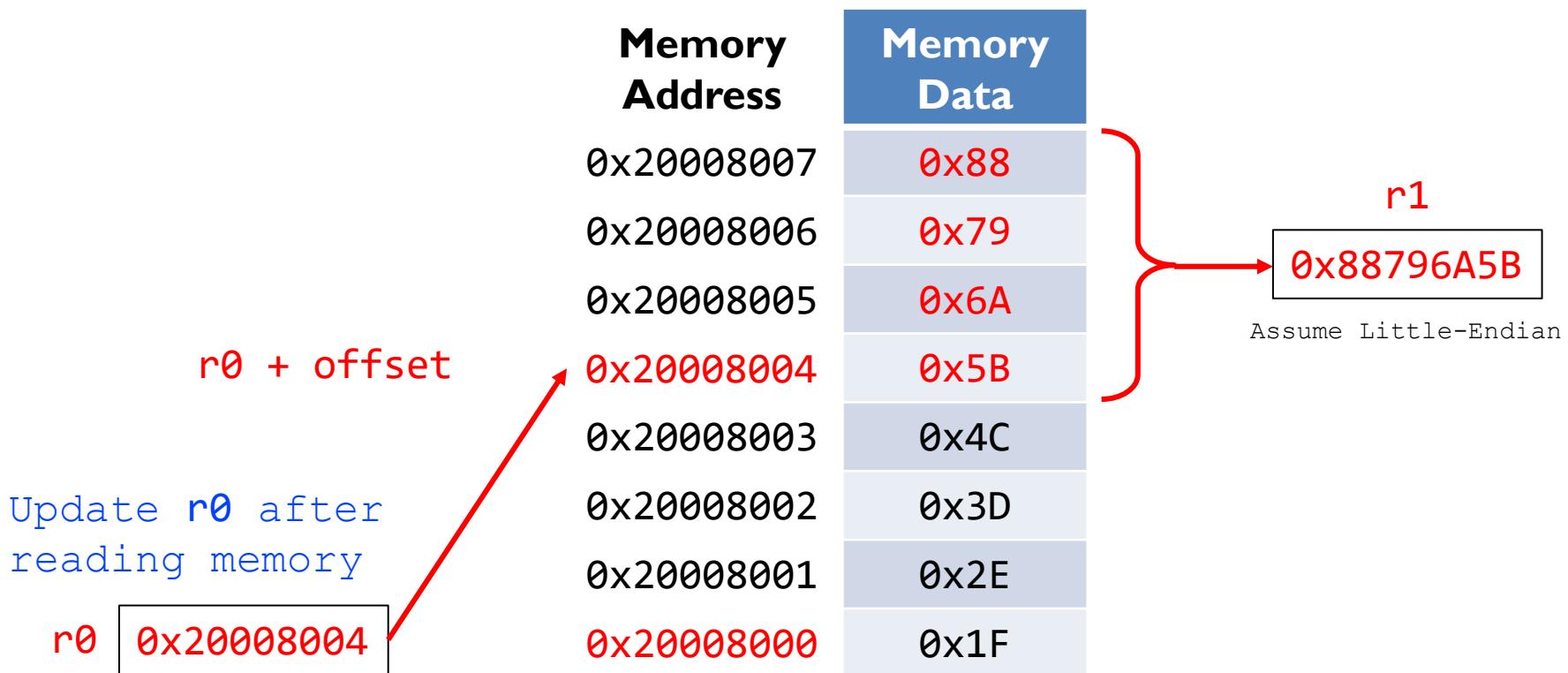

- First, adds the offset (#4) to the base register (r0), then loads from this updated address  $r0 + 4$ . Base register r0 is set to  $r0 + 4$  afterwards.
- Example: instruction accesses memory at  $r0 + 4 = 0x20008004$ , and also sets r0 to 0x20008004 after execution.

# Pre-index

Pre-Index with Update: **LDR r1, [r0, #4]!**

Assume: r0 = 0x20008000

Offset: range is  
-255 to +255




# Pre-index

Pre-Index with Update: LDR r1, [r0, #4]!

