Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 4
ARM Arithmetic and Logic Instructions
Exercises

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/



https://web.eece.maine.edu/~zhu/book/

D Review
Barrel Shifter: Explanations

» LSL (logical shift left): shifts left, fills zeros on the right; C gets the
last bit shifted out of bit 31. This is multiply by 2™ for non-
overflowing values.

» LSR (logical shift right): shifts right, fills zeros on the left; C gets
the last bit shifted out of bit 0. This is unsigned division by 2™.

» ASR (arithmetic shift right): shifts right, fills the sign bit on the left
to preserving the sign; C gets the last bit shifted out of bit 0. This
is signed division by 2™ with sign extension

» ROR (rotate right): rotates bits right with wraparound; bits leaving
bit O re-enter at bit 31, and C receives the bit that wrapped. This
s a pure rotation without data loss.

» RRX (rotate right extended): rotates right by one through the
carry flag, treating C as a 33rd bit; new bit 31 comes from old C,
and C receives old bit O.




REViEW] Carry and Overflow Flags w/ Arithmetic

Instructions

Carry flag C = | (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true
result > 2"-1)

Carry flag C = 0 (Borrow flag = |) upon an unsigned subtraction if the answer is wrong
(true result < 0)

Overflow flagV =1 upon a signed addition or subtraction if the answer is wrong (true result
> 2™1-1 or true result < -2™')

Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands
with different signs; Overflow cannot occur when adding 2 operands with different signs or
when subtracting 2 operands with the same sign.

Tip: Convert subtraction to addition with Two’s complement. If two operands have same
sign, and the result has opposite sign, thenV = [;elseV =0

I e M
Subtraction Subtraction

Carry flag true result > 2"-1 =» trueresult<0=> N/A

Carry flag=1 - Carry flag=0

Borrow flag=0 Borrow flag=1

(Result incorrect) (Result incorrect)

Overflow flag N/A N/A true result > 2™'-1 or

true result < -2/

=> Overflow flag=1

(Result incorrect)




Bit Manipulations

Compute register values after each instruction
MOV RO, #0xABC

4

4

» MOV RI, #0xDEF
» AND R2, RO, RI

» ORR R3,R0,RI

» EOR R4,R0,RI

» ORN R5, R0, R

» BIC r6,RO, R



Bit Manipulations

» Find the Register Value to Complement, CLEAR & SET
5th, 7th, 12th bit of the given value and also find the
result: OxDECB.



Clearing a Register

» What are the different ways by which all bits in register
rl2 can be cleared? No other register is to be used.



Set bits

» Write an instruction that sets bits 0,4, and 12 in register
r6 and leave the remaining bits unchanged

» Write an instruction that clears bits 0,4,and 12 in
register ré6 and leave the remaining bits unchanged



Add two 128-bit numbers

» Add two 128-bit numbers, assuming one number is stored
in r4, r5,r6, r7 registers and the other stored in r8, r9,
rl0,rll.Store the resultin rQ, rl, r2,r3.



Absolute value

» Write a program to calculate the absolute value of a

number by using only two instructions (HINT: Check
CMP and RSB)



Arithmetic with Shifts

» Assuimg 32-bit registers:

» QlI:
» LDR r0, =0x00000007
» MOV r0, r0, LSL 7

» Q2:
» LDR r0,=0x00000400
» MOV r0,r0, LSR 2

» Q3:
» LDR r0, =0xFFFFCO000
» MOV r0,r0, LSR 2

» Q4:
» LDR r0,=0xFFFFC000
» MOV r0,r0,ASR 2

» Q5:
» LDR r0,=0x00000007
» MOV r0, r0, ROR 2



Assembly Programming

» Write ARMv7 assembly for pseudocode
» rl =(r0>>4) & I5



Shift LSL

» Compute register values:
» LDR RI1,=0X11223344
» MOV R2,RI, LSL #4
» MOV R3,RI, LSL #8
» MOV R4, RI, LSL #16
» MOV R5,RI, LSL #6



Shift ASR

» Compute register values:
» LDR RI,=0x81223344

» MOV R2,RI,ASR #4
» MOV R3,RI,ASR #8
» MOV R4,RI,ASR #16



Multiply without MUL

» Without using MUL instruction, give instructions that
multiply a register, r3 by
» 135
» 153
» 255
» 18
» 16384



Count number of ones

» Write a program to count the number of ones in a 32-bit
register rO.



Count the number of zeros

» Based on the program that counts |’s, modify it to count
the number of zeros a 32-bit register r0.



Flags ANDS

» What are value of r2,and NZCV flags after execution,
assuming all flags are initially O.

LDR ro, =0xFFFFFFFOO
LDR rl, =0x00000001
ANDS r2, rl, ro, LSL #1




Flags ADDS

» What are value of r2,and NZCV flags after execution,
assuming all flags are initially O.

LDR r@, =0xFFFFFFFOO
LDR r1, =0x00000001
ADDS r2, rl, r@, LSL #1




r0 | Oxffff

r1 | 000000001

Flags __________________________________________________________________________________ r2 | 0x00000003
» Suppose registers have the following values: L™ | 9xfffif0

» What are value of r4,and NZCYV flags after execution,
assuming all flags are initially 0. (Each instruction runs

individually.)

(a) ADD r4,r0,r2,ASR #3
(b) ADDS r4,rO, rl

(c) LSRS r4, r0, #1

(d) ANDS r4,r0, r3

(e) CMP r2,#3

v

vV v v Vv




r0

OxFFFFFFFF

ri

0x00000001

r2

0x00000000

» Suppose registers have the following values:

» What are value of r3,and NZCV flags after execution,
assuming all flags are initially 0. (Assume each instruction

runs individually, not sequentially.)
» ADD r3,r0, r2

» SUBS r3, r0, r0

» ADDS r3, r0, r2
» LSL r3, rO, #I

» LSRS r3,rl, #l

» ANDS r3,r0, r2




	Slide 1: Z. Gu
	Slide 2: Barrel Shifter: Explanations
	Slide 3: Carry and Overflow Flags w/ Arithmetic Instructions
	Slide 4: Bit Manipulations
	Slide 5: Bit Manipulations
	Slide 6: Clearing a Register 
	Slide 7: Set bits
	Slide 8: Add two 128-bit numbers
	Slide 9: Absolute value
	Slide 10: Arithmetic with Shifts
	Slide 11: Assembly Programming
	Slide 12: Shift LSL
	Slide 13: Shift ASR
	Slide 14: Multiply without MUL
	Slide 15: Count number of ones
	Slide 16: Count the number of zeros
	Slide 17: Flags ANDS
	Slide 18: Flags ADDS
	Slide 19: Flags
	Slide 20: Flags

