
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 4

ARM Arithmetic and Logic Instructions

1 Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Adding Two Integers

2

z = x + y;

int x = 1;
int y = 2;
int z;

If values are in registers
 Value of x in r0
 Value of y in r1
 Value of z in r2

C Statement Assembly Statement

Adding Two Integers

3

z = x + y;

int x = 1;
int y = 2;
int z;

ADD , ,

Source Operand 2

Source Operand 1

Destination

r2 r1 r0

C Statement Assembly Statement

If values are in registers
 Value of x in r0
 Value of y in r1
 Value of z in r2

Adding Two Integers

4

z = x + y;

uint x = 1;
uint y = 2;
uint z;

If values are in registers
 Value of x in r0
 Value of y in r1
 Value of z in r2

C Statement Assembly Statement

Adding Two Integers

5

z = x + y;

uint x = 1;
uint y = 2;
uint z;

ADD , , r2 r1 r0

If values are in registers
 Value of x in r0
 Value of y in r1
 Value of z in r2

C Statement Assembly Statement

ADD works for both signed and

unsigned add operations.

Adding Two Integers

6

z = x + y;

int x = 1;
int y = 2;
int z;

If addresses are in registers
 Address of x in r0
 Address of y in r1
 Address of z in r2

C Statement

Assembly Statements

Adding Two Integers

7

z = x + y;

int x = 1;
int y = 2;
int z;

If addresses are in registers
 Address of x in r0
 Address of y in r1
 Address of z in r2

LDR r3, [r0] ; Read x
LDR r4, [r1] ; Read y
ADD r5, r3, r4
STR r5, [r2] ; Write z

C Statement

Assembly Statements

Load, modify, and store

Example Arithmetic Instructions

8

 ADD r0, r1, r2 ; r0 = r1 + r2

 ADC r0, r1, r2 ; Add with carry, r0 = r1 + r2 + carry

 SUB r0, r1, r2 ; r0 = r1 - r2

 SBC r0, r1, r2 ; Subtract with borrow, r0 = r1 - r2 – (1 – carry)

 MUL r0, r1, r2 ; r0 = r1 * r2, product limited to 32 bits

 UDIV r0, r1, r2 ; Unsigned divide, r0 = r1 / r2

 SDIV r0, r1, r2 ; Signed divide, r0 = r1 / r2

 SMULL r0, r1, r2, r3 ; Signed multiply (64-bit product), r1:r0 = r2 * r3

 UMULL r0, r1, r2, r3 ; Unsigned multiply (64-bit product), r1:r0 = r2 * r3

Example Logical Instructions

9

 AND r0, r1, r2 ; Bitwise AND, r0 = r1 AND r2

 ORR r0, r1, r2 ; Bitwise OR, r0 = r1 OR r2

 EOR r0, r1, r2 ; Bitwise Exclusive OR, r0 = r1 EOR r2

 ORN r0, r1, r2 ; Bitwise OR NOT, r0 = r1 ORN r2

 BIC r0, r1, r2 ; Bit clear, r0 = r1 & ~r2

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

32 bits

r1
r2

r0

Bit-wise Logic AND

AND r0, r1, r2

Example Shift & Rotate Instructions

10

 LSL r0, r1, r2 ; Logical shift left,

 r0 = r1 << r2

 LSR r0, r1, r2 ; Logical shift right,

 r0 = r1 >> r2

 ASR r0, r1, r2 ; Arithmetic shift right,
r0 = r1 >> r2

 ROR r0, r1, r2 ; Rotate right,

 r0 = r1 rotate by r2 bits

 RRX r0, r1, r2 ; Extended rotate right,
{C, r0} = {C, r1} rotate by r2 bits

Logical Shift Right (LSR)

Rotate Right (ROR)

Rotate Right Extended (RRX)

Logical Shift Left (LSL)

Arithmetic Shift Right (ASR)

Example Data Transfer Instructions

11

 MOV r0, r1 ; Move, r0 = r1

 MVN r0, r1 ; Move NOT, r0 = bitwise NOT r1

0 1 1 1 1r1

1 0 0 0 0r0

MVN r0, r1

Bit-wise Logic NOT

Overview:

Arithmetic and Logic Instructions

 Shift : LSL (logic shift left), LSR (logic shift right), ASR (arithmetic shift right), ROR (rotate right), RRX (rotate right with extend)

 Logic: AND (bitwise and), ORR (bitwise or), EOR (bitwise exclusive or), ORN (bitwise or not), MVN (move not)

 Bit set/clear: BFC (bit field clear), BFI (bit field insert), BIC (bit clear), CLZ (count leading zeroes)

 Bit/byte reordering: RBIT (reverse bit order in a word), REV (reverse byte order in a word), REV16 (reverse byte order in each half-
word independently), REVSH (reverse byte order in each half-word independently)

 Addition: ADD, ADC (add with carry)

 Subtraction: SUB, RSB (reverse subtract), SBC (subtract with carry)

 Multiplication: MUL (multiply), MLA (multiply-accumulate), MLS (multiply-subtract), SMULL (signed long multiply-accumulate), SMLAL
(signed long multiply-accumulate), UMULL (unsigned long multiply-subtract), UMLAL (unsigned long multiply-subtract)

 Division: SDIV (signed), UDIV (unsigned)

 Saturation: SSAT (signed), USAT (unsigned)

 Sign extension: SXTB (signed), SXTH, UXTB, UXTH

 Bit field extract: SBFX (signed), UBFX (unsigned)

 Syntax

 <Operation>{<cond>}{S} Rd, Rn, Operand2

12

13

Example: Add

 Unified Assembler Language (UAL) Syntax

ADD r1, r2, r3 ; r1 = r2 + r3

ADD r1, r2, #4 ; r1 = r2 + 4

 Traditional Thumb Syntax

ADD r1, r3 ; r1 = r1 + r3

ADD r1, #15 ; r1 = r1 + 15

14

Commonly Used Arithmetic Operations

ADD {Rd,} Rn, Op2
Add

Rd  Rn + Op2

ADC {Rd,} Rn, Op2
Add with carry

Rd  Rn + Op2 + Carry

SUB {Rd,} Rn, Op2
Subtract

Rd  Rn - Op2

SBC {Rd,} Rn, Op2
Subtract with carry

Rd  Rn - Op2 + Carry - 1

RSB {Rd,} Rn, Op2
Reverse subtract

Rd  Op2 - Rn

MUL {Rd,} Rn, Rm
Multiply

Rd  (Rn × Rm)[31:0]

MLA Rd, Rn, Rm, Ra
Multiply with accumulate

Rd  (Ra + (Rn × Rm))[31:0]

MLS Rd, Rn, Rm, Ra
Multiply and subtract

Rd  (Ra – (Rn × Rm))[31:0]

SDIV {Rd,} Rn, Rm
Signed divide

Rd  Rn ÷ Rm

UDIV {Rd,} Rn, Rm
Unsigned divide

Rd  Rn ÷ Rm

SSAT Rd, #n, Rm {,shift #s} Signed saturate

USAT Rd, #n, Rm {,shift #s} Unsigned saturate

ARM Programming Model

15

31 0
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13: Stack Pointer (SP)

R14: Link Register (LR)

R15: Program Counter (PC)

N Z C V

CPSR (Current Program Status Register)

• Four flag bits:

– N (negative), Z (zero), C (carry),
V (overflow).

