Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 4
ARM Arithmetic and Logic Instructions

Z. Gu

Fall 2025

| Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Adding Two Integers

int x = 1;
int y = 2;
int z;
If values are in registers
» Value of X in r@
C Statement » Value of y in rl Assembly Statement
» Value of z in r2
Z = x +y; : ?
[]

Adding Two Integers

int x = 1;
int y = 2;
int z;
If values are in registers
» Value of X in r@
C Statement » Value of y in rl Assembly Statement

» Valueof zin r2

ADD r2, rl, ro

\ 4

Z =X+ Y;

— Source Operand 2

Destination

Source Operand 1

Adding Two Integers

uint x = 1;
uint y = 2;
uint z;
If values are in registers
» Value of X in r@
C Statement » Value of y in rl Assembly Statement
» Value of z in r2
Z = X +y; : ?
[]

Adding Two Integers

uint x = 1;
uint y = 2;
uint z;
If values are in registers
» Value of X in r@
C Statement » Value of y in rl Assembly Statement
» Value of z in r2
Z = X + Y, > ADD r2, ri, ro
N\

\ ADD works for both signed and
unsigned add operations.

Adding Two Integers

int x = 1;
int y = 2;
int z;
If addresses are in registers Assembly Statements
» Address of X in r@
C Statement » Address of y in rl
» Address of z in r2 t)
Z = X + Y, > H

Adding Two Integers

int x = 1;
int y = 2;
int z;
If addresses are in registers Assembly Statements
» Address of X in r@
C Statement » Address of y in rl LDR r3, [r\@] ; Read x

» Address of z in r2 | LDR r4, [rl] ; Read vy
ADD r5, r3, r4
STR r5, [r2] ; Write z

Z =X +Y;

Load, modify, and store

%

xample Arithmetic Instructions

» ADD r@, rl, r2 ; ro =rl + r2
» ADC r@, rl, r2 ; Add with carry, r@ = rl + r2 + carry

» SUB r@, rl, r2 ; ro =rl - r2
» SBC ro, rl, r2 ; Subtract with borrow, r@ = rl - r2 - (1 - carry)

» MUL r@, rl, r2 ; ro = rl * r2, product limited to 32 bits

» UDIV ro, rl, r2 ; Unsigned divide, r@ = rl / r2
» SDIV ro, rl, r2 ; Signed divide, r@ = rl / r2

» SMULL r@, rl, r2, r3 ; Signed multiply (64-bit product), rl:r@ = r2 * r3
» UMULL r@, rl, r2, r3 ; Unsigned multiply (64-bit product), rl:r@ = r2 * r3

%

xample Logical Instructions

» AND r@, rl, r2 ; Bitwise AND, r@ = rl AND r2

» ORR ro, rl, r2 ; Bitwise OR, r@ = rl OR r2

» EOR r@, rl, r2 ; Bitwise Exclusive OR, r@ = rl EOR r2
» ORN r@, rl, r2 ; Bitwise OR NOT, r@® = rl ORN r2

» BIC ro, rl, r2 ; Bit clear, ro = rl & ~r2

AND ro, rl, r2

re1000000000000001000000000O000000O0 1
Bit-wise Logic AND

Example Shift & Rotate Instructions

LSL re, rl, r2 ; Logical shift left Logical Shift Left (LSL)

J J
o - 1 oce o IS — -

LSR r@, rl, r2 ; Logical shift right, Logical Shift Right (LSR)

ro = rl > r2 0 ’_H

ASR r@, rl, r2 ; Arithmetic shift right,
ro = rl > r2

ROR r@, rl, r2 ; Rotate right, _;_H
re = rl rotate by r2 bits Rotate Right (ROR)
RRX r@, rl, r2 ; Extended rotate right,

{C, re} = {C, rl1} rotate by r2 bits ﬁ_ﬂ——»ﬂ

Rotate Right Extended (RRX)

Arithmetic Shift Right (ASR)

%

xample Data Transfer Instructions

» MOV ro, rl ; Move, ro rl
» MVN ro@, rl ; Move NOT, r@ = bitwise NOT ril

MVN ro, rl

rf0000000000000O00O0OOOOOOOOOOOOOO01 111
~11111111111111111111111111110000

Bit-wise Logic NOT

Overview:
Arithmetic and Logic Instructions

» Shift : LSL (logic shift left), LSR (logic shift right), ASR (arithmetic shift right), ROR (rotate right), RRX (rotate right with extend)
» Logic: AND (bitwise and), ORR (bitwise or), EOR (bitwise exclusive or), ORN (bitwise or not), MVN (move not)
» Bit set/clear: BFC (bit field clear), BFI (bit field insert), BIC (bit clear), CLZ (count leading zeroes)

» Bit/byte reordering: RBIT (reverse bit order in a word), REV (reverse byte order in a word), REV 16 (reverse byte order in each half-
word independently), REVSH (reverse byte order in each half-word independently)

» Addition: ADD, ADC (add with carry)
» Subtraction: SUB, RSB (reverse subtract), SBC (subtract with carry)

» Multiplication: MUL (multiply), MLA (multiply-accumulate), MLS (multiply-subtract), SMULL (signed long multiply-accumulate), SMLAL
(signed long multiply-accumulate), UMULL (unsigned long multiply-subtract), UMLAL (unsigned long multiply-subtract)

» Division: SDIV (signed), UDIV (unsigned)

» Saturation: SSAT (signed), USAT (unsigned)

» Sign extension: SXTB (signed), SXTH, UXTB, UXTH
» Bit field extract: SBFX (signed), UBFX (unsigned)

» Syntax
<Operation>{<cond>}{S} Rd, Rn, Operand2

Example: Add

» Unified Assembler Language (UAL) Syntax
ADD rl1, r2, r3 5 rl=r2 +r3
ADD ri, r2, #4 s rl =r2 + 4

» Traditional Thumb Syntax
ADD rl1l, r3 5 rl=r1 +r3
ADD ri1, #15 5 rl =rl + 15

Commonly Used Arithmetic Operations

ADD {Rd,} Rn, Op2

Add
Rd < Rn + Op2

ADC {Rd,} Rn, Op2

Add with carry
Rd « Rn + Op2 + Carry

SUB {Rd,} Rn, Op2

Subtract
Rd « Rn - Op2

SBC {Rd,} Rn, Op2

Subtract with carry
Rd « Rn - Op2 + Carry - 1

RSB {Rd,} Rn, Op2

Reverse subtract
Rd « Op2 - Rn

MUL {Rd,} Rn, Rm

Multiply
Rd « (Rn x Rm)[31:0]

MLA Rd, Rn, Rm, Ra

Multiply with accumulate
Rd « (Ra + (Rn x Rm))[31:0]

MLS Rd, Rn, Rm, Ra

Multiply and subtract
Rd « (Ra - (Rn x Rm))[31:0]

SDIV {Rd,} Rn, Rm

Signed divide
Rd < Rn + Rm

UDIV {Rd,} Rn, Rm

Unsigned divide
Rd « Rn + Rm

SSAT Rd, #n, Rm {,shift #s}

Signed saturate

USAT Rd, #n, Rm {,shift #s}

Unsigned saturate

ARM Programming Model

=0 31 0
R1 NlZ CV

R2 CPSR (Current Program Status Register)

R3

R4 * Four flag bits:

R5 .

- — N (negative), Z (zero), C (carry),
R7 V (overflow).