Assume: r0 = 0x20008000

Offset: range is  
-255 to +255



# Summary of Pre-index and Post-index

| Index Format          | Example           | Equivalent                                                      |
|-----------------------|-------------------|-----------------------------------------------------------------|
| Pre-index             | LDR r1, [r0, #4]  | $r1 \leftarrow \text{memory}[r0 + 4]$ ,<br>r0 is unchanged      |
| Pre-index with update | LDR r1, [r0, #4]! | $r1 \leftarrow \text{memory}[r0 + 4]$<br>$r0 \leftarrow r0 + 4$ |
| Post-index            | LDR r1, [r0], #4  | $r1 \leftarrow \text{memory}[r0]$<br>$r0 \leftarrow r0 + 4$     |

In ARM Cortex-M/Thumb instruction set, for halfword and signed byte/halfword load/store instructions, the offset is an unsigned 8-bit immediate (0-255), and the U bit selects addition or subtraction, yielding an effective signed range of [-255, +255] around the base register.

In ARM (A32) instruction set, for word and unsigned byte LDR/STR, the immediate is typically a 12-bit unsigned value (0-4095, with an effective signed range of [-4095, +4095]

# Example (Little-Endian ordering)

**LDRH r1, [r0]**  
; r0 = 0x20008000

r1 before load

0x12345678

r1 after load

**Memory Address**

0x20008003

0x20008002

0x20008001

0x20008000

**Memory Data**

0x89

0xAB

0xCD

0xEF

# Example ANS (Little-Endian ordering)

**LDRH r1, [r0]**  
; r0 = 0x20008000

r1 before load

0x12345678

r1 after load

0x0000CDEF

**Memory Address**

0x20008003

0x20008002

0x20008001

0x20008000

**Memory Data**

0x89

0xAB

0xCD

0xEF

# Example (Endianness does not matter for single byte)

**LDRSB r1, [r0]**  
; r0 = 0x20008000

r1 before load

0x12345678

r1 after load

**Memory Address**

0x20008003

0x20008002

0x20008001

0x20008000

**Memory Data**

0x89

0xAB

0xCD

0xEF

# Example ANS (Endianness does not matter for single byte)

**LDRSB r1, [r0]**  
; r0 = 0x20008000

r1 before load

0x12345678

r1 after load

0xFFFFFFFFEF

**Memory Address**

0x20008003

0x20008002

0x20008001

0x20008000

**Memory Data**

0x89

0xAB

0xCD

0xEF

# Example (Little-Endian ordering)

**STR r1, [r0, #4]**

; r0 = 0x20008000, r1=0x76543210

r0 before the store

0x20008000

r0 after the store

| Memory Address  | Memory Data |
|-----------------|-------------|
| 0x20008007      | 0x00        |
| 0x20008006      | 0x00        |
| 0x20008005      | 0x00        |
| 0x20008004      | 0x00        |
| 0x20008003      | 0x00        |
| 0x20008002      | 0x00        |
| 0x20008001      | 0x00        |
| r0 → 0x20008000 | 0x00        |

# Example ANS (Little-Endian ordering)

**STR r1, [r0, #4]**

; r0 = 0x20008000, r1=0x76543210

r0 before store

0x20008000

r0 after store

0x20008000

| Memory Address  | Memory Data |
|-----------------|-------------|
| 0x20008007      | 0x76        |
| 0x20008006      | 0x54        |
| 0x20008005      | 0x32        |
| 0x20008004      | 0x10        |
| 0x20008003      | 0x00        |
| 0x20008002      | 0x00        |
| 0x20008001      | 0x00        |
| r0 → 0x20008000 | 0x00        |

# Example (Little-Endian ordering)

**STR r1, [r0], #4**

; r0 = 0x20008000, r1=0x76543210

r0 before store

**0x20008000**

r0 after store



| Memory Address  | Memory Data |
|-----------------|-------------|
| 0x20008007      | 0x00        |
| 0x20008006      | 0x00        |
| 0x20008005      | 0x00        |
| 0x20008004      | 0x00        |
| 0x20008003      | 0x00        |
| 0x20008002      | 0x00        |
| 0x20008001      | 0x00        |
| r0 → 0x20008000 | 0x00        |

# Example ANS (Little-Endian ordering)

**STR r1, [r0], #4**

; r0 = 0x20008000, r1=0x76543210

r0 before store

**0x20008000**

r0 after store

**0x20008004**

| Memory Address  | Memory Data |
|-----------------|-------------|
| 0x20008007      | 0x00        |
| 0x20008006      | 0x00        |
| 0x20008005      | 0x00        |
| r0 → 0x20008004 | 0x00        |
| 0x20008003      | <b>0x76</b> |
| 0x20008002      | <b>0x54</b> |
| 0x20008001      | <b>0x32</b> |
| 0x20008000      | <b>0x10</b> |