Program Status Register (PSR)

16

Note:

• GE flags are only available on Cortex-M4 and M7

• Use PSR in code

N Z C V

ISR number

Reserved

Reserved

ICI/IT ReservedT

Reserved ISR number

APSR

IPSR

EPSR

PSR

Q

ICI/IT TN Z C V Q

ICI/IT

ICI/IT

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27

Combine them together into one register (PSR)

GEReserved

GEReserved

 Application PSR (APSR), Interrupt PSR (IPSR), Execution PSR (EPSR)

NZCV Flags in xPSR

17

 N: 1/0 = Result from ALU is Negative/positive

 Z: 1/0 = Result from ALU is Zero/non-zero

 C: Three cases:

 1/0 = ALU addition Carry out/no carry out

 1/0 = ALU subtraction no borrow/borrow

 1/0 = Bit shifted/rotated out

 V: 1/0 = ALU oVerflowed/no overflow

Borrow and carry share

the same flag bit.

For unsigned subtract,

Borrow = NOT Carry

Updating NZCV flags in PSR

18

Flags not changed Flags updated

ADD ⟶ ADDS

SUB ⟶ SUBS

MUL ⟶ MULS

UDIV ⟶ UDIVS

AND ⟶ ANDS

ORR ⟶ ORRS

LSL ⟶ LSLS

MOV ⟶ MOVS

Most instructions update NZCV flags

only if S suffix is present

Some instructions update NZCV flags even if no S is specified.

• CMP: Compare, like SUBS but without destination
register

• CMN: Compare Negative, like ADDS but without
destination register

• TST: Test, like ANDS but without destination
register

• TEQ: Test equivalence, like EORS but without
destination register

CMP r1, r2 vs SUBS r0, r1, r2

ADD vs ADDS

19

 ADD does not update flags

 ADDS updates flags

 xPSR.N = bit 31 of result

 xPSR.Z = IsZero(result)

 xPSR.C = carry, assuming r1 and r2 representing unsigned integers

 xPSR.V = overflow, assuming r1 and r2 representing signed integers

ADD r0, r1, r2 ; r0 = r1 + r2, NZCV flags unchanged
ADDS r0, r1, r2 ; r0 = r1 + r2, NZCV flags updated

20

Suffix S:

Update Flags

LDR r0, =0xFFFFFFFF
LDR r1, =0x00000001
ADDS r0, r0, r1

N (Negative) = 0
Z (Zero) = 1
C (Carry) = 1
V (oVerflow) = 0

0xFFFFFFFF r0

0x00000001 r1+

0x00000000 sum

21

Example: 64-bit Addition

0 0 0 0 0 0 0 2 F F F F F F F F

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0

Most-significant (Upper) 32 bits Least-significant (Lower) 32 bits

+

Carry out

• A register can only store 32 bits

• A 64-bit integer needs two registers

• Split 64-bit addition into two 32-bit additions

start
 ; C = A + B
 ; Two 64-bit integers A (r1,r0) and B (r3,r2).
 ; Result C (r5, r4)
 ; A = 00000002FFFFFFFF
 ; B = 0000000400000001
 LDR r0, =0xFFFFFFFF ; A’s lower 32 bits
 LDR r1, =0x00000002 ; A’s upper 32 bits
 LDR r2, =0x00000001 ; B’s lower 32 bits
 LDR r3, =0x00000004 ; B’s upper 32 bits

 ; Add A to B
 ADDS r4, r2, r0 ; C[31..0] = A[31..0] + B[31..0], update Carry
 ADC r5, r3, r1 ; C[64..32] = A[64..32] + B[64..32] + Carry

stop B stop

22

Example: 64-bit Addition

r1 r0

r3 r2

r5 r4

Addend1

Addend2

Sum

Upper 32 bits Lower 32 bits

Carry out

23

Example: 64-bit Subtraction

start
 ; C = A - B
 ; Two 64-bit integers A (r1,r0) and B (r3,r2).
 ; Result C (r5, r4)
 ; A = 00000002FFFFFFFF
 ; B = 0000000400000001
 LDR r0, =0xFFFFFFFF ; A’s lower 32 bits
 LDR r1, =0x00000002 ; A’s upper 32 bits
 LDR r2, =0x00000001 ; B’s lower 32 bits
 LDR r3, =0x00000004 ; B’s upper 32 bits

 ; Subtract B from A
 SUBS r4, r0, r2 ; C[31..0]= A[31..0] - B[31..0], update Carry
 SBC r5, r1, r3 ; C[64..32]= A[64..32] - B[64..32] – (1 – Carry)

stop B stop

r1 r0

r3 r2

r5 r4

A

B

C

Example: 96-bit Subtraction

24

SUBS r6, r0, r3

SBCS r7, r1, r4

SBC r8, r2, r5

Minuend (A)r2 r1 r0

r5 r4 r3

r8 r7 r6

Subtrahend (B)

Difference (C)

Most Significant 32 bits Least Significant 32 bits

SUBS r6, r0, r3 SBCS r7, r1, r4 SBC r8, r2, r5

If borrow occurs, the

carry flag is cleared.

If borrow occurs, the

carry flag is cleared.

Update the carry flag,

Carry = not borrow

Update the carry flag,

Carry = not borrow
Subtract with Carry

R8 = r2 – r5 + Carry -1

25

Example: Short Multiplication and Division

MUL: Signed multiply
MUL r6, r4, r2 ; r6 = LSB32(r4 × r2)

UMUL: Unsigned multiply
UMUL r6, r4, r2 ; r6 = LSB32(r4 × r2)

MLA: Multiply with accumulation
MLA r6, r4, r1, r0 ; r6 = LSB32(r4 × r1) + r0

MLS: Multiply with subtract
MLS r6, r4, r1, r0 ; r6 = LSB32(r4 × r1) - r0

LSB32: Least significant 32 bits

26

Example: Long Multiplication

UMULL RdLo, RdHi, Rn, Rm
Unsigned long multiply

RdHi,RdLo  unsigned(Rn × Rm)

SMULL RdLo, RdHi, Rn, Rm
Signed long multiply

RdHi,RdLo  signed(Rn × Rm)

UMLAL RdLo, RdHi, Rn, Rm
Unsigned multiply with accumulate

RdHi,RdLo  unsigned(RdHi,RdLo + Rn × Rm)

SMLAL RdLo, RdHi, Rn, Rm
Signed multiply with accumulate

RdHi,RdLo  signed(RdHi,RdLo + Rn × Rm)

UMULL r3, r4, r0, r1 ; r4:r3 = r0  r1, r4 = MSB bits, r3 = LSB bits
 SMULL r3, r4, r0, r1 ; r4:r3 = r0  r1
 UMLAL r3, r4, r0, r1 ; r4:r3 = r4:r3 + r0  r1
 SMLAL r3, r4, r0, r1 ; r4:r3 = r4:r3 + r0  r1

The result has 64 bits, placed in two registers.