R8

R9

R10

R11

R12

R13: Stack Pointer (SP)
R14: Link Register (LR)
R15: Program Counter (PC)

Program Status Register (PSR)

» Application PSR (APSR), Interrupt PSR (IPSR), Execution PSR (EPSR)

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

APSR [N|Z|C|V|Q Reserved GE Reserved
IPSR Reserved ISR number
EPSR IC/IT| T Reserved ICINT

Combine them together into one register (PSR)

PSR |N|Z|C|V|Q|ICINT|T | Reserved GE Reserved |ICIT ISR number

Note:

* GE flags are only available on Cortex-M4 and M7
* Use PSR in code

NZCV Flags in xPSR

N|(Z|[C|V|Q|ICINT|T| Reserved GE Reserved [ICIIT ISR number

» N: 1/0 = Result from ALU is Negative/positive
» Z: 1/0 = Result from ALU is Zero/non-zero

» C: Three cases:

» 1/0 = ALU addition Carry out/no carry out | Borrow and carry share
the same flag bit.

» 1/0 = ALU subtraction no borrow/borrow o mnsned) sl
» 1/0 = Bit shifted/rotated out Borrow = NOT Carry

» V: 1/0 = ALU oVerflowed/no overflow

Updating NZCV flags in PSR

Flags not changed Flags updated

ADD — ADDS CMP rl, r2 vs SUBS r@, ri, r2
SUB — SUBS
MUL — MULS Some instructions update NZCV flags even if no S is specified.
UDIV — UDIVS : : : :
e CMP: Compare, like SUBS but without destination
AND — ANDS register
ORR N ORRS * CMN: Compare Negative, like ADDS but without
destination register
LSL — LSLS e TST: Test, like ANDS but without destination
MOV — MOVS register

e TEQ: Test equivalence, like EORS but without

, , destination register
Most instructions update NZCV flags

only if S suffix is present

ADD vs ADDS

ADD ro, rl, r2 ; ro
ADDS r@, rl, r2 ; ro

rl + r2, NZCV flags unchanged
rl + r2, NZCV flags updated

» ADD does not update flags

» ADDS updates flags
» XPSR.N = bit 31 of result
» XPSR.Z = IsZero(result)

» XPSR.C = carry, assuming rl and r2 representing unsigned integers
» XPSR.V

overflow, assuming rl and r2 representing signed integers

Suffix S:
Update Flags

S Bolwed oo [OR6EDa-

n Eﬂ Disassembly

LDR r@, =0OXFFFFFFFF
LDR rl, =0x00000001
ADDS ro, ro, ril

OXFFFFFFFF ro
+ ©x00000001 rl

0X00000000 sum

N (Negative) = 0
Z (Zero) =1
C (Carry) =1
V (oVerflow) = ©

Registers
Fegister Value
= Come
....... RO OxFFFFFFFF
....... R1 O DOO00001
....... R7 G Q0000000
....... R3 G QO000000
....... R4 G Q0000000
....... R5 G Q0000000
....... =T O D0000000
....... R7 G Q0000000
....... RE O D0000000
....... R9 G QO000000
....... R10 (00000000
....... R11 (00000000
....... R12 (00000000
....... R13(SP) O 20000600
....... R14 (LR} (FFFFFFFF
------- RIS(PC) (x08000136
=l xPSR (61000000
....... K 0
....... 7 1
....... C 1
....... y 0
....... 0 1]
....... T 1
------- T Disabled
....... ISR 0
[+ Barked
[+ System
= Intemal
i Mode Thread
------ Privilege Privileged
------ Stack M5F
------ States g
""""" Sec 0.00000100

i v | M- B i'|%'

291
30:
Poxos000134 1843
31: =stop
0x08000136 ETFE
0x08000138 0000
0x0800013A 0000

P BONNT 2 O00nN

ADDS r3, x0,

ADDS r3,r0,rl

B stop

B 0x08000136
MOVS r0,r0

MCOVS r0,r0

L R > =i

4 LJ
main.s stm3211x¢_constants.s startup_stm3211:x¢_md.s
1 RERAARRRR A AR kAR (O} Yifeng ZHU #*&xdasddss
2 ; @file main.s
3 . @author Yifeng Zhu
4 PR R R R A R A AR AR AR AR R RRRR
=
L] INCLUDE stm321lxx constants.s
7T
8 LEEL main, CCDE, READCHLY
g EXPORT _ main
10 ENTEY
11
12 main FROC
13
14 LDE r0, =0xFFFFFFFF
15 LDE rl, =0x00000001
16 ADDS 3, rd, rl

17

H}lﬂ stop
15
20

21
22

B =Top

ENDE
ALTIGH
END

%

xample: 64-bit Addition

<. Mostsignificant (Upper) 32 bits . Leastsignificant (Lower) 32 bits >
00000002 FFFFFFFF
0 000O0O0OO0OD4 00O0OO0COOTO0OT

00000007<00000000

Carry out

* A register can only store 32 bits
* A 64-bit integer needs two registers
» Split 64-bit addition into two 32-bit additions

%

xample: 64-bit Addition

; C =

; Two 64-bit integers A (rl1,r@) and B (r3,r2).

; Res
5 A=
; B =
LDR
LDR
LDR
LDR

A+ B

ult C (r5, r4)
QOO 2FFFFFFFF
0000000400000001
ro, =0OxXFFFFFFFF
rl, =0x00000002
r2, =0x00000001
r3, =0x00000004

; Add A to B

ADDS
ADC

stop B

r4, r2, re ; C[31.
r5, r3, rl ; C[64.

stop

J
L]
J

.
J

A’s lower 32 bits
A’s upper 32 bits

Upper 32 bits ~ Lower 32 bits

+ e [

B’s lower 32 bits
B’s upper 32 bits

r5

A)

r4

7
Carry out

Addend1

Addend2

.0] = A[31..0] + B[31..0],
.32] = A[64..32] + B[64..32] + Carry

update Carry

%

xample: 64-bit Subtraction

start
; C=A -8B
; Two 64-bit integers A (rl1,r@) and B (r3,r2).
; Result C (r5, r4)
; A = OO000PO2FFFFFFFF
; B = 0000000400000001
LDR r@, =0OXFFFFFFFF ; A’s lower 32 bits
LDR rl, =0x00000002 ; A’s upper 32 bits
LDR r2, =0x00000001 ; B’s lower 32 bits
LDR r3, =0x00000004 ; B’s upper 32 bits

; Subtract B from A
SUBS rd4, ro, r2 ; C[31..0]= A[31..0] - B[31..0], update Carry
SBC r5, rl, r3 ; C[64..32]= A[64..32] - B[64..32] - (1 - Carry)

stop B stop

(]

xample: 96-bit Subtraction

If borrow occurs, the If borrow occurs, the
carry flag is cleared. carry flag is cleared.
Most Significant 32 bits | | Least Significant 32 bits

Minuend (A)

Subtrahend (2
Dierence (0

SUBS | ré6, ro, r3

r5 r4

SBC | r8, r2, r5 SBCS | r7, rl, r4

Subtract with Carry \ Update the carry flag, \ Update the carry flag,
R8 = r2 - r5 + Carry -1 Carry = not borrow Carry = not borrow

SUBS ré6, ro, r3
SBCS r7, rl, r4
SBC r8, r2, rb5

%

xample: Short Multiplication and Division

MUL: Signed multiply
MUL ré6, rd4, r2 ; r6 = LSB32(r4 x r2)

UMUL: Unsigned multiply
UMUL r6, r4, r2 5 ré

LSB32(r4 x r2)

MLA: Multiply with accumulation
MLA r6é, rd, rl, r@ ; r6 = LSB32(rd x rl) + ro

MLS: Multiply with subtract
MLS r6é, rd, rl, r@ ; r6 = LSB32(rd x rl) - ro

LSB32: Least significant 32 bits

%

xample: Long Multiplication

Unsigned long multiply

UMULL RdLo, RdHi, Rn, Rm
’ > RdHi,RdLo « unsigned(Rn x Rm)

Signed long multiply

SMULL RdLo, RdHi, Rn, Rm
’ > RdHi,RdLo « signed(Rn x Rm)

Unsigned multiply with accumulate

UMLAL RdLo, RdHi, Rn, Rm
’ > RdHi,RdLo « unsigned(RdHi,RdLo + Rn x Rm)

Signed multiply with accumulate

SMLAL RdLo, RdHi, Rn, Rm
’ > RdHi,RdLo « signed(RdHi,RdLo + Rn x Rm)

The result has 64 bits, placed in two registers.