# Example

**STR r1, [r0, #4]!**

; r0 = 0x20008000, r1=0x76543210

r0 before store

**0x20008000**

r0 after store



| Memory Address                                                                                    | Memory Data |
|---------------------------------------------------------------------------------------------------|-------------|
| 0x20008007                                                                                        | 0x00        |
| 0x20008006                                                                                        | 0x00        |
| 0x20008005                                                                                        | 0x00        |
| 0x20008004                                                                                        | 0x00        |
| 0x20008003                                                                                        | 0x00        |
| 0x20008002                                                                                        | 0x00        |
| 0x20008001                                                                                        | 0x00        |
| r0  0x20008000 | 0x00        |

# Example

**STR r1, [r0, #4]!**

; r0 = 0x20008000, r1=0x76543210

r0 before store

**0x20008000**

r0 after store

**0x20008004**

| Memory Address  | Memory Data |
|-----------------|-------------|
| 0x20008007      | <b>0x76</b> |
| 0x20008006      | <b>0x54</b> |
| 0x20008005      | <b>0x32</b> |
| r0 → 0x20008004 | <b>0x10</b> |
| 0x20008003      | 0x00        |
| 0x20008002      | 0x00        |
| 0x20008001      | 0x00        |
| 0x20008000      | 0x00        |

# Addressing Modes for Load/Store Multiple Registers

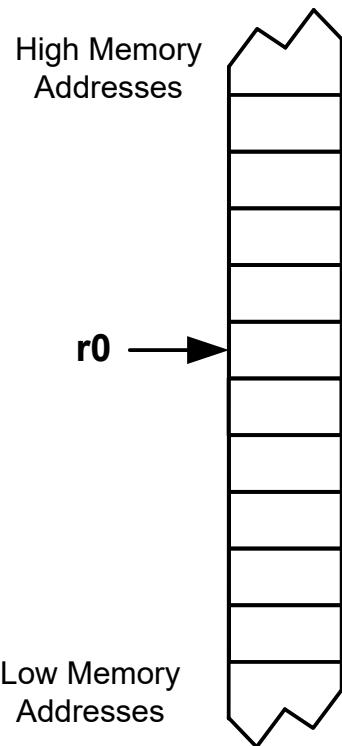
`STMxx rn{!}, {register_list}`

`LDMxx rn{!}, {register_list}`

- ▶  $xx = IA, IB, DA, \text{ or } DB$

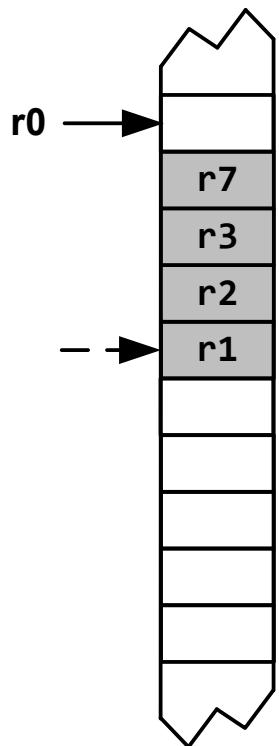
| Addressing Modes | Description              | Instructions |
|------------------|--------------------------|--------------|
| <b>IA</b>        | Increment <b>A</b> fter  | STMIA, LDMIA |
| <b>IB</b>        | Increment <b>B</b> efore | STMIB, LDMIB |
| <b>DA</b>        | Decrement <b>A</b> fter  | STMDA, LDMDA |
| <b>DB</b>        | Decrement <b>B</b> efore | STMDB, LDMDB |

- **IA**: address is incremented by 4 after a word is loaded or stored.
- **IB**: address is incremented by 4 before a word is loaded or stored.
- **DA**: address is decremented by 4 after a word is loaded or stored.
- **DB**: address is decremented by 4 before a word is loaded or stored.


# Load/Store Multiple Registers

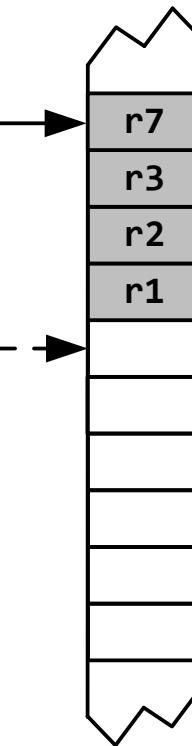
---

- ▶ The following are synonyms.
  - ▶ **STM** = **STMIA** (Increment After) = **STM**EA**** (Empty Ascending)
  - ▶ **LDM** = **LDMIA** (Increment After) = **LDM**FD**** (Full Descending)
- ▶ The order in which registers are listed does not matter
  - ▶ For STM/LDM, the lowest-numbered register is stored/loaded at the lowest memory address.