Bitwise Logic

27

AND {Rd,} Rn, Op2
Bitwise logic AND

Rd  Rn & operand2

ORR {Rd,} Rn, Op2
Bitwise logic OR

Rd  Rn | operand2

EOR {Rd,} Rn, Op2
Bitwise logic exclusive OR

Rd  Rn ^ operand2

ORN {Rd,} Rn, Op2
Bitwise logic NOT OR

Rd  Rn | (NOT operand2)

BIC {Rd,} Rn, Op2
Bit clear

Rd  Rn & NOT operand2

BFC Rd, #lsb, #width
Bit field clear

Rd[(width+lsb–1):lsb]  0

BFI Rd, Rn, #lsb, #width
Bit field insert

Rd[(width+lsb–1):lsb]  Rn[(width-1):0]

MVN Rd, Op2
Move NOT, logically negate all bits

Rd  0xFFFFFFFF EOR Op2

28

Example: AND r2, r0, r1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

32 bits

r0
r1

r2

Bit-wise Logic AND

29

Example: ORR r2, r0, r1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

1 1

32 bits

r0
r1

r2

Bit-wise Logic OR

30

Example: BIC r2, r0, r1

1 1

1 0 0 0 0

1 0 0 0 0

r0

NOT r1

r2

Bit Clear

r2 = r0 & NOT r1

0 1 1 1 1r1

1 0 0 0 0NOT r1

Step 1:

Step 2:

31

Example: BFC and BFI

 Bit Field Clear (BFC) and Bit Field Insert (BFI).

 Syntax
 BFC Rd, #lsb, #width
 BFI Rd, Rn, #lsb, #width

 Examples:
BFC R4, #8, #12
; Clear bit 8 to bit 19 (a total of 12 bits) of R4

BFI R9, R2, #8, #12
; Replace bit 8 to bit 19 (12 bits) of R9
; with bit 0 to bit 11 from R2.

Bit Operators (&, |, ~) vs Boolean Operators (&& ,||, !)

32

 The Boolean operators perform word-wide operations, not bitwise.

 For example,

 “0x10 & 0x01” = 0x00, but “0x10 && 0x01” = 0x01. (true && true = true, any non-zero value is

logical true)

 “~0x01” = 0xFFFFFFFE, but “!0x01” = 0x00. (!true = false)

A && B Boolean and A & B Bitwise and

A||B Boolean or A|B Bitwise or

!B Boolean not ~B Bitwise not

Saturating Instruction: SSAT and USAT
 Syntax:

 op{cond} Rd, #n, Rm{, shift}

 SSAT saturates a signed value to the signed range -2n-1 ≤ x ≤ 2n-1 -1.

𝑆𝐴𝑇 𝑥 = ቐ
2𝑛−1 − 1 𝑖𝑓 𝑥 > 2𝑛−1 − 1

−2𝑛−1 𝑖𝑓 𝑥 < 2𝑛−1

𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 USAT saturates a signed value to the unsigned range 0 ≤ x ≤ 2n - 1.

𝑈𝑆𝐴𝑇 𝑥 = ቊ
2𝑛 − 1 𝑖𝑓 𝑥 > 2𝑛 − 1

𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Examples:
 SSAT r2, #11, r1 ; output range: -210  r2  210

 USAT r2, #11, r3 ; output range: 0  r2  211

33

Example of Saturation

34

Without

saturation

With

saturation

Assume data are limited to 16 bits

Reverse Order

35

RBIT Rd, Rn
Reverse bit order in a word
for (i = 0; i < 32; i++) Rd[i]  RN[31– i]

REV Rd, Rn
Reverse byte order in a word
Rd[31:24]  Rn[7:0], Rd[23:16]  Rn[15:8],
Rd[15:8]  Rn[23:16], Rd[7:0]  Rn[31:24]

REV16 Rd, Rn
Reverse byte order in each half-word
Rd[15:8]  Rn[7:0], Rd[7:0]  Rn[15:8],
Rd[31:24]  Rn[23:16], Rd[23:16]  Rn[31:24]

REVSH Rd, Rn
Reverse byte order in bottom half-word and sign extend
Rd[15:8]  Rn[7:0], Rd[7:0]  Rn[15:8],
Rd[31:16]  Rn[7] & 0xFFFF

RBIT Rd, Rn

Rn

Rd

LDR r0, =0x12345678 ; r0 = 0x12345678
RBIT r1, r0 ; Reverse bits, r1 = 0x1E6A2C48

Example:

Reverse Order

36

REV Rd, Rn

Rn

Rd

LDR R0, =0x12345678 ; R0 = 0x12345678
REV R1, R0 ; R1 = 0x78563412

Example:

RBIT Rd, Rn
Reverse bit order in a word
for (i = 0; i < 32; i++) Rd[i]  RN[31– i]

REV Rd, Rn
Reverse byte order in a word
Rd[31:24]  Rn[7:0], Rd[23:16]  Rn[15:8],
Rd[15:8]  Rn[23:16], Rd[7:0]  Rn[31:24]

REV16 Rd, Rn
Reverse byte order in each half-word
Rd[15:8]  Rn[7:0], Rd[7:0]  Rn[15:8],
Rd[31:24]  Rn[23:16], Rd[23:16]  Rn[31:24]

REVSH Rd, Rn
Reverse byte order in bottom half-word and sign extend
Rd[15:8]  Rn[7:0], Rd[7:0]  Rn[15:8],
Rd[31:16]  Rn[7] & 0xFFFF

Reverse Order

37

REV16 Rd, Rn

Rn

Rd

LDR R0, =0x12345678 ; R0 = 0x12345678
REV16 R2, R0 ; R2 = 0x34127856

Example:

RBIT Rd, Rn
Reverse bit order in a word
for (i = 0; i < 32; i++) Rd[i]  RN[31– i]

REV Rd, Rn
Reverse byte order in a word
Rd[31:24]  Rn[7:0], Rd[23:16]  Rn[15:8],
Rd[15:8]  Rn[23:16], Rd[7:0]  Rn[31:24]

REV16 Rd, Rn
Reverse byte order in each half-word
Rd[15:8]  Rn[7:0], Rd[7:0]  Rn[15:8],
Rd[31:24]  Rn[23:16], Rd[23:16]  Rn[31:24]