UMULL r3, r4, ro, ri ; r4:r3 =re x rl, r4 = MSB bits, r3 = LSB bits
SMULL r3, r4, ro, ril 5 r4d:r3 =roe xril

UMLAL r3, r4, ro, ri 5 r4d:r3 =r4:r3 + ro x ril

SMLAL r3, r4, ro, rl 5 r4d:r3 =r4:r3 + ro x ril

Bitwise Logic

Bitwise logic AND

AND {Rd,} Rn, Op2
{ } Rn, Op Rd « Rn & operand2

Bitwise logic OR

ORR {Rd,} Rn, Op2
{Rd, } Rn, Op Rd « Rn | operand2

Bitwise logic exclusive OR
Rd <« Rn " operand2
Bitwise logic NOT OR

Rd « Rn | (NOT operand2)
Bit clear

Rd « Rn & NOT operand2
Bit field clear

Rd[(width+1sb-1):1sb] « ©

Bit field insert
Rd[(width+1sb-1):1sb] « Rn[(width-1):0]

EOR {Rd,} Rn, Op2

ORN {Rd,} Rn, Op2

BIC {Rd,} Rn, Op2

BFC Rd, #lsb, #width

BFI Rd, Rn, #lsb, #width

Move NOT, logically negate all bits
Rd « OXFFFFFFFF EOR Op2

32 bits
r®1101010101010101010101010101010°1

rir1010101010101011101010101010101 1

Example: AND P2, 0, P2

-
4,

r2100000000000000100000000O0O0O0OO0OO0OCOO01

Bit-wise Logic AND

%

xample: ORR r2, ro, rl

011010101010101010101010101010101
rn1010101010101011101010101010101 1

21111111111 1111111111111111111111

Bit-wise Logic OR

%

xample: BIC r2, ro, rl

Bit Clear
r2 = ro & NOT ri

Step |I:
ri0000000000000000O00O00O0O0O0OOOOOOOOO01 111
norri11111111111111111111111111110000

Step 2:

"11111111111111111111111111111111
norrz111111111111111111111111111110000

211111111111111111111111111110000

Example: BFC and BFI

» Bit Field Clear (BFC) and Bit Field Insert (BFI).

» Syntax
» BFC Rd, #lsb, #width
» BFI Rd, Rn, #lsb, #width

» Examples:

BFC R4, #8, #12
; Clear bit 8 to bit 19 (a total of 12 bits) of R4

BFI R9, R2, #8, #12

; Replace bit 8 to bit 19 (12 bits) of R9
; with bit @ to bit 11 from R2.

Bit Operators (&, |, ~) vs Boolean Operators (&é& ,| |, !)

A && B Booleanand A & B Bitwise and
A||B Boolean or A|B Bitwise or
'B Boolean not ~B Bitwise not

» The Boolean operators perform word-wide operations, not bitwise.

» For example,

» “Ox10 & Ox01” = 0x00, but “OxI0 && 0x01” = Ox0|. (true && true = true, any non-zero value is
logical true)

» “~0x01” = OxFFFFFFFE, but “!10x01” = 0x00. ('true = false)

Saturating Instruction: SSAT and USAT

» Syntax:
» op{cond} Rd, #n, Rm{, shift}
» SSAT saturates a signed value to the signed range -2™! < x < 2! -1,
(2n-1_1 ifx>2n1-1
SAT(x) =4 —2n-1 if x <2n1
. X otherwise
» USAT saturates a signed value to the unsigned range 0 = x < 2" - |.

n _ - n _
USAT(x)={2 1 ifx>2"—1
X otherwise

» Examples:
» SSAT r2, #11, rl ; output range: -219 < p2 < 210
» USAT r2, #11, r3 ; output range: 0 < r2 < 2u

(]

xample of Saturation

Assume data are limited to 16 bits

Without
saturation

—11x 2By <11 x215

32767

16384

B34

-32768

With
saturation

0 10 20 30 40 50 60 70 80

32767f- - -4 -

16384f-f - | -

-16384f- - - | -

N

-32768F- - - ¥ -!-
0 1I0 2IO 30 4:0 5:0 6I0 TIO 80
,Ql-ﬁg y S 4 L
32787

16384 -

-16384

-32768

0 10 20 30 40 50 60 70 80

Reverse Order

Reverse bit order in a word

for (i = @; i < 32; i++) Rd[i] « RN[31- i]
Reverse byte order in a word

REV Rd, Rn Rd[31:24] « Rn[7:0], Rd[23:16] « Rn[15:8],
Rd[15:8] « Rn[23:16], Rd[7:0] « Rn[31:24]
Reverse byte order in each half-word

REV16 Rd, Rn RA[15:8] « Rn[7:0], Rd[7:0] « Rn[15:8],
Rd[31:24] « Rn[23:16], Rd[23:16] « Rn[31:24]
Reverse byte order in bottom half-word and sign extend
REVSH Rd, Rn RA[15:8] « Rn[7:0], Rd[7:0] « Rn[15:8],
Rd[31:16] « Rn[7] & OXFFFF

RBIT Rd, Rn

RBIT Rd, Rn

Rn313029232?2525242322212015181?151511131211109BT554321I!'.I

RdD1.‘l3455?391l]1112131415151?1315202122232425252?28293!131

Example:
LDR ro, =0x12345678 ; ro = 0x12345678
RBIT rl, ro ; Reverse bits, rl = O0x1E6A2C48

Reverse Order

Reverse bit order in a word

for (i = 0; i < 32; i++) Rd[i] « RN[31- i]
Reverse byte order in a word

REV Rd, Rn Rd[31:24] « Rn[7:0], Rd[23:16] « Rn[15:8],
RA[15:8] « Rn[23:16], Rd[7:0] « Rn[31:24]
Reverse byte order in each half-word

REV16 Rd, Rn RA[15:8] « Rn[7:0], Rd[7:0] « Rn[15:8],
RA[31:24] « Rn[23:16], Rd[23:16] <« Rn[31:24]
Reverse byte order in bottom half-word and sign extend
REVSH Rd, Rn RA[15:8] « Rn[7:0], Rd[7:0] « Rn[15:8],
Rd[31:16] « Rn[7] & OXFFFF

RBIT Rd, Rn

REV Rd, Rn
Rn Byte3 Byte 2 Byte 1 Byte 0
__,._;::::EE%E“‘Eéiéész _____________
Re
Example:
LDR RO, =0x12345678 5 RO = 0x12345678
REV R1, RO 5 R1 = 0x78563412