# Store Multiple Registers

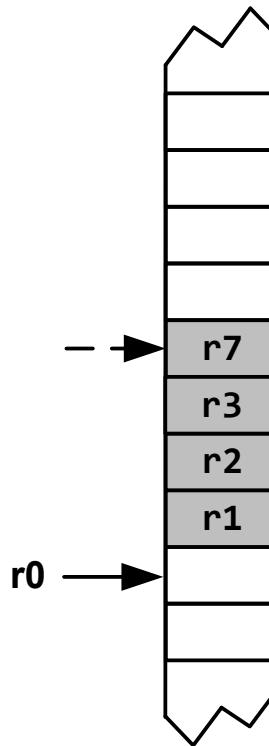
**STMxx r0!, {r3,r1,r7,r2}**




**STMIA**

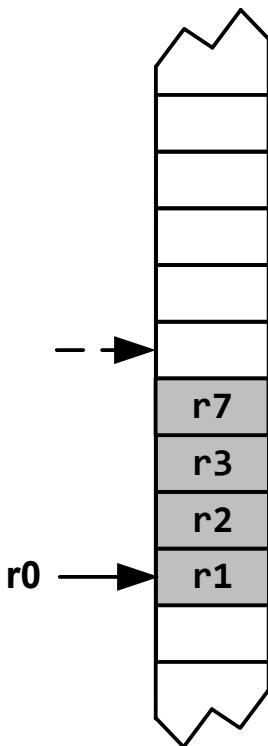
Increment After




**STMIB**

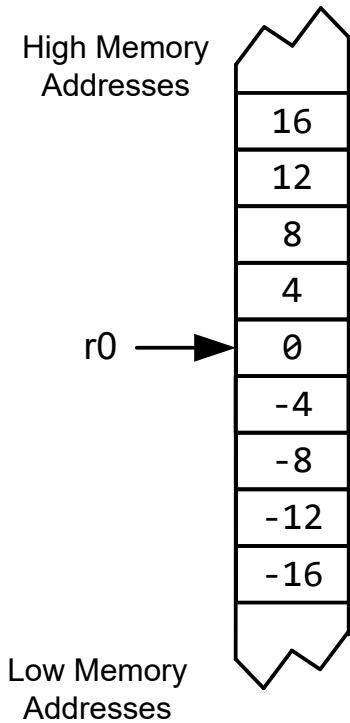
Increment Before



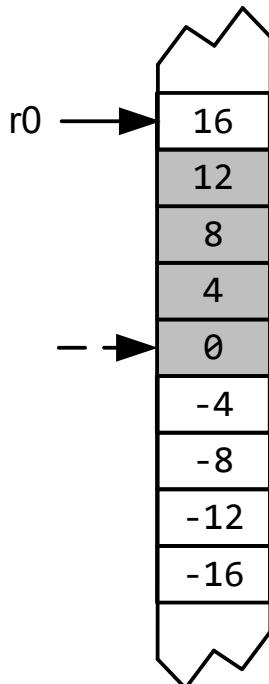

