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ARM Processors
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 ARM Cortex-A family:

 Applications processors 

 Support OS and high-performance applications

 Such as Smartphones, Smart TV

 ARM Cortex-R family:

 Real-time processors with high performance and 

high reliability

 Support real-time processing and mission-critical 

control

 ARM Cortex-M family:

 Microcontroller

 Cost-sensitive, support SoC 
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Instruction Sets
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 Instructions: 

 Encoded to binary machine code by 

assembler

 Executed at runtime by hardware 

 Early 32-bit ARM vs Thumb/Thumb-2

 Early ARM has larger power consumption and 

larger program size

 16-bit Thumb, first used in ARM7TDMI 

processors in 1995

 Thumb-2: a mix of 16-bit (high code density) 

and 32-bit (high performance) instructions

 ARM Cortex-M:

 Subset of Thumb-2



ARM Processors
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Processor Registers
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 Fastest way to read and write

 Registers are within the processor chip

 Each register has 32 bits

 ARM Cortex-M4 has

 Register Bank: R0 – R15

 R0-R12: 13 general-purpose registers

 R13: Stack pointer (Shadow of MSP or 
PSP)

 R14: Link register (LR)

 R15: Program counter (PC)

 Special registers 

 xPSR, BASEPRI, PRIMASK, etc

Register Bank Special Registers



Processor Registers
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Register Bank Special Registers

 Low Registers (R0 – R7)

 Can be accessed by any instruction

 High Register (R8 – R12)

 Can only be accessed by some instructions

 Stack Pointer (R13)

 Cortex-M4 supports two stacks 

 Main SP (MSP) for privileged access (e.g. 
exception handler)

 Process SP (PSP) for application access

 Program Counter (R15)

 Memory address of the current instruction



Processor Registers vs Peripheral Registers
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Processor Registers vs Peripheral Registers
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 Processor can directly access processor registers

 ADD r3,r1,r0   ; r3 = r1 + r0

 Processor access peripheral registers via memory mapped I/O

 Each peripheral register is assigned a fixed memory address at the chip design stage

 Processor treats peripherals registers the same as data memory

 Processor uses load/store instructions to read from/write to memory (to be covered 

in future lectures)



C vs Assembly

11



Load-Modify-Store
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Translating C to assembly

• Load values from memory into registers

• Modify value by applying arithmetic operations

• Store result from register to memory 



Load-Modify-Store
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ARM Cortex-M4 Organization (STM32L4)
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Assembly Instructions
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 Arithmetic and logic

 Add, Subtract, Multiply, Divide, Shift, Rotate

 Data movement

 Load, Store, Move

 Compare and branch

 Compare, Test, If-then, Branch, compare and branch on zero

 Miscellaneous

 Breakpoints, wait for events, interrupt enable/disable, data memory barrier, data 

synchronization barrier



Instruction Format: Labels

16

label mnemonic operand1, operand2, operand3 ; comments



Instruction Format: Labels
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label mnemonic operand1, operand2, operand3 ; comments

 Place marker, marking the memory address of the current instruction

 Used by branch instructions to implement if-then or goto

 Must be unique



Instruction Format: Mnemonic
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label mnemonic operand1, operand2, operand3 ; comments

 The name of the instruction

 Operation to be performed by processor core



Instruction Format: Operands
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label mnemonic operand1, operand2, operand3 ; comments

 Operands

 Registers

 Constants (called immediate values)

 Number of operands varies

 No operands:      DSB

 One operand:      BX LR

 Two operands:     CMP R1, R2

 Three operands: ADD R1, R2, R3

 Four operands:    MLA R1, R2, R3, R4

 Normally

 operand1 is the destination register, and operand2 and operand3 are source operands. 

 operand2 is usually a register, and the first source operand

 operand3 may be a register, an immediate number, a register shifted to a constant number of bits, or a register 

plus an offset (used for memory access). 



Instruction Format: Comments
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label mnemonic operand1, operand2, operand3 ; comments

 Everything after the semicolon (;) is a comment

 Explain programmers’ intentions or assumptions 



ARM Instruction Format
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label mnemonic operand1, operand2, operand3 ; comments

target   ADD r0, r2, r3  ; r0 = r2 + r3

label mnemonic commentdestination 

operand

2nd source 

operand

1st source 

operand



ARM Instruction Format
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label mnemonic operand1, operand2, operand3 ; comments

Examples:  Variants of the ADD instruction

ADD r1, r2, r3    ; r1 = r2 + r3

ADD r1, r3        ; r1 = r1 + r3

ADD r1, r2, #4    ; r1 = r2 + 4

ADD r1, #15       ; r1 = r1 + 15



Example Assembly Program: 

Copying a String
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Example Assembly Program: 

Copying a String
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Assembly Directives
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AREA Make a new block of data or code

ENTRY Declare an entry point where the program execution starts

ALIGN Align data or code to a particular memory boundary

DCB Allocate one or more bytes (8 bits) of data

DCW Allocate one or more half-words (16 bits) of data

DCD Allocate one or more words (32 bits) of data

SPACE Allocate a zeroed block of memory with a particular size

FILL Allocate a block of memory and fill with a given value.

EQU Give a symbol name to a numeric constant

RN Give a symbol name to a register

EXPORT Declare a symbol and make it referable by other source files

IMPORT Provide a symbol defined outside the current source file

INCLUDE/GET Include a separate source file within the current source file

PROC Declare the start of a procedure

ENDP Designate the end of a procedure

END Designate the end of a source file

 Directives are NOT instructions. Instead, they are used 

to provide key information for assembly.