Reverse Order

Reverse bit order in a word

for (i = 0; i < 32; i++) Rd[i] « RN[31- i]
Reverse byte order in a word

REV Rd, Rn Rd[31:24] « Rn[7:0], Rd[23:16] « Rn[15:8],
Rd[15:8] « Rn[23:16], Rd[7:0] « Rn[31:24]
Reverse byte order in each half-word

REV16 Rd, Rn Rd[15:8] « Rn[7:0], Rd[7:0] « Rn[15:8],
Rd[31:24] « Rn[23:16], Rd[23:16] « Rn[31:24]

RBIT Rd, Rn

REV16 Rd,Rn

Rn Byte 3 Byte 2 Byte 1 Byte 0

Rd Byte 2 Byte 3 Byte 0 Byte 1
Example:

LDR RO, =0x12345678 5 RO = 0x12345678

REV16 R2, RO 5 R2 = 0x34127856

Reverse Order

Reverse bit order in a word

for (i = 0; i < 32; i++) Rd[i] « RN[31- i]
Reverse byte order in a word

REV Rd, Rn Rd[31:24] « Rn[7:0], Rd[23:16] « Rn[15:8],
Rd[15:8] « Rn[23:16], Rd[7:0] « Rn[31:24]
Reverse byte order in each half-word

REV16 Rd, Rn Rd[15:8] « Rn[7:0], Rd[7:0] « Rn[15:8],
Rd[31:24] « Rn[23:16], Rd[23:16] « Rn[31:24]
Reverse byte order in bottom half-word and sign extend
REVSH Rd, Rn Rd[15:8] « Rn[7:0], Rd[7:0] « Rn[15:8],
RA[31:16] « Rn[7] & OXFFFF

RBIT Rd, Rn

REVSH Rd,Rn

Rn Byte 3 Byte 2 Byte 1 Byte 0

— -—

Example:
LDR RO, =0x33448899 5 RO = 0x33448899
REVSH R1, RO 5 RO = OxFFFF9988

Sign and Zero Extension

int8 t a = -1; // a signed 8-bit integer, a = OxFF
intle t b = -2; // a signed 16-bit integer, b = OXFFFE
int32 t c; // a signhed 32-bit integer

C = a; // sign extension required, c¢ = OXFFFFFFFF
cC = b; // sign extension required, c¢ = OXFFFFFFFE

Sign and Zero Extension

SXTB {Rd,} Rm {,ROR #n} 23?21?3§e2f :i;:tsxtend((Rm ROR (8 x n))[7:0])
SXTH {Rd,} Rm {,ROR #n} :3?21?3?21 :12:1:;::::((% ROR (8 x n))[15:0])
UXTB {Rd,} Rm {,ROR #n} gj’[‘glf)ed]:ezj ;ert')gt:xtend((Rm ROR (8 x n))[7:0])
UXTH {Rd,} Rm {,ROR #n} ﬁgfgle)e(;ezj Z‘J‘SIEX'L“ZES«R,“ ROR (8 x n))[15:0])

LDR RO, =0x55AA8765

SXTB R1, RO ; R1 = Ox00000065
SXTH R1, RO ; R1 = OXFFFF8765
UXTB R1l, RO ; R1 = Ox00000065
UXTH R1, RO ; R1 = Ox00008765

Move Data between Registers

MOV Rd <« operand2
MVN Rd <— NOT operand2
MRS Rd, spec_reg Move from special register to general register
MSR spec_reg, Rm Move from general register to special register
MOV r4, r5 5 Copy r5 to r4
MVN r4, r5 5 rd4 = bitwise logical NOT of r5
MOV rl, r2, LSL #3 5 Pl =r2 << 3
MOV ro, PC ;3 Copy PC (ri5) to ro
MOV rl1, SP ;3 Copy SP (ri4) to ri

Move Immediate Number to Register

MOVW Rd, #imml6 Move Wide, Rd <« #imml6
MOVT Rd, #imml6 Move Top, Rd <« #imml6 << 16
MOV Rd, #const Move, Rd <« const

Example: Load a 32-bit number into a register

MOVW ro, #0x4321 ; ro = 0x00004321
MOVT ro, #0x8765 ;5 reo = 0x87654321
Order does matter!
* MOVW will zero the upper halfword
e MOVT won’t zero the lower halfword
MOVT ro, #0x8765 5 r@ = BOX8765XXXX
MOVW ro, #o0x4321 ; ro = 0x00004321

Flexible 2"d Source Operand

source
Operand 1
Destination
Operand
source Barrel
Operand 2 shifter
LSL,LSR,ASR,
ROR, RRX

ADD ro, rl, Operand2

» Add r@, rl, r2 ; ro = rl + r2
» Add ro, rl, #1 ; ro = r1 + 1
» Add r@, rl, r2 LSL #2 ; r@ = rl + r2 << 2

Use Shifts To Implement Multiplication And Division

» Use Barrel shifter to speed up multiplication and division
» Shifting left | bit <=> multiplication by 2
» Examples:
» rl =9 xr@=r0 + 8 x ro
ADD rl, re, ro, LSL #3 <=> MOV r2, #9 ; r2 =9
MUL rl, rO, r2 ; rl = re * 9

MUL instruction takes only registers, not an immediate, so
“MUL r1, rO, #9” is invalid syntax

ADD rl1, ro, ro, LSR #3
; rl=r0 +re > 3 =r0 + ro/8 (unsigned)

ADD rl1, ro, ro, ASR #3
; rl=r0 +re > 3 =r0 + ro/8 (signed)

Barrel Shifter

Logical Shift Left (LSL) Arithmetic Shift Right (ASR)

— CI——— —
= - D

Logical Shift Right (LSR) Rotate Right (ROR)

 —EHEENE

—EHE -

Why is there rotate right but no

rotate left?
—EH
Rotate left can be replaced by a rotate

right with a different rotate offset.

Rotate Right Extended (RRX)

Updating APSR Flags

* If“S” is present, the instruction update flags. Otherwise, the flags are not updated.
* Let R be the final 32-bit result

Nz | c | Vv

R<31> IsZeroBit(R) carry unchanged

O I -
.

Barrel Shifter: Explanations

» LSL (logical shift left): shifts left, fills zeros on the right; C gets the last bit shifted
out of bit 31. This is multiply by 2™,

» LSR (logical shift right): shifts right, fills zeros on the left; C gets the last bit shifted
out of bit 0. This is unsigned division by 2™.

» ASR (arithmetic shift right): shifts right, fills the sign bit on the left to preserving
the sign; C gets the last bit shifted out of bit 0. This is signed division by 2™ with
sign extension

» ROR (rotate right): rotates bits right with wraparound; bits leaving bit O re-enter
at bit 31, and C gets the bit hat was rotated from bit O to bit 31. This is a pure
rotation without data loss.

» RRX (rotate right extended): rotates right by one through the carry flag, treating
C as a 33rd bit: new bit 31 comes from old C, and C receives old bit O.

Examples (shifting by 4)

T\
4,

-

i

rd

rd

i

i

rd

rd

1111 1111 1111 1111 1111 1111 1111 1111

S S S S S S

4 4
]]

4

4 4
]

1111 1111 1171 1111 1111 1111 1111 0000

4

31

1111 1111 1111 1111 1111 1111 1111 1111

0000 1111 1111 1111 1111 1111 1111 1111

Logical Shift Left (LSL)

O S

Logical Shift Right (LSR)

31

| I |

",

I N . " .

",

0000 0000 0000 0000 1111 0000 0000 0000

AN NANANANANAN

0000 0600 0000 0000 0600

10800 |1?11|aﬁua 0000

31

IV . " .