REVSH Rd, Rn
Reverse byte order in bottom half-word and sign extend
Rd[15:8]  Rn[7:0], Rd[7:0]  Rn[15:8],
Rd[31:16]  Rn[7] & 0xFFFF

Reverse Order

38

REVSH Rd, Rn

Rn

Rd

LDR R0, =0x33448899 ; R0 = 0x33448899
REVSH R1, R0 ; R0 = 0xFFFF9988

Example:

RBIT Rd, Rn
Reverse bit order in a word
for (i = 0; i < 32; i++) Rd[i]  RN[31– i]

REV Rd, Rn
Reverse byte order in a word
Rd[31:24]  Rn[7:0], Rd[23:16]  Rn[15:8],
Rd[15:8]  Rn[23:16], Rd[7:0]  Rn[31:24]

REV16 Rd, Rn
Reverse byte order in each half-word
Rd[15:8]  Rn[7:0], Rd[7:0]  Rn[15:8],
Rd[31:24]  Rn[23:16], Rd[23:16]  Rn[31:24]

REVSH Rd, Rn
Reverse byte order in bottom half-word and sign extend
Rd[15:8]  Rn[7:0], Rd[7:0]  Rn[15:8],
Rd[31:16]  Rn[7] & 0xFFFF

Sign and Zero Extension

39

int8_t a = -1; // a signed 8-bit integer, a = 0xFF
int16_t b = -2; // a signed 16-bit integer, b = 0xFFFE
int32_t c; // a signed 32-bit integer

c = a; // sign extension required, c = 0xFFFFFFFF
c = b; // sign extension required, c = 0xFFFFFFFE

Sign and Zero Extension

40

LDR R0, =0x55AA8765
SXTB R1, R0 ; R1 = 0x00000065
SXTH R1, R0 ; R1 = 0xFFFF8765
UXTB R1, R0 ; R1 = 0x00000065
UXTH R1, R0 ; R1 = 0x00008765

SXTB {Rd,} Rm {,ROR #n}
Sign extend a byte
Rd[31:0]  Sign Extend((Rm ROR (8 × n))[7:0])

SXTH {Rd,} Rm {,ROR #n}
Sign extend a half-word
Rd[31:0]  Sign Extend((Rm ROR (8 × n))[15:0])

UXTB {Rd,} Rm {,ROR #n}
Zero extend a byte
Rd[31:0]  Zero Extend((Rm ROR (8 × n))[7:0])

UXTH {Rd,} Rm {,ROR #n}
Zero extend a half-word
Rd[31:0]  Zero Extend((Rm ROR (8 × n))[15:0])

41

Move Data between Registers

MOV r4, r5 ; Copy r5 to r4

MVN r4, r5 ; r4 = bitwise logical NOT of r5

MOV r1, r2, LSL #3 ; r1 = r2 << 3

MOV r0, PC ; Copy PC (r15) to r0

MOV r1, SP ; Copy SP (r14) to r1

MOV Rd  operand2

MVN Rd  NOT operand2

MRS Rd, spec_reg Move from special register to general register

MSR spec_reg, Rm Move from general register to special register

42

Move Immediate Number to Register

MOVW r0, #0x4321 ; r0 = 0x00004321

MOVT r0, #0x8765 ; r0 = 0x87654321

MOVW Rd, #imm16 Move Wide, Rd  #imm16

MOVT Rd, #imm16 Move Top, Rd  #imm16 << 16

MOV Rd, #const Move, Rd  const

• MOVW will zero the upper halfword

• MOVT won’t zero the lower halfword

MOVT r0, #0x8765 ; r0 = 0x8765xxxx

MOVW r0, #0x4321 ; r0 = 0x00004321

Order does matter!

Example: Load a 32-bit number into a register

Flexible 2nd Source Operand

43

ADD r0, r1, Operand2

 Add r0, r1, r2 ; r0 = r1 + r2

 Add r0, r1, #1 ; r0 = r1 + 1

 Add r0, r1, r2 LSL #2 ; r0 = r1 + r2 << 2

LSL,LSR,ASR,
ROR,RRX

Use Shifts To Implement Multiplication And Division

44

 Use Barrel shifter to speed up multiplication and division

 Shifting left 1 bit <=> multiplication by 2

 Examples:

 r1 = 9 × r0 = r0 + 8 × r0

 ADD r1, r0, r0, LSL #3 <=> MOV r2, #9 ; r2 = 9

 MUL r1, r0, r2 ; r1 = r0 * 9

ADD r1, r0, r0, LSR #3
; r1 = r0 + r0 >> 3 = r0 + r0/8 (unsigned)

ADD r1, r0, r0, ASR #3
; r1 = r0 + r0 >> 3 = r0 + r0/8 (signed)

MUL instruction takes only registers, not an immediate, so
“MUL r1, r0, #9” is invalid syntax

Barrel Shifter

Logical Shift Left (LSL) Arithmetic Shift Right (ASR)

Logical Shift Right (LSR) Rotate Right (ROR)

Rotate Right Extended (RRX)

45

Why is there rotate right but no

rotate left?

Rotate left can be replaced by a rotate

right with a different rotate offset.

Updating APSR Flags

46

N Z C V

R<31> IsZeroBit(R) carry unchanged

• If “S” is present, the instruction update flags. Otherwise, the flags are not updated.

• Let R be the final 32-bit result

LSLS

LSRS

RRXS

ASRS

RORS

Barrel Shifter: Explanations

47

 LSL (logical shift left): shifts left, fills zeros on the right; C gets the last bit shifted
out of bit 31. This is multiply by 2𝑛 .

 LSR (logical shift right): shifts right, fills zeros on the left; C gets the last bit shifted
out of bit 0. This is unsigned division by 2𝑛.

 ASR (arithmetic shift right): shifts right, fills the sign bit on the left to preserving
the sign; C gets the last bit shifted out of bit 0. This is signed division by 2𝑛 with
sign extension

 ROR (rotate right): rotates bits right with wraparound; bits leaving bit 0 re-enter
at bit 31, and C gets the bit hat was rotated from bit 0 to bit 31. This is a pure
rotation without data loss.

 RRX (rotate right extended): rotates right by one through the carry flag, treating
C as a 33rd bit; new bit 31 comes from old C, and C receives old bit 0.