**STMDA**

Decrement After

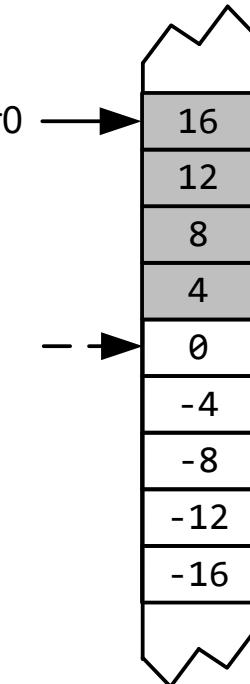



**STMDB**

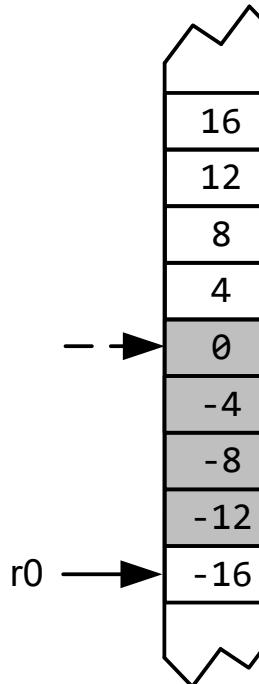
Decrement Before



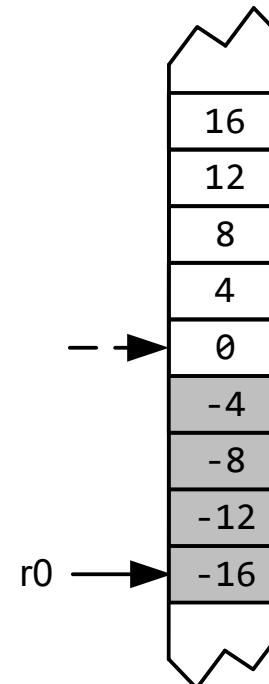

# Load Multiple Registers


**LDMxx r0!, {r3,r1,r7,r2}**




**LDMIA**  
Increment After




**LDMIB**  
Increment Before