",

| ™,

1000 0000 0000 0000 1111 0000 0000 0000

10900 0600 1111 0600 0600 |

 —EHEENE

Arithmetic Shift Right (ASR)

]

{1111 1600 edee edee o0

s

S

xamples (rotate)

Rotate Right (ROR) (rotate by 4) 31 0
1600 0000 0000 0000 1111 0000 0000 0101
S S NS

—

0101 1000 0000 0000 0000 1111 06060 0600

Rotate Right Extended (RRX)

(can only rotate by 1)

Shift Operations

Logical Shift Left (LSL)
O

LSL {S} Rd, Rn, <shift>

moves all the bits of a register by n positions
to the left and inserts n zeros in the right end

0<n<31

Example 1
; r2 = 0x0000 0001 (#1)

LSL r3, r2, #3
r3 = 0x0000 0008 (#8)

; 8 = 23%1

Example 2
; r2 = 0x0000 0003 (#3)

J

LSL r3, r2, #2
; NP3 = Ox0000 000C (#12)

; 12 = 223
Example 3
; r3 = OXFFFF_0000 (#-65536)
LSLS r2, r3, #1
; r2 = OXFFFE_0000 (#-131072)
; -131072 = 21+ —65536
C=1, N=1, Z=0, V=not updated

Note: If the suffix S is used, the carry flag is updated to
the value of the last shifted bit.

Shift Operations

Logical Shift Right (LSR)

 —EHEEENE

LSR{S} Rd, Rn, <shift>
moves all the bits of a register by n positions
to the right and inserts n zeros in the left end
1<n<32

Example 1

; P2 = 0x0000 0010 (#16)
LSR rl, r2, #3

; rl =0x0000 0002 (#2)

Example 2

; r2 = Ox8000 0000 (# -2,147,483,648)
LSR r2, r2, #2

; r2 = 0x2000 0000 (# 536,870,912)

; 536,870,912 = -2,147,483,648/2%

mmm) with LSR sign bit is lost (if r2 is a signed
integer). So do not use logical shifts for signed integers!

Example 3
; r2 = 0x0000 0001 (#1)

LSRS r3, r2, #1
; r3 = Ox0000 0000 (#0)

; 0= 1/2%
C=1, N=0, Z=1, V=not updated
Note: If the suffix S is used, the carry flag is updated to

the value of the last shifted bit.

Shift Operations

Arithmetic Shift Right (ASR) Example 2

! ; r2 = Ox8000 0000 (-2,147,483,648)
—> H ASR r2, r2, #2

ASR{S} Rd, Rn, <shift> ; r2 = O0xE00O 0000 (# -536,870,912)

. _ 2
moves all the bits of a register by n positions ; -536,870,912= -2,147,483,648/2

to the right and inserts n copies of the sign bit
in the left end
Example 3

; r2 = OXFFFF_FOO1 (#-4095)

ASRS r3, r2, #1
; r3 = OXFFFF_F800 (#-2048)

; -2048 = —4096/21
C=1, N=1, Z=0, V=not updated

1<n<32
Example 1
; r@ = OXFFF8 0000 (-524288)
ASR ril, ro, #3
; rl = OXFFFF_0000 (-65536)
; -65536= —524288/23
ASR is equivalent to signed integer division Note: If the suffix S 1s used, the carry flag is updated to the

p 52 value of the last shifted bit.

Rotate Operations

Rotate Right (ROR)

-)

ROR{S} Rd, Rn, <shift>

Circular shifts of all the bits of a register by n
positions to the right as if the right end of the
register is joined with its left end. The last shifted
bit updates the carry bit

1<n<31

Example 1

; N2 = 0x0008 0000
ROR r2, r2, #10

; P2 = Ox0000 0200

Example 2: rotate left by 12 bits
; ro = O0xFO00 0000
ROR r2, ro, #20
; "2 = 0x0000 OF00

Rotate left by m bits is equivalent to rotate right
ROR by 32-m bits

Example 3

;r2 = OxFOFO_FOO1l (binary: 1111 0000 1111
0000 1111 0000 00O 0001)

;Prl = O0x0000 00OE (rotate right by 14 bits)

RORS r3, r2, ri

; r3 = 0xCOO7_C3C3 (binary: 1100 0000 0000
0111 1100 0011 1100 0011)

C=1, N=1, Z=0, V=not updated
Note: If the suffix S is used, the carry flag is updated to the

value of the last shifted bit.

Rotate Operations

Rotate Right Extended (RRX)

[H—

RRX{S} Rd, Rn

This is a one-bit rotate instruction.

Example 1

RRX r2, r2
; P2 = 0x8004 0001, c =1

Example 2:

RRX rl1, r2
; rl = Ox7800 0000, c = 1

Example 3

RRXS r3,r2

; NP3 = Ox7878 7800, c =1

C=1, N=0, Z=0, V= not updated

Note: the carry flag is updated by b@ only if the
suffix S is used, otherwise it keeps its original value

Barrel Shifter More Examples

» MOV r0, r0, LSL #I
» rO=r0*2
» MOV rl,rl,LSR #2
» rl =rl /4 (unsigned).
» MOV r2,r2,ASR #2
» r2=r2/4 (signed).
» MOV r3,r3,ROR #16
» Swap the top and bottom halves of r3.
» ADD r4,r4,r4,LSL #4
» r4=r4* 17 (=r4+r4*16)
» RSB r5,r5,r5, LSL #5
» r5=r5*31 (=r5%*32-r5)
» Reverse-subtract using barrel shifter on 2nd operand
» SUB r5,r5,r5,LSR #5
» r5=r5-(r5/32)
» LDR r9,[rl2,r8, LSL #2]

» Load a 32-bit word into r9 from the memory address computed as rl2 + (r8 * 4)

SUB vs. RSB

» SUB instruction: SUB Rd, Rn, Operand2 performs Rd = Rn - Operand2
» RSB instruction: RSB Rd, Rn, Operand2 performs Rd = Operand2 — Rn
» There are equivalent:

» SUB R5,R3,#10 @R5=R3-10

» RSB R5,R3,#10 @R5=10-R3
» When to use RSB?

» Subtracting from constants, since constants can only appear as Operand2 in ARM instructions. For
example:

» RSB R2,R4,#| means R2 = | - R4

» This cannot be done with SUB without first loading the constant into a register
» Negation Operations by subtracting from zero:

» RSB RO, RO, #0 effectively computes RO =0 - RO = -R0
» Complex Operand2 Operations

» RSB is valuable when you want to perform operations on Operand2 before subtraction, such as shifting :
» RSB RI,R2,R3,LSL #| computes RI = (R3 << |) - R2
» This allows you to shift a value and then subtract from it in a single instruction

Integer Array Access with LSL

» To calculate the address of element array[i] of 32-bit integers, we calculate (base
address of array) + i*4 for an array of words. For example:
» ADR r3,ARRAY @ load base address of ARRAY into r3 (ARRAY contains 4-byte ints)

» MOV r2, #6 @ Suppose we want to access ARRAY[6]

» MOV r4,r2,LSL #2 @ logical shift i’s value in r2 by 2 to multiply its value by 4
» ADD r5,r3,r4 @ finish calculation of the address of element array[i] in r5
» LDR r6,[r5] @ load value of array[i] into ré using the address in r5

» Alternatively, we can perform this same address calculation with a single ADD:
» ADD r5,r3,r2,LSL #2 @ calculate address of array[i] in r5 with single ADD
» LDR r6, [r5] @ load value of array[i] into r4 using the address in r5