Examples (shifting by 4)

48

Logical Shift Left (LSL)

Logical Shift Right (LSR)

Arithmetic Shift Right (ASR)

Examples (rotate)

49

Rotate Right (ROR) (rotate by 4)

Rotate Right Extended (RRX)

(can only rotate by 1)

Shift Operations

Logical Shift Left (LSL)

LSL {S} Rd, Rn, <shift>

50

moves all the bits of a register by n positions
to the left and inserts n zeros in the right end

0 ≤ n ≤ 31

Example 1

 ; r2 = 0x0000_0001 (#1)

 LSL r3, r2, #3

Example 2

 ; r2 = 0x0000_0003 (#3)

 LSL r3, r2, #2

Example 3

 ; r3 = 0xFFFF_0000 (#-65536)

 LSLS r2, r3, #1

; r3 = 0x0000_0008 (#8)

 ; 8 = 23 ∗ 1

; r3 = 0x0000_000C (#12)

 ; 12 = 22 ∗ 3

; r2 = 0xFFFE_0000 (#-131072)

; -131072 = 21 ∗ −65536

C=1, N=1, Z=0, V=not updated

Note: If the suffix S is used, the carry flag is updated to

the value of the last shifted bit.

Shift Operations

Logical Shift Right (LSR)

51

moves all the bits of a register by n positions
to the right and inserts n zeros in the left end

1 ≤ n ≤ 32

Example 1

 ; r2 = 0x0000_0010 (#16)

 LSR r1, r2, #3

Example 2

 ; r2 = 0x8000_0000 (# -2,147,483,648)

 LSR r2, r2, #2

Example 3

 ; r2 = 0x0000_0001 (#1)

 LSRS r3, r2, #1

LSR{S} Rd, Rn, <shift>

; r1 =0x0000_0002 (#2)

 ; 2 = 16/23

; r2 = 0x2000_0000 (# 536,870,912)

 ; 536,870,912 = -2,147,483,648/22

 with LSR sign bit is lost (if r2 is a signed
integer). So do not use logical shifts for signed integers!

; r3 = 0x0000_0000 (#0)

; 0= 1/21

C=1, N=0, Z=1, V=not updated

Note: If the suffix S is used, the carry flag is updated to

the value of the last shifted bit.

Shift Operations

52

moves all the bits of a register by n positions
to the right and inserts n copies of the sign bit
in the left end

1 ≤ n ≤ 32

Example 1

 ; r0 = 0xFFF8_0000 (-524288)

 ASR r1, r0, #3

Example 2

 ; r2 = 0x8000_0000 (-2,147,483,648)

 ASR r2, r2, #2

Example 3

 ; r2 = 0xFFFF_F001 (#-4095)

 ASRS r3, r2, #1

Arithmetic Shift Right (ASR)

ASR{S} Rd, Rn, <shift>

; r1 = 0xFFFF_0000 (-65536)

; -65536= −524288/23

; r2 = 0xE000_0000 (# -536,870,912)

 ; -536,870,912= -2,147,483,648/22

ASR is equivalent to signed integer division

; r3 = 0xFFFF_F800 (#-2048)

 ; -2048 = −4096/21

 C=1, N=1, Z=0, V=not updated

Note: If the suffix S is used, the carry flag is updated to the

value of the last shifted bit.

Rotate Operations

53

Circular shifts of all the bits of a register by n
positions to the right as if the right end of the
register is joined with its left end. The last shifted
bit updates the carry bit

1 ≤ n ≤ 31

Example 1

 ; r2 = 0x0008_0000

 ROR r2, r2, #10

Example 2: rotate left by 12 bits

 ; r0 = 0xF000_0000

 ROR r2, r0, #20

Example 3

 ;r2 = 0xF0F0_F001 (binary: 1111 0000 1111
0000 1111 0000 0000 0001)

 ;r1 = 0x0000_000E (rotate right by 14 bits)

 RORS r3, r2, r1

Rotate left by m bits is equivalent to rotate right

ROR by 32-m bits

Rotate Right (ROR)

ROR{S} Rd, Rn, <shift>

; r2 = 0x0000_0200

; r2 = 0x0000_0F00

; r3 = 0xC007_C3C3 (binary: 1100 0000 0000
0111 1100 0011 1100 0011)

C=1, N=1, Z=0, V=not updated

Note: If the suffix S is used, the carry flag is updated to the

value of the last shifted bit.

Rotate Operations

RRX{S} Rd, Rn

54

This is a one-bit rotate instruction.

Example 1

 ; r2 = 0x0008_0003, c = 1

 RRX r2, r2

Example 2:

 ; r2 = 0xF000_0001, c = 0

 RRX r1, r2

Example 3

 ; r2 = 0xF0F0_F001, c = 0

 RRXS r3,r2

Rotate Right Extended (RRX)

; r2 = 0x8004_0001, c = 1

; r1 = 0x7800_0000, c = 1

; r3 = 0x7878_7800, c = 1

C=1, N=0, Z=0, V= not updated

Note: the carry flag is updated by b0 only if the

suffix S is used, otherwise it keeps its original value

Barrel Shifter More Examples

55

 MOV r0, r0, LSL #1
 r0 = r0 * 2

 MOV r1, r1, LSR #2
 r1 = r1 / 4 (unsigned).

 MOV r2, r2, ASR #2
 r2 = r2 / 4 (signed).

 MOV r3, r3, ROR #16
 Swap the top and bottom halves of r3.

 ADD r4, r4, r4, LSL #4
 r4 = r4 * 17 (= r4 + r4 * 16)

 RSB r5, r5, r5, LSL #5
 r5 = r5 * 31 (= r5 * 32 – r5)

 Reverse-subtract using barrel shifter on 2nd operand

 SUB r5, r5, r5, LSR #5
 r5 = r5 – (r5 / 32)

 LDR r9, [r12, r8, LSL #2]
 Load a 32-bit word into r9 from the memory address computed as r12 + (r8 * 4)

SUB vs. RSB

56

 SUB instruction: SUB Rd, Rn, Operand2 performs Rd = Rn - Operand2

 RSB instruction: RSB Rd, Rn, Operand2 performs Rd = Operand2 – Rn

 There are equivalent:
 SUB R5, R3, #10 @ R5 = R3 - 10

 RSB R5, R3, #10 @ R5 = 10 - R3

 When to use RSB?