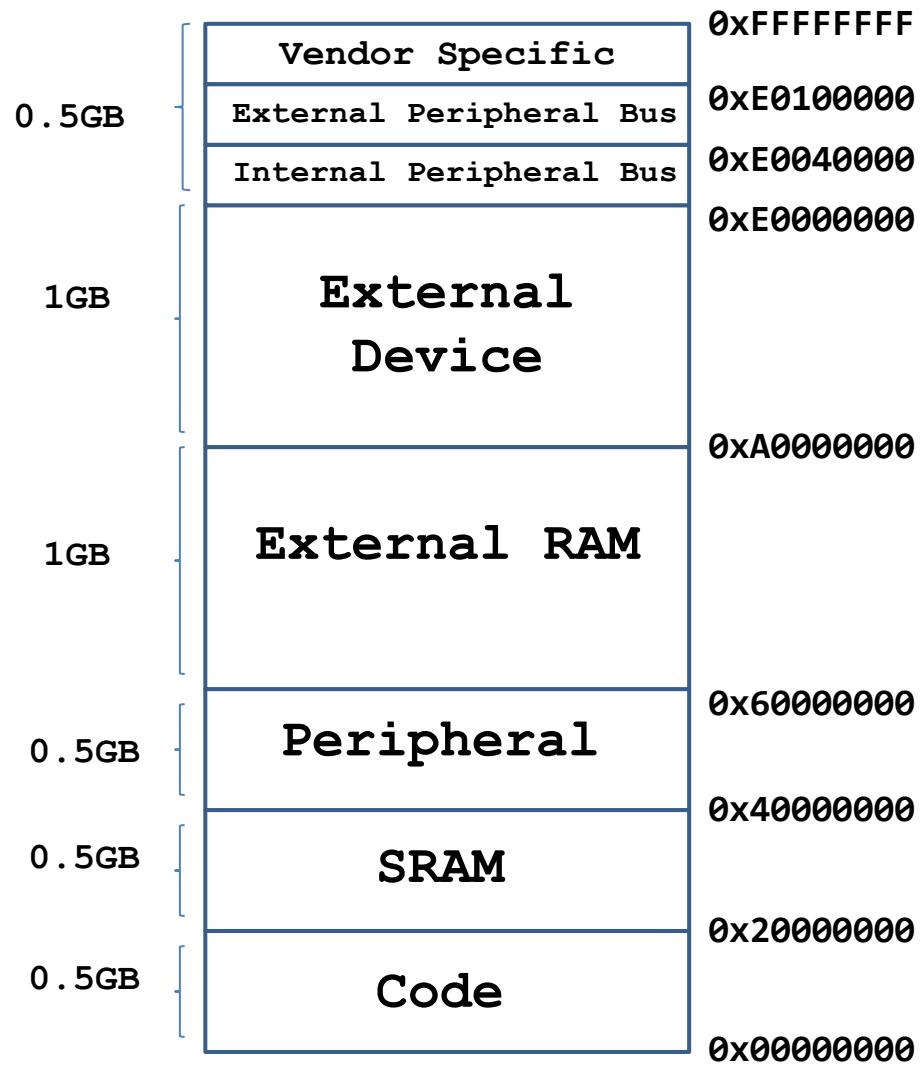
**LDMDA**  
Decrement After

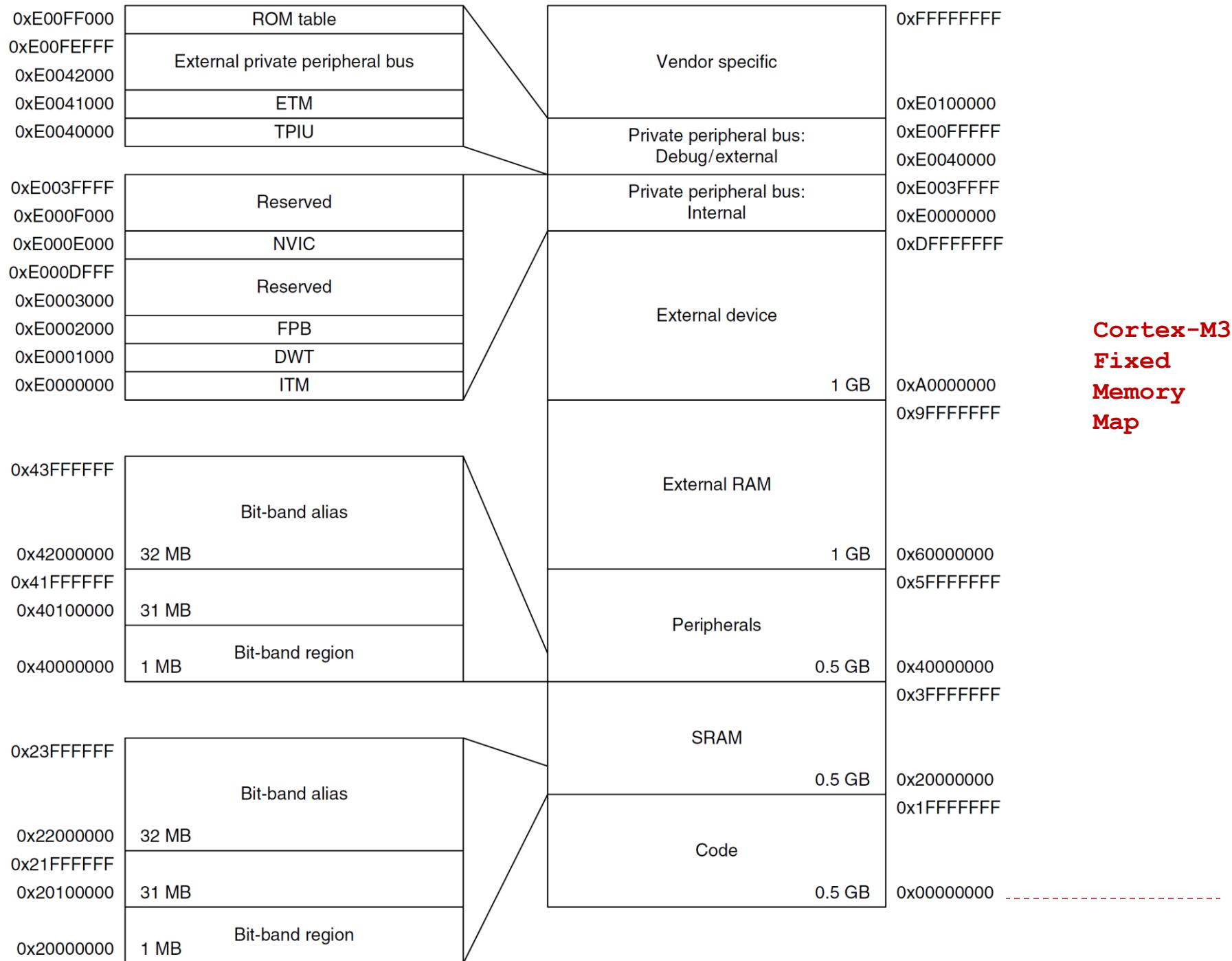


**LDMDB**  
Decrement Before

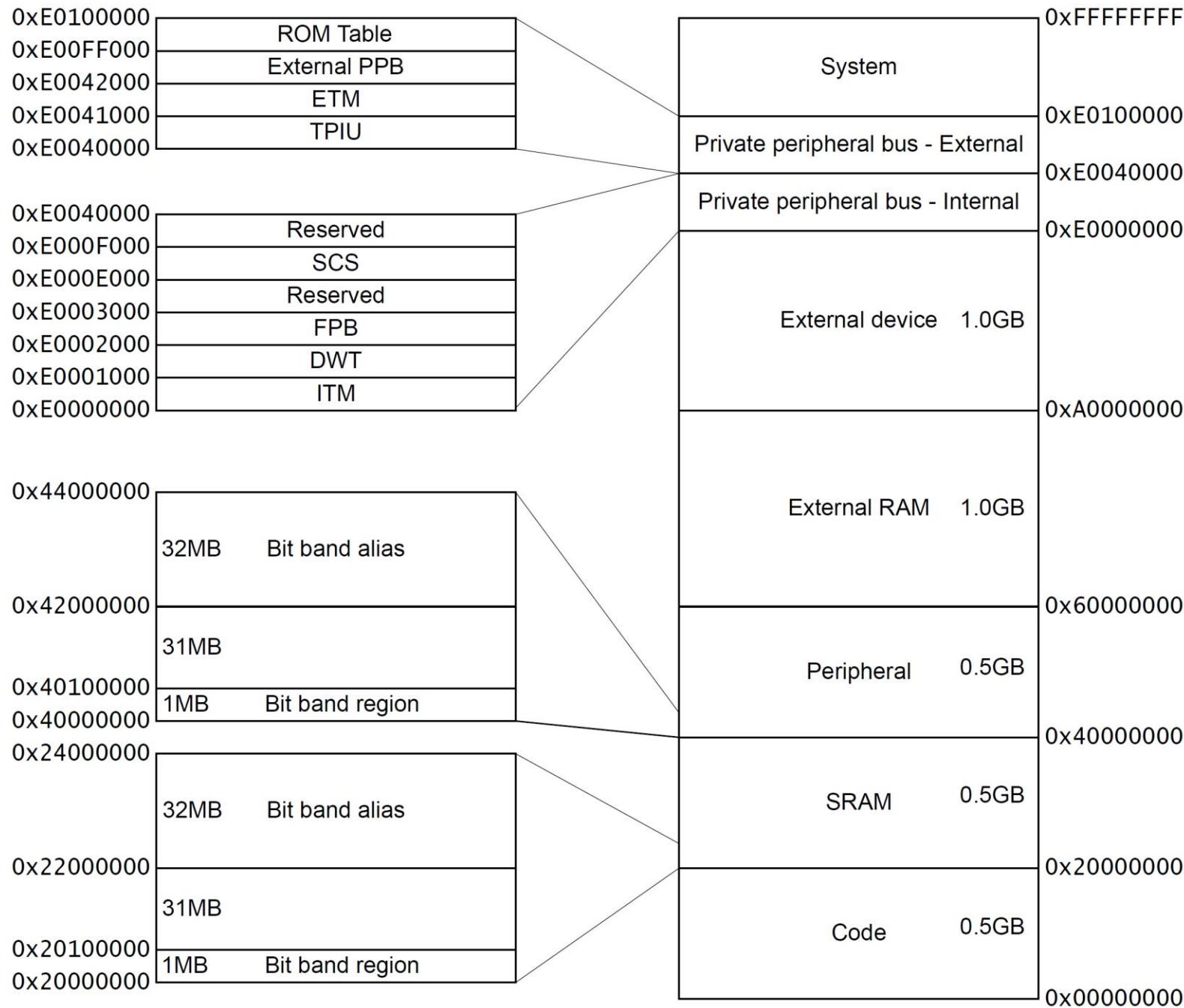


**r1 = 0**  
**r2 = 4**  
**r3 = 8**  
**r7 = 16**


**r1 = 4**  
**r2 = 8**  
**r3 = 12**  
**r7 = 16**


**r1 = -12**  
**r2 = -8**  
**r3 = -4**  
**r7 = -0**

**r1 = -16**  
**r2 = -12**  
**r3 = -8**  
**r7 = -4**


# Cortex-M3 & Cortex-M4 Memory Map

- ▶ 32-bit Memory Address
- ▶  $2^{32}$  bytes of memory space (4 GB)
- ▶ Harvard architecture: physically separated instruction memory and data memory