» Alternatively, ARM has some nice addressing modes to speedup array item access:
» LDR r6,[r3,r2, LSL #2]

%

xample 1: ANDS

LDR ro, =0xFFFFFFOO
LDR rl, =0x00000001
ANDS r2, rl,|r0, LSL #1

— Updates carry flag,

since ANDS does not update carry flag
N=©0, Z=1, C=1, V = not updated

AND{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

r0 = OxFFFFFFOO

rl = 0x00000001

r0, LSL #1 = OxFFFFFEQO

r2 =rl AND (r0 << |) = 0x00000001 AND OxFFFFFEOO = 0x00000000

ANDS sets flags:

Z = | (result r2 is zero)

N = 0 (bit 3| of result r2 is 0)

C is unaffected by ANDS, since logical operations don't affect overflow. It was set by previous shift “rO, LSL #1”
to be C=|

V is unaffected by either ANDS or shift (left unchanged from its previous value)

Note: LSL updates the C flag when it is used within the ANDS instruction, since ANDS does not update C.

p 58

%

xample 2: ADDS

LDR ro, =0xFFFFFFOO
LDR rl, =0x00000001
ADDS r2, rl,|r0, LSL #1

— Does NOT update carry flag,
since ADDS updates flags

N=1, Z=0, C=0, V=20

ADD{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

rO = OxFFFFFFOO

rl = 0x0000000|

rO, LSL #1 = OxFFFFFEOOQ

r2 =rl + (r0 << I) = 0x0000000| + OxFFFFFEOO = OxFFFFFEOI

ADDS sets flags:

Z =0 (result r2 is non-zero)

N =1 (bit 3| of result r2 is I)

C = 0 (there is no carry out from bit 31 for unsigned addition, when adding 0x00000001 and OxFFFFFEQO)

V = 0 (there is no overflow for signed addition, when adding 0x0000000| and OxFFFFFEQOQ. Recall: adding a positive
(1) to a negative (OxFFFFFEOQ) cannot cause overflow.)

Note: LSL updates the C flag when it is used within the ADDS instruction. However, its update of the C flag is
overwritten by ADDS, or equivalently, we say that LSL does not update the C flag.

I

Notes on Shifts and Flags

» A standalone logical shift instruction without the S suffix (e.g. LSL RO, RO, #1) does
not update the condition flags. The S suffix (e.g. LSLS RO, RO, #1) makes the
instruction update NZCV.

» When a shift appears as part of a data-processing instruction that ends with S, the
processor first computes the shifted operand. During that computation, the shift
logic sets the carry (C) flag to the last bit shifted out. After that, the data-processing
instruction may itself update NZCV based on its arithmetic or logical result,
potentially overwriting the C flag.

» LSL can appear as a shift operator within another instruction, but LSLS cannot.

» Examples:
» LSL RO, RO, #I ; standalone LSL — does NOT update flags
» LSLS RO, RO, #1 ; standalone LSLS — updates NZCV (S suffix)
» ANDS R2,RI1, RO, LSL #1 ;valid — LSL forms part of operand, ANDS updates NZCV
» ANDS R2,RI, RO, LSLS #1 ;invalid — cannot embed 'LSLS' inside operand

Set a Bit in C

or

Example: k=5

1<<k| 6 | 6 | 1 | 6 | 06| 6| 0 | 0

al(1<<k)| a; | ag | 1 | a4 | a3 | a, | a; |

The other bits should not be affected.

Set a Bit in Assembly

Solution 1:
MOV r4, #1 ; r4 =1
LSL r4, rd4, #5 ; P4 = 1<<5
ORR r@, r@, r4d ; r0 = ro | 1<<5

Solution 2:
MOV r4, #1 ; rd =1
ORR r@, ro, rd4, LSL #5 ; r@ = ro & not (1<<5)

o

Solution 3:

ORR ro, ro, # (1 << 5) ; r@ = ro & not (1<<5)

o

Clear a Bitin C

Example: k=5

al a; | Qg | ag | a4 | a3 | a, | a; | ag
~1<<k| 1 1} |1 |1|1|1) 1

a&~(1<<k)| a; | ag | @ | a4 | a5 | &, | a; | 3

Clear a Bit in Assembly

a &= ~(1<<5)

Solution 1:

MOV r4, #1 s r4 =1

LSL r4, r4, #5 ; rd4 = 1<<5

MVN r4, r4d ; r4 = not (1<<5)

AND r@, r@, r4 ; ro = ro & not (1<<5)
Solution 2:

MOV r4, #1 ; rd =1

MVN r4, rd4, LSL #5 ; r4 = not (1<<5)

AND ro, ro, ra ; r0 = ro & not (1<<5)
Solution 3:

MOV r4, #1 ; rd 1

BIC r@, rO, r4, LSL #5 ; r@ = ro & not (1<<5)
Solution 4:

BIC ro, ro, # (1 << 5) ; r@ = ro & not (1<<5)

Toggle a Bit in C

Without knowing the initial value, a bit can be toggled by XORing it with a “1”

a "= 1<k
Example: k = 5
al ay A ag ay as a, a, g
1<<k| © 0 1 0 %) 0 0 %)
a”(1<<k)| ay a, | NOT(a;5) | A, a, a, a, g
m n m@Pn

Truth table of © 9 0

Exclusive OR 0 1 1

1 %) 1

1 1 %)

Toggle a Bit in Assembly

a "= 1<<5
Solution:
MOV r4, #1 ; rd =1
EOR r9o, ro, r4, LSL #5 ; PO = re N 1<<5

Here we can use MOVS and EORS instead of MOV and EOR, if the flags are
used by later instructions.

A Y Y
Unmasked bits Masked bits Unmasked bits Masked bits Unmasked bits

Mask = OXOOFFOF00| 0 (0 (0 |0 (0|0 |0 | O i E R RN 0 (0 |0 (0 RN 0 | 0 (0|0|(0(0|0|0

A value of 1 masks the corresponding data bit.

» Bits 8-11 and bits 16-23 are masked.
» All the rest bits are unmasked

Clear all unmasked bits

A Y Y
Unmasked bits Masked bits Unmasked bits Masked bits Unmasked bits

Mask = OXOOFFOF00| 0 (0 (0 |0 (0|0 |0 | O i E R RN 0 (0 |0 (0 RN 0 | 0 (0|0|(0(0|0|0

A value of 1 masks the corresponding data bit.

Data ANDMask| 0 |0 (0|0 |0 |0 |0 | 0 = EE-REEE-EN-ENEEE 0 | 0|0 (0 BN EN-N 0| 0| 0(0(0|0|0|0

N J N J

Y Y
Extract masked bits only and clear all unmasked bits

Data &= Mask;

Clear all masked bits

A Y Y Yo
Unmasked bits Masked bits Unmasked bits Masked bits Unmasked bits

Mask = OXOOFFOF00| 0 (0 (0 |0 (0|0 |0 | O i E R RN 0 (0 |0 (0 RN 0 | 0 (0|0|(0(0|0|0

A value of 1 masks the corresponding data bit.

Data AND (notMask){1|1|0|1(1|0 (0|0 N-NC-RR-E-EN-EE-ENCEN-N 0 |1 (1|0 BCANCERCERCE 1(1|1(1|0(1|0|1

N J N J
N

y
Clear masked bits only and keep the rest unchanged

Data &= ~Mask;

Set all masked bits

A Y Y Yo
Unmasked bits Masked bits Unmasked bits Masked bits Unmasked bits

Mask = OXOOFFOF00| 0 (0 (0 |0 (0|0 |0 | O i E R RN 0 (0 |0 (0 RN 0 | 0 (0|0|(0(0|0|0

A value of 1 masks the corresponding data bit.