 Subtracting from constants, since constants can only appear as Operand2 in ARM instructions. For
example:
 RSB R2, R4, #1 means R2 = 1 - R4

 This cannot be done with SUB without first loading the constant into a register

 Negation Operations by subtracting from zero:
 RSB R0, R0, #0 effectively computes R0 = 0 - R0 = -R0

 Complex Operand2 Operations
 RSB is valuable when you want to perform operations on Operand2 before subtraction, such as shifting :

 RSB R1, R2, R3, LSL #1 computes R1 = (R3 << 1) - R2

 This allows you to shift a value and then subtract from it in a single instruction

Integer Array Access with LSL

57

 To calculate the address of element array[i] of 32-bit integers, we calculate (base

address of array) + i*4 for an array of words. For example:

 ADR r3, ARRAY @ load base address of ARRAY into r3 (ARRAY contains 4-byte ints)

 MOV r2, #6 @ Suppose we want to access ARRAY[6]

 MOV r4, r2, LSL #2 @ logical shift i’s value in r2 by 2 to multiply its value by 4

 ADD r5, r3, r4 @ finish calculation of the address of element array[i] in r5

 LDR r6, [r5] @ load value of array[i] into r6 using the address in r5

 Alternatively, we can perform this same address calculation with a single ADD:

 ADD r5, r3, r2, LSL #2 @ calculate address of array[i] in r5 with single ADD

 LDR r6, [r5] @ load value of array[i] into r4 using the address in r5

 Alternatively, ARM has some nice addressing modes to speedup array item access:

 LDR r6, [r3, r2, LSL #2]

Updates carry flag,

since ANDS does not update carry flag

Example 1: ANDS

58

LDR r0, =0xFFFFFF00
LDR r1, =0x00000001
ANDS r2, r1, r0, LSL #1

N = 0, Z = 1, C = 1, V = not updated

AND{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}
r0 = 0xFFFFFF00

r1 = 0x00000001

r0, LSL #1 = 0xFFFFFE00

r2 = r1 AND (r0 << 1) = 0x00000001 AND 0xFFFFFE00 = 0x00000000

ANDS sets flags:

Z = 1 (result r2 is zero)

N = 0 (bit 31 of result r2 is 0)

C is unaffected by ANDS, since logical operations don't affect overflow. It was set by previous shift “r0, LSL #1”

to be C=1

V is unaffected by either ANDS or shift (left unchanged from its previous value)

Note: LSL updates the C flag when it is used within the ANDS instruction, since ANDS does not update C.

Does NOT update carry flag,

since ADDS updates flags

Example 2: ADDS

59

LDR r0, =0xFFFFFF00
LDR r1, =0x00000001
ADDS r2, r1, r0, LSL #1

N = 1, Z = 0, C = 0, V = 0

ADD{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}
r0 = 0xFFFFFF00

r1 = 0x00000001

r0, LSL #1 = 0xFFFFFE00

r2 = r1 + (r0 << 1) = 0x00000001 + 0xFFFFFE00 = 0xFFFFFE01

ADDS sets flags:

Z = 0 (result r2 is non-zero)

N = 1 (bit 31 of result r2 is 1)

C = 0 (there is no carry out from bit 31 for unsigned addition, when adding 0x00000001 and 0xFFFFFE00)

V = 0 (there is no overflow for signed addition, when adding 0x00000001 and 0xFFFFFE00. Recall: adding a positive

(1) to a negative (0xFFFFFE00) cannot cause overflow.)

Note: LSL updates the C flag when it is used within the ADDS instruction. However, its update of the C flag is

overwritten by ADDS, or equivalently, we say that LSL does not update the C flag.

Notes on Shifts and Flags

60

 A standalone logical shift instruction without the S suffix (e.g. LSL R0, R0, #1) does
not update the condition flags. The S suffix (e.g. LSLS R0, R0, #1) makes the
instruction update NZCV.

 When a shift appears as part of a data-processing instruction that ends with S, the
processor first computes the shifted operand. During that computation, the shift
logic sets the carry (C) flag to the last bit shifted out. After that, the data-processing
instruction may itself update NZCV based on its arithmetic or logical result,
potentially overwriting the C flag.

 LSL can appear as a shift operator within another instruction, but LSLS cannot.

 Examples:
 LSL R0, R0, #1 ; standalone LSL — does NOT update flags

 LSLS R0, R0, #1 ; standalone LSLS — updates NZCV (S suffix)

 ANDS R2, R1, R0, LSL #1 ; valid — LSL forms part of operand, ANDS updates NZCV

 ANDS R2, R1, R0, LSLS #1 ; invalid — cannot embed 'LSLS' inside operand

Set a Bit in C

61

a |= (1 << k)

a = a | (1 << k)
or

a7 a6 a5 a4 a3 a2 a1 a0

0 0 1 0 0 0 0 0

a7 a6 1 a4 a3 a2 a1 a0

Example: k = 5

a

1 << k

a | (1 << k)

The other bits should not be affected.

Set a Bit in Assembly

62

a |= (1 << 5)

Solution 2:
MOV r4, #1 ; r4 = 1
ORR r0, r0, r4, LSL #5 ; r0 = r0 & not (1<<5)

Solution 1:
MOV r4, #1 ; r4 = 1
LSL r4, r4, #5 ; r4 = 1<<5
ORR r0, r0, r4 ; r0 = r0 | 1<<5

Solution 3:
ORR r0, r0, # (1 << 5) ; r0 = r0 & not (1<<5)

Clear a Bit in C

63

a &= ~(1<<k)

a7 a6 a5 a4 a3 a2 a1 a0

1 1 0 1 1 1 1 1

a7 a6 0 a4 a3 a2 a1 a0

Example: k = 5

a

~(1 << k)

a & ~(1<<k)

The other bits should not be affected.

Clear a Bit in Assembly

64

a &= ~(1<<5)

Solution 2:
MOV r4, #1 ; r4 = 1
MVN r4, r4, LSL #5 ; r4 = not (1<<5)
AND r0, r0, r4 ; r0 = r0 & not (1<<5)

Solution 3:
MOV r4, #1 ; r4 = 1
BIC r0, r0, r4, LSL #5 ; r0 = r0 & not (1<<5)

Solution 1:
MOV r4, #1 ; r4 = 1
LSL r4, r4, #5 ; r4 = 1<<5
MVN r4, r4 ; r4 = not (1<<5)
AND r0, r0, r4 ; r0 = r0 & not (1<<5)

Solution 4:
BIC r0, r0, # (1 << 5) ; r0 = r0 & not (1<<5)

Toggle a Bit in C

65

a ^= 1<<k

a7 a6 a5 a4 a3 a2 a1 a0

0 0 1 0 0 0 0 0

a7 a6 NOT(a5) A4 a3 a2 a1 a0

Example: k = 5

a

1 << k

a ^ (1<<k)

Without knowing the initial value, a bit can be toggled by XORing it with a “1”

Truth table of

Exclusive OR

m n m⊕n

0 0 0

0 1 1

1 0 1

1 1 0

Toggle a Bit in Assembly

66

a ^= 1<<5

Solution:
MOV r4, #1 ; r4 = 1
EOR r0, r0, r4, LSL #5 ; r0 = r0 ^ 1<<5

Here we can use MOVS and EORS instead of MOV and EOR, if the flags are

used by later instructions.

Mask

67

 Bits 8-11 and bits 16-23 are masked.

 All the rest bits are unmasked

1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Data =

16 031 23

Mask =

811

Masked bits Masked bitsUnmasked bits Unmasked bitsUnmasked bits

A value of 1 masks the corresponding data bit.

0xD8536AF5

0x00FF0F00

Clear all unmasked bits

68

1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Data =

16 031 23

Mask =

811

Masked bits Masked bitsUnmasked bits Unmasked bitsUnmasked bits

A value of 1 masks the corresponding data bit.