**Cortex-M4  
Fixed  
Memory Map**



# Pseudo-instructions

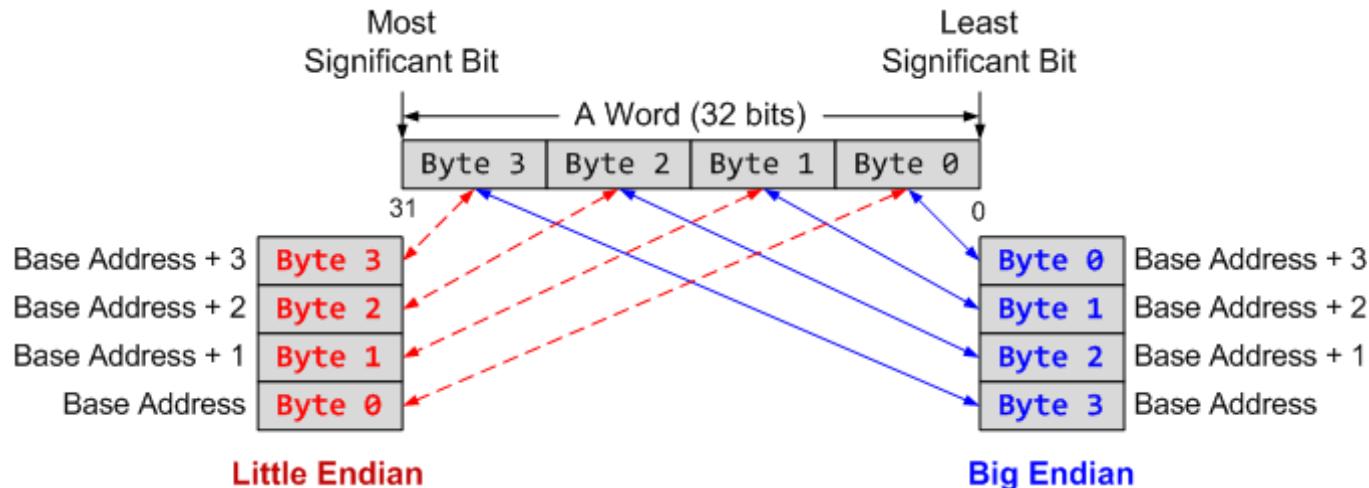
---

- ▶ **Pseudo instruction:** available to use in an assembly program, but not directly supported by hardware.
- ▶ Pseudo → not real
- ▶ Compilers translate it to one or multiple actual machine instructions
- ▶ Pseudo instructions are provided for the convenience of programmers.

# LDR Pseudo-instruction

**LDR Rt, =expr**

**LDR Rt, =label**


- ▶ If the value of expr can be loaded with **MOV**, **MVN** (16-bit instruction) or **MOVW** (32-bit instruction), the assembler uses that instruction.
  - ▶ **MOV** supports all 8-bit immediate numbers ranging in [0 – 255]. For numbers out of this range, some patterns can be encoded.
- ▶ If a valid **MOV**, **MVN**, **MOVW** instruction cannot be used (due to out of range), or if the label\_expr syntax is used, the assembler places the constant in a literal pool and generates a **PC-relative LDR** instruction that reads the constant from the literal pool.

```
LDR r1,=0xFF0 ; loads 0xFF0 into R1
                ; => MOV r1,#0xFF0
LDR r2,=0xFFFF ; loads 0xFFFF into R2
                ; => MOVW r2, #0xFFFF
LDR r3,=array  ; loads the address of array into R3
                ; => LDR r3,[pc, offset_to_litpool]
                ; ...
                ;     litpool DCD array
```

Software uses this pseudo instruction to set a register to some value without worrying about the size of the value.

# Summary

- ▶ Memory address is always in terms of bytes.
- ▶ How data is organized in memory?



- ▶ How data is addressed?

| Addressing Format     | Example                        | Equivalent                                                      |
|-----------------------|--------------------------------|-----------------------------------------------------------------|
| Pre-index             | <code>LDR r1, [r0, #4]</code>  | $r1 \leftarrow \text{memory}[r0 + 4]$ ,<br>$r0$ is unchanged    |
| Pre-index with update | <code>LDR r1, [r0, #4]!</code> | $r1 \leftarrow \text{memory}[r0 + 4]$<br>$r0 \leftarrow r0 + 4$ |
| Post-Index            | <code>LDR r1, [r0], #4</code>  | $r1 \leftarrow \text{memory}[r0]$<br>$r0 \leftarrow r0 + 4$     |

# References

---

- ▶ Lecture 22. Big-Endian and Little-Endian
  - ▶ [https://www.youtube.com/watch?v=T1C9Kj\\_78ek&list=PLRJhV4hUhlymmp5CCeIFPyxbknscXCc8&index=22](https://www.youtube.com/watch?v=T1C9Kj_78ek&list=PLRJhV4hUhlymmp5CCeIFPyxbknscXCc8&index=22)
- ▶ Lecture 23. Load and Store Instructions
  - ▶ <https://www.youtube.com/watch?v=CtfV3HsHwk4&list=PLRJhV4hUhlymmp5CCeIFPyxbknscXCc8&index=23>
- ▶ Lecture 24. Addressing mode: pre-index, post-index, and pre-index with update
  - ▶ <https://www.youtube.com/watch?v=zgkxPdPkxa8&list=PLRJhV4hUhlymmp5CCeIFPyxbknscXCc8&index=24>
- ▶ ARM Instruction Set - Stack Instructions STMFD, STMFA , STMED, STMEA, Vishal Gaikwad
  - ▶ <https://www.youtube.com/watch?v=H4xoaoINSjo>