DataORMask|1 |1 (0|1 |1 (0| 0|0 [Ei S SsBsEEE o |1 (1|0 REEEEENE 1| 1|1(1|0|1(0|1

N J N J
N N

Set masked bits only and keep the rest unchanged

Data |= Mask;

Toggle all tasked bits

A Y Y Yo
Unmasked bits Masked bits Unmasked bits Masked bits Unmasked bits

Mask = OXOOFFOF00| 0 (0 (0 |0 (0|0 |0 | O i E R RN 0 (0 |0 (0 RN 0 | 0 (0|0|(0(0|0|0

A value of 1 masks the corresponding data bit.

DataEORMask[1 |1 |0 |1 |1 (0 (0|0 =R EE-EE RS EE-EN-N 0 (1 (1 (0 F-ARER-ENE 1 (1(1(1|0|1|0(1

N J N J
EOR = Exclusive OR

Y Y
Toggle mask bits only and keep the rest unchanged

Data ~= Mask;

Carry and Overtlow Flags w/ Arithmetic Instructions

e @ = = — — = @ e ff — e g o e e e —

Carry flag C = 0 (Borrow flag = |) upon an unsigned subtraction if the answer is wrong (true result <
0)

Overflow flagV =1 upon a signed addition or subtraction if the answer is wrong (true result > 2™'-| or
true result < -2™')

Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands with different
signs; Overflow cannot occur when adding 2 operands with different signs or when subtracting 2
operands with the same sign.

If two operands have same sign, and the result has opposite sign, thenV = |;elseV =0

Tip: Convert subtraction to addition with Two’s complement.

Unsigned Addition Unsigned Subtraction | Signed Addition or
Subtraction
N/A

Carry flag true result > 2"-1 =» true result <0 =>»

Carry flag=1 ' Carry flag=0
Borrow flag=0 Borrow flag=1
(Result incorrect) (Result incorrect)
Overflow flag N/A N/A true result > 2™!-| or
true result < -2/
=>» Overflow flag=1 -

(Result incorrect)

Example

» For an 8-bit system, calculate 0x35 + 0x19, setting C andV flags
» ANS:

» Convert to binary and perform addition as in table

» C =0 since there is no carry-out from MSB b7

» V =0since Opl, Op2 and result are all positive (sign bit = 0)
» In decimal (not needed for exam):

Unsigned addition: 53 + 25 = 78 (result correct)
Signed addition: 53 + 25 = 78 (result correct)

oO|1{1]0]0|0I Carry

o101 |1]O|1]0]| 1| Opl:0x35
c=0 (0(0[O0O [T]1]O]O] I | Op2:0xI9
V=0 O 10|01 || 1]0]/| Result:0x4E

Example

» For an 8-bit system, calculate 0x35 + Ox5B, setting C andV flags
» ANS:

» Convert to binary and perform addition as in table
» C =0 since there is no carry-out from MSB b7

» V =1 since Opl, Op2 are positive, result is negative
» In decimal:

Unsigned addition: 53 + 91 = 144 (result correct)
Signed addition: true sum = 53 + 91 = 144 — result = -1 12 (result incorrect,V=1)

|1 | 1] 1] Carry

0|0 I O| 1[0 1| Opl:0x35
c=0 (0]1]0 | O] I | || Op2:0x5B
V=1 | OO0 0|0 |0]| 0| Result:0x90

» For an 8-bit system, calculate 0x35 - 0x2D, setting C andV flags
» ANS:

» Convert to binary and perform addition as in table (another way is to perform subtraction in binary, but we
do not cover it here)

0x2D = 00101101, its negation TC(00101101) = 11010011 = 0xD3

» C = | since there is carry-out from MSB b7

» V =0 since Opl is positive, Op2 is negative, result is negative
Overflow cannot occur when adding 2 operands with different signs

» In decimal:
Unsigned subtraction: 53 — 45 = 8 (result correct, C=1, Borrow Flag=0)
Signed: 53 - 45 = 8 (result correct)

[O O I I I O B Carry
O10|1|1]O|1]0]| 1| Opl:0x35

| OO0 | I] 1| Op2:0xD3

=0 O/0|O0O[O0O|1]0|0]| O | Result:0x08 (drop I in 0x108)

» For an 8-bit system, calculate Ox9E - 0x2D, setting C andV flags

» ANS:

» Convert to binary and perform addition as in table

0x2D = 00101101, its negation TC(00101101) = 11010011 = 0xD3
» C =1 since there is carry-out from MSB b7

» V =1 since Opl, Op2 are both negative, result is positive

» In decimal:

Unsigned subtraction: 158 — 45 = | |3 (result correct, C=1I, Borrow Flag=0)
Signed subtraction: true sum = —98 — 45 = —[43 — result = +1 13 (wrong,V=1)

0 (0 (I | |1 |0 Carry
| 10 |0 | |1 |1 Op|: 0x9E
C=| | || |0 0 |0 |1 Op2: 0xD3
V=] o || I 0 [0 (O Result: 0x7 | (drop | in 0x171)

Biary

Hex 0110 001
53 35 O 0110101
+25 +19 O 0011001
78 4E C=0 01 001 1 1 O
V=08 Noteno carry from bit 6 to bit 7
and no carry from bit 7 to C.
Dec Hex 1110111
53 35 0 0110101
-45 +D3 1 1 01 89 0 1 1
§ 108 C=1 00001000
Ignore i s e =
e Vi Note carry from bit 6 to bit 7
carry

and carry from bit 7 to C.

Thinking SIGNED we added a positive number to a
negative number and got the correct positive answer.
Therefore, the OVERFLOW bat, V, 18 cleared to 0.
Correct answer (8) 18 inside the range -128 to +127.

Hex 1 132 1 47 1
T 00110101
491 +5B O 1.0 1 1 0 1 1
144 0 C=010010000
V=1 ~ Note carry from bit 6 to bit 7

but no carry from bit 7 to C.

Thinking SIGNED we added two positive numbers
and got a negative result. This can’t be correct!
Theretore, the OVERFLOW bit, V, 18 set to .

Correct answer (144) 18 outside the range -128 to+127.

Dec Hex 0 0 1 11 3 0
- 08 OF 1 @9 1 1 1 1 0O
-45 +D3 1 1 01 0011

- 143 - 1. = 'l\/% 1110001
Iznore V=1 Note no carry from bit 6 to bit 7
carry

but there 15 a carry from bit 7 to C.

Thinking SIGNED we added two negative numbers
and got a positive answer. This must be wrong!
Therefore, the OVERFLOW Dbat, V) 15 set to 1.

Correct answer (-143) 1s outside the range -128 to +127.

ARM Immediate Values

» You can’t fit an arbitrary 32-bit value into a 32-bit instruction word. ARM
data processing instructions have |2 bits of space for values in one 32-bit
instruction word. This is arranged as a 4 rotate value and an 8 immediate
value.The real immediate = ROR(immediate8, rotate4 x 2).

» The 4-bit rotate value stored in bits | |-8 is multiplied by two giving a range of O-

30 in steps of two.