0xD8536AF5

0x00FF0F00

Data AND Mask 00 1 0 1 0 0 1 1 1 0 1 0

Extract masked bits only and clear all unmasked bits

Data &= Mask;

Clear all masked bits

69

1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Data =

16 031 23

Mask =

811

Masked bits Masked bitsUnmasked bits Unmasked bitsUnmasked bits

A value of 1 masks the corresponding data bit.

0xD8536AF5

0x00FF0F00

Data AND (not Mask) 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 10 0 0 0 0 0 0 0

Clear masked bits only and keep the rest unchanged

0 0 0 0

Data &= ~Mask;

Set all masked bits

70

1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Data =

16 031 23

Mask =

811

Masked bits Masked bitsUnmasked bits Unmasked bitsUnmasked bits

A value of 1 masks the corresponding data bit.

0xD8536AF5

0x00FF0F00

Data OR Mask 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 11 1 1 1 1 1 1 1 1 1 1 1

Set masked bits only and keep the rest unchanged

Data |= Mask;

Toggle all tasked bits

71

1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Data =

16 031 23

Mask =

811

Masked bits Masked bitsUnmasked bits Unmasked bitsUnmasked bits

A value of 1 masks the corresponding data bit.

0xD8536AF5

0x00FF0F00

Data EOR Mask 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1

Toggle mask bits only and keep the rest unchanged
EOR = Exclusive OR

Data ^= Mask;

Carry and Overflow Flags w/ Arithmetic Instructions

72

Carry flag C = 1 (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true result > 2n-1)

Carry flag C = 0 (Borrow flag = 1) upon an unsigned subtraction if the answer is wrong (true result <

0)

Overflow flag V =1 upon a signed addition or subtraction if the answer is wrong (true result > 2n-1-1 or

true result < -2n-1)

Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands with different

signs; Overflow cannot occur when adding 2 operands with different signs or when subtracting 2

operands with the same sign.

If two operands have same sign, and the result has opposite sign, then V = 1; else V = 0

Tip: Convert subtraction to addition with Two’s complement.

Unsigned Addition Unsigned Subtraction Signed Addition or

Subtraction

Carry flag true result > 2n-1 ➔

Carry flag=1

Borrow flag=0

(Result incorrect)

true result < 0 ➔

Carry flag=0

Borrow flag=1

(Result incorrect)

N/A

Overflow flag N/A N/A true result > 2n-1-1 or

true result < -2n-1

➔Overflow flag=1

(Result incorrect)
72

Example

73

0 1 1 0 0 0 1

0 0 1 1 0 1 0 1

0 0 0 1 1 0 0 1

0 1 0 0 1 1 1 0

Carry

Op1: 0x35

Op2: 0x19

Result: 0x4E

C = 0

V = 0

 For an 8-bit system, calculate 0x35 + 0x19, setting C and V flags

 ANS:

 Convert to binary and perform addition as in table

 C = 0 since there is no carry-out from MSB b7

 V = 0 since Op1, Op2 and result are all positive (sign bit = 0)

 In decimal (not needed for exam):

 Unsigned addition: 53 + 25 = 78 (result correct)

 Signed addition: 53 + 25 = 78 (result correct)

Example

74

1 1 1 1 1 1 1

0 0 1 1 0 1 0 1

0 1 0 1 1 0 1 1

1 0 0 1 0 0 0 0

Carry

Op1: 0x35

Op2: 0x5B

Result: 0x90

C = 0

V = 1

 For an 8-bit system, calculate 0x35 + 0x5B, setting C and V flags

 ANS:

 Convert to binary and perform addition as in table

 C = 0 since there is no carry-out from MSB b7

 V = 1 since Op1, Op2 are positive, result is negative

 In decimal:

 Unsigned addition: 53 + 91 = 144 (result correct)

 Signed addition: true sum = 53 + 91 = 144 → result = -112 (result incorrect, V=1)

Example

75

1 1 1 0 1 1 1

0 0 1 1 0 1 0 1

1 1 0 1 0 0 1 1

0 0 0 0 1 0 0 0

Carry

Op1: 0x35

Op2: 0xD3

Result: 0x08 (drop 1 in 0x108)

C = 1

V = 0

 For an 8-bit system, calculate 0x35 - 0x2D, setting C and V flags

 ANS:
 Convert to binary and perform addition as in table (another way is to perform subtraction in binary, but we

do not cover it here)

 0x2D = 00101101, its negation TC(00101101) = 11010011 = 0xD3

 C = 1 since there is carry-out from MSB b7

 V = 0 since Op1 is positive, Op2 is negative, result is negative

 Overflow cannot occur when adding 2 operands with different signs

 In decimal:

 Unsigned subtraction: 53 – 45 = 8 (result correct, C=1, Borrow Flag=0)

 Signed: 53 - 45 = 8 (result correct)

Example

76

0 0 1 1 1 1 0

1 0 0 1 1 1 1 0

1 1 0 1 0 0 1 1

0 1 1 1 0 0 0 1

Carry

Op1: 0x9E

Op2: 0xD3

Result: 0x71 (drop 1 in 0x171)

C = 1

V = 1

 For an 8-bit system, calculate 0x9E - 0x2D, setting C and V flags

 ANS:
 Convert to binary and perform addition as in table

 0x2D = 00101101, its negation TC(00101101) = 11010011 = 0xD3

 C = 1 since there is carry-out from MSB b7

 V = 1 since Op1, Op2 are both negative, result is positive

 In decimal:
 Unsigned subtraction: 158 − 45 = 113 (result correct, C=1, Borrow Flag=0)

 Signed subtraction: true sum = −98 − 45 = −143 → result = +113 (wrong, V=1)

77

ARM Immediate Values

78

 You can’t fit an arbitrary 32-bit value into a 32-bit instruction word. ARM
data processing instructions have 12 bits of space for values in one 32-bit
instruction word. This is arranged as a 4 rotate value and an 8 immediate
value. The real immediate = ROR(immediate8, rotate4 × 2).
 The 4-bit rotate value stored in bits 11-8 is multiplied by two giving a range of 0-

30 in steps of two.

 Using this scheme we can express immediate constants such as:
 0x000000FF

 0x00000FF0

 0xFF000000

 0xF000000F

 But these immediate constants are not possible:
 0x000001FE

 0xF000F000

 0x55550000

 0xFFFFFFFF

 An assembler will convert big values to the rotated form. Impossible values
will cause an error. For example, this instruction is invalid:
 AND R2, R0, #0xFFFFFF8F

12-bit immediate value

Encoding #4080 as Immediate

79

 ADD r1, r2, #4080
 4080 = 1111111110000 in binary

 You need to set values for rotate4 and
immediate8 to encode #4080. The encoding is:
 immediate8 = 0x000000FF (11111111 in binary)

 rotate4 = 1110 (14*2 = 28)

 ROR(0x000000FF, 28) = 0x00000FF0 (4080 in
decimal)
 rotate left by 4 = rotate right by 28

 Values such as #4079, #4081, #4082…cannot be
encoded exactly, since no matter how you set
immediate8, you only have 8 bits and you must
lose some 1’s in the original number. You can use
#4080 as an approximation for them
 #4079 = 111111101111

 #4081 = 111111110001

 #4082 = 111111110010

Loading Wide Values

80

 You can form constants wider than those available in a single instruction by

using a sequence of instructions to build up the constant. For example:

 MOV r2, #0x55 ; R2 = 0x00000055

 ORR r2, r2, r2, LSL #8 ; R2 = 0x00005555

 ORR r2, r2, r2, LSL #16 ; R2 = 0x55555555

 Or load the value from memory with pseudo-instruction LDR Rx,=const

 LDR r2, =0x55555555

 Or use MVN instead of MOV:

 The invalid instruction MOV r0,#0xFFFFFFFF can be implemented as MVN r0,#0

Pseudo instruction

81

 The ARMv7 pseudo instruction LDR r2, =0x55555555 is implemented by the
assembler to load a 32-bit immediate value large constants beyond the range of the
immediate field of a MOV/MVN instruction. It is translated into a PC-relative load
instruction that fetches the constant from a literal pool embedded in the code:
 The assembler first tries to generate a MOV or MVN instruction if the immediate value can

be encoded directly by those instructions.

 Since 0x55555555 cannot be encoded directly in a MOV or MVN, the assembler places this
value in a literal pool, which is a section of memory embedded in the code to hold constant
values.

 Then, the assembler generates a PC-relative LDR instruction that loads the value from the
literal pool address into the specified register (r2 in this case).

 The actual machine instruction looks like LDR r2, [pc, #offset], where the offset points to the
location of the 0x55555555 constant in the literal pool.

 This makes register value assignment flexible, but at the cost of incurring a memory access

 (In exam questions like Q3 in the midterm, you are not allowed to use the LDR
pseudo-instruction)

References

82

 Lesson 45b - Adders Carry and Overflow, LBEbooks

 https://www.youtube.com/watch?v=9cXe_T99nL4

 Lecture 25. Arithmetic and Logical Instructions

 https://www.youtube.com/watch?v=H-

vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25

 Lecture 26. Updating NZCV bit flags

 https://www.youtube.com/watch?v=SGJibM1D2_A&list=PLRJhV4hUhIymmp5CCeIFPy

xbknsdcXCc8&index=26

https://www.youtube.com/watch?v=9cXe_T99nL4
https://www.youtube.com/watch?v=9cXe_T99nL4
https://www.youtube.com/watch?v=H-vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25
https://www.youtube.com/watch?v=H-vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25
https://www.youtube.com/watch?v=H-vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25
https://www.youtube.com/watch?v=H-vOP2yRUj4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=25
https://www.youtube.com/watch?v=SGJibM1D2_A&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=26
https://www.youtube.com/watch?v=SGJibM1D2_A&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=26
https://www.youtube.com/watch?v=SGJibM1D2_A&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=26

	Slide 1: Z. Gu
	Slide 2: Adding Two Integers
	Slide 3: Adding Two Integers
	Slide 4: Adding Two Integers
	Slide 5: Adding Two Integers
	Slide 6: Adding Two Integers
	Slide 7: Adding Two Integers
	Slide 8: Example Arithmetic Instructions
	Slide 9: Example Logical Instructions
	Slide 10: Example Shift & Rotate Instructions
	Slide 11: Example Data Transfer Instructions
	Slide 12: Overview: Arithmetic and Logic Instructions
	Slide 13: Example: Add
	Slide 14: Commonly Used Arithmetic Operations
	Slide 15: ARM Programming Model
	Slide 16: Program Status Register (PSR)
	Slide 17: NZCV Flags in xPSR
	Slide 18: Updating NZCV flags in PSR
	Slide 19: ADD vs ADDS
	Slide 20: Suffix S: Update Flags
	Slide 21: Example: 64-bit Addition
	Slide 22: Example: 64-bit Addition
	Slide 23: Example: 64-bit Subtraction
	Slide 24: Example: 96-bit Subtraction
	Slide 25: Example: Short Multiplication and Division
	Slide 26: Example: Long Multiplication
	Slide 27: Bitwise Logic
	Slide 28: Example: AND r2, r0, r1
	Slide 29: Example: ORR r2, r0, r1
	Slide 30: Example: BIC r2, r0, r1
	Slide 31: Example: BFC and BFI
	Slide 32: Bit Operators (&, |, ~) vs Boolean Operators (&& ,||, !)
	Slide 33: Saturating Instruction: SSAT and USAT
	Slide 34: Example of Saturation
	Slide 35: Reverse Order
	Slide 36: Reverse Order
	Slide 37: Reverse Order
	Slide 38: Reverse Order
	Slide 39: Sign and Zero Extension
	Slide 40: Sign and Zero Extension
	Slide 41: Move Data between Registers
	Slide 42: Move Immediate Number to Register
	Slide 43: Flexible 2nd Source Operand
	Slide 44: Use Shifts To Implement Multiplication And Division
	Slide 45: Barrel Shifter
	Slide 46: Updating APSR Flags
	Slide 47: Barrel Shifter: Explanations
	Slide 48: Examples (shifting by 4)
	Slide 49: Examples (rotate)
	Slide 50: Shift Operations
	Slide 51: Shift Operations
	Slide 52: Shift Operations
	Slide 53: Rotate Operations
	Slide 54: Rotate Operations
	Slide 55: Barrel Shifter More Examples
	Slide 56: SUB vs. RSB
	Slide 57: Integer Array Access with LSL
	Slide 58: Example 1: ANDS
	Slide 59: Example 2: ADDS
	Slide 60: Notes on Shifts and Flags
	Slide 61: Set a Bit in C
	Slide 62: Set a Bit in Assembly
	Slide 63: Clear a Bit in C
	Slide 64: Clear a Bit in Assembly
	Slide 65: Toggle a Bit in C
	Slide 66: Toggle a Bit in Assembly
	Slide 67: Mask
	Slide 68: Clear all unmasked bits
	Slide 69: Clear all masked bits
	Slide 70: Set all masked bits
	Slide 71: Toggle all tasked bits
	Slide 72: Carry and Overflow Flags w/ Arithmetic Instructions
	Slide 73: Example
	Slide 74: Example
	Slide 75: Example
	Slide 76: Example
	Slide 77
	Slide 78: ARM Immediate Values
	Slide 79: Encoding #4080 as Immediate
	Slide 80: Loading Wide Values
	Slide 81: Pseudo instruction
	Slide 82: References