» Using this scheme we can express immediate constants such as:

» 0x000000FF
» 0x00000FFO
» O0xFFO00000
» 0xFOOO0O00F

» But these immediate constants are not possible:
» 0x00000IFE
» O0xFOOOFO00
» 0x55550000
» OxFFFFFFFF

11 8 7
2 rut?teﬁ . iqmedjatga .
. —— 5
AN
ROR
Result

| 2-bit immediate value

» An assembler will convert big values to the rotated form. Impossible values

will cause an error. For example, this instruction is invalid:

______ r.AND. R2, RO, #OxFEEFEERSF

» 78

Encoding #4080 as Immediate

ADD rl, r2, #4080
» 4080 = I111111110000 in binary

You need to set values for rotate4 and

immediate8 to encode #4080.The encoding is: 1 8, T

» immediate8 = 0x000000FF (11111111 in binary) /| rotates , lmmediate8
» rotate4 = 1110 (14%2 = 28) ‘ | J

ROR (0x000000FF, 28) = 0x00000FFO (4080 in 4

decimal) ROR

» rotate left by 4 = rotate right by 28 !

Values such as #4079, #4081, #4082. . .cannot be Result

encoded exactly, since no matter how you set

immediate8, you only have 8 bits and you must

lose some |’s in the original number. You can use

#4080 as an approximation for them

» #4079 = 111111101111

» #4081 = 11111110001

g #4082 =TI1rrrrrrooro

Loading Wide Values

» You can form constants wider than those available in a single instruction by
using a sequence of instructions to build up the constant. For example:

» MOV r2, #0x55 ; R2 = 0x00000055
» ORR r2,r2,r2,LSL #8 ;R2 = 0x00005555
» ORR r2,r2,r2, LSL #16 ; R2 = 0x55555555
» Or load the value from memory with pseudo-instruction LDR Rx,=const
» LDR r2,=0x55555555

» Or use MVN instead of MOV:
» The invalid instruction MOV r0,#0xFFFFFFFF can be implemented as MVN r0,#0

Pseudo instruction

» The ARMv7 pseudo instruction LDR r2,=0x55555555 is implemented by the
assembler to load a 32-bit immediate value large constants beyond the range of the
immediate field of a MOV/MVN instruction. It is translated into a PC-relative load
instruction that fetches the constant from a literal pool embedded in the code:

» The assembler first tries to generate a MOV or MVN instruction if the immediate value can
be encoded directly by those instructions.

» Since 0x55555555 cannot be encoded directly in a MOV or MVN,;, the assembler places this
value in a literal pool, which is a section of memory embedded in the code to hold constant
values.

» Then, the assembler generates a PC-relative LDR instruction that loads the value from the
literal pool address into the specified register (r2 in this case).

» The actual machine instruction looks like LDR r2, [pc, #offset], where the offset points to the
location of the 0x55555555 constant in the literal pool.

» This makes register value assignment flexible, but at the cost of incurring a memory access

» (In exam questions like Q3 in the midterm, you are not allowed to use the LDR
pseudo-instruction)

References

» Lesson 45b - Adders Carry and Overflow, LBEbooks
» https://www.youtube.com/watch?v=9cXe T99nL4

» Lecture 25.Arithmetic and Logical Instructions

» https://www.youtube.com/watch?v=H-
vOP2yRUj4&list=PLR]hV4hUhlymmp5CCelFPyxbknsdcXCc8&index=25

» Lecture 26. Updating NZCV bit flags

» https://www.youtube.com/watch?v=SG|ibMI1D2_A&list=PLR|hV4hUhlymmp5CCelFPy
xbknsdcXCc8&index=26

https://www.youtube.com/watch?v=9cXe_T99nL4
https://www.youtube.com/watch?v=9cXe_T99nL4
https://www.youtube.com/watch?v=H-vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25
https://www.youtube.com/watch?v=H-vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25
https://www.youtube.com/watch?v=H-vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25
https://www.youtube.com/watch?v=H-vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25
https://www.youtube.com/watch?v=SGJibM1D2_A&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=26
https://www.youtube.com/watch?v=SGJibM1D2_A&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=26
https://www.youtube.com/watch?v=SGJibM1D2_A&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=26

	Slide 1: Z. Gu
	Slide 2: Adding Two Integers
	Slide 3: Adding Two Integers
	Slide 4: Adding Two Integers
	Slide 5: Adding Two Integers
	Slide 6: Adding Two Integers
	Slide 7: Adding Two Integers
	Slide 8: Example Arithmetic Instructions
	Slide 9: Example Logical Instructions
	Slide 10: Example Shift & Rotate Instructions
	Slide 11: Example Data Transfer Instructions
	Slide 12: Overview: Arithmetic and Logic Instructions
	Slide 13: Example: Add
	Slide 14: Commonly Used Arithmetic Operations
	Slide 15: ARM Programming Model
	Slide 16: Program Status Register (PSR)
	Slide 17: NZCV Flags in xPSR
	Slide 18: Updating NZCV flags in PSR
	Slide 19: ADD vs ADDS
	Slide 20: Suffix S: Update Flags
	Slide 21: Example: 64-bit Addition
	Slide 22: Example: 64-bit Addition
	Slide 23: Example: 64-bit Subtraction
	Slide 24: Example: 96-bit Subtraction
	Slide 25: Example: Short Multiplication and Division
	Slide 26: Example: Long Multiplication
	Slide 27: Bitwise Logic
	Slide 28: Example: AND r2, r0, r1
	Slide 29: Example: ORR r2, r0, r1
	Slide 30: Example: BIC r2, r0, r1
	Slide 31: Example: BFC and BFI
	Slide 32: Bit Operators (&, |, ~) vs Boolean Operators (&& ,||, !)
	Slide 33: Saturating Instruction: SSAT and USAT
	Slide 34: Example of Saturation
	Slide 35: Reverse Order
	Slide 36: Reverse Order
	Slide 37: Reverse Order
	Slide 38: Reverse Order
	Slide 39: Sign and Zero Extension
	Slide 40: Sign and Zero Extension
	Slide 41: Move Data between Registers
	Slide 42: Move Immediate Number to Register
	Slide 43: Flexible 2nd Source Operand
	Slide 44: Use Shifts To Implement Multiplication And Division
	Slide 45: Barrel Shifter
	Slide 46: Updating APSR Flags
	Slide 47: Barrel Shifter: Explanations
	Slide 48: Examples (shifting by 4)
	Slide 49: Examples (rotate)
	Slide 50: Shift Operations
	Slide 51: Shift Operations
	Slide 52: Shift Operations
	Slide 53: Rotate Operations
	Slide 54: Rotate Operations
	Slide 55: Barrel Shifter More Examples
	Slide 56: SUB vs. RSB
	Slide 57: Integer Array Access with LSL
	Slide 58: Example 1: ANDS
	Slide 59: Example 2: ADDS
	Slide 60: Notes on Shifts and Flags
	Slide 61: Set a Bit in C
	Slide 62: Set a Bit in Assembly
	Slide 63: Clear a Bit in C
	Slide 64: Clear a Bit in Assembly
	Slide 65: Toggle a Bit in C
	Slide 66: Toggle a Bit in Assembly
	Slide 67: Mask
	Slide 68: Clear all unmasked bits
	Slide 69: Clear all masked bits
	Slide 70: Set all masked bits
	Slide 71: Toggle all tasked bits
	Slide 72: Carry and Overflow Flags w/ Arithmetic Instructions
	Slide 73: Example
	Slide 74: Example
	Slide 75: Example
	Slide 76: Example
	Slide 77
	Slide 78: ARM Immediate Values
	Slide 79: Encoding #4080 as Immediate
	Slide 80: Loading Wide Values
	Slide 81: Pseudo instruction
	Slide 82: References