Directive:  AREA
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 AREA myData, DATA, READWRITE ; Define a data section
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers

  AREA myCode, CODE, READONLY  ; Define a code section
  EXPORT  __main               ; Make __main visible to the linker
  ENTRY                        ; Mark the entrance to the entire program
__main  PROC                         ; PROC marks the begin of a subroutine   
  ...                          ; Assembly program starts here.
  ENDP                         ; Mark the end of a subroutine
  END                          ; Mark the end of a program

 The AREA directive indicates to the assembler the start of a new data or code section. 

 Areas are the basic independent and indivisible unit processed by the linker. 

 Each area is identified by a name and areas within the same source file cannot share the 

same name.  

 An assembly program must have at least one code area. 

 By default, a code area can only be read (READONLY) and a data area may be read from 

and written to (READWRITE). 



Directive:  ENTRY
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 AREA myData, DATA, READWRITE ; Define a data section
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers

  AREA myCode, CODE, READONLY  ; Define a code section
  EXPORT  __main               ; Make __main visible to the linker
  ENTRY                        ; Mark the entrance to the entire program
__main  PROC                         ; PROC marks the begin of a subroutine   
  ...                          ; Assembly program starts here.
  ENDP                         ; Mark the end of a subroutine
  END                          ; Mark the end of a program

 The ENTRY directive marks the start point to execute a program. 

 There must be exactly one ENTRY directive in an application, no matter how many 

source files the application has. 



Directive:  END
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 AREA myData, DATA, READWRITE ; Define a data section
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers

  AREA myCode, CODE, READONLY  ; Define a code section
  EXPORT  __main               ; Make __main visible to the linker
  ENTRY                        ; Mark the entrance to the entire program
__main  PROC                         ; PROC marks the begin of a subroutine   
  ...                          ; Assembly program starts here.
  ENDP                         ; Mark the end of a subroutine
  END                          ; Mark the end of a program

 The END directive indicates the end of a source file. 

 Each assembly program must end with this directive.



Directive:  PROC and ENDP
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 AREA myData, DATA, READWRITE ; Define a data section
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers

  AREA myCode, CODE, READONLY  ; Define a code section
  EXPORT  __main               ; Make __main visible to the linker
  ENTRY                        ; Mark the entrance to the entire program
__main  PROC                         ; PROC marks the begin of a subroutine   
  ...                          ; Assembly program starts here.
  ENDP                         ; Mark the end of a subroutine
  END                          ; Mark the end of a program

 PROC and ENDP are to mark the start and end of a function (also called subroutine or 

procedure). 

 A single source file can contain multiple subroutines, with each of them defined by a pair 

of PROC and ENDP. 

 PROC and ENDP cannot be nested. We cannot define a function within another function.



Directive:  EXPORT and IMPORT
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 AREA myData, DATA, READWRITE ; Define a data section
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers

  AREA myCode, CODE, READONLY  ; Define a code section
  EXPORT  __main               ; Make __main visible to the linker
  ENTRY                        ; Mark the entrance to the entire program
__main  PROC ; PROC marks the begin of a subroutine   
  ...                          ; Assembly program starts here.
  ENDP                         ; Mark the end of a subroutine
  END                          ; Mark the end of a program

 The EXPORT declares a symbol and makes this symbol visible to the linker. 

 The IMPORT gives the assembler a symbol that is not defined locally in the current 

assembly file.  The symbol must be defined in another file.

 The IMPORT is similar to the “extern” keyword in C.



Directive:  Defining Data
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Directive Description Memory Space

DCB Define Constant Byte Reserve 8-bit values

DCW Define Constant Half-word Reserve 16-bit values

DCD Define Constant Word Reserve 32-bit values

DCQ Define Constant Reserve 64-bit values

DCFS Define single-precision 

floating-point numbers

Reserve 32-bit values

DCFD Define double-precision 

floating-point numbers

Reserve 64-bit values

SPACE Defined Zeroed Bytes Reserve a number of zeroed bytes

FILL Defined Initialized Bytes Reserve and fill each byte with a value



Directive:  Defining Data
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AREA   myData, DATA, READWRITE

hello   DCB   "Hello World!",0  ; Allocate a string that is null-terminated

dollar  DCB   2,10,0,200        ; Allocate integers ranging from -128 to 255

scores  DCD   2,3.5,-0.8,4.0    ; Allocate 4 words containing decimal values

miles   DCW   100,200,50,0      ; Allocate integers between –32768 and 65535

Pi_S    DCFS  3.14              ; Allocate a single-precision floating number

Pi_D    DCFD  3.14              ; Allocate a double-precision floating number

p       SPACE 255               ; Allocate 255 bytes of zeroed memory space

f       FILL  20,0xFF,1         ; Allocate 20 bytes and set each byte to 0xFF

binary  DCB   2_01010101        ; Allocate a byte in binary

octal   DCB   8_73              ; Allocate a byte in octal

char    DCB   ‘A’               ; Allocate a byte initialized to ASCII of ‘A’



Directive: EQU and RN
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 The EQU directive associates a symbolic name to a numeric constant. 

 Similar to the use of #define in a C program, the EQU can be used to define a 

constant in an assembly code. 

 The RN directive gives a symbolic name to a specific register. 

; Interrupt Number Definition (IRQn)
BusFault_IRQn   EQU  -11        ; Cortex-M3 Bus Fault Interrupt                       
SVCall_IRQn     EQU   -5        ; Cortex-M3 SV Call Interrupt                        
PendSV_IRQn     EQU   -2        ; Cortex-M3 Pend SV Interrupt                        
SysTick_IRQn    EQU   -1        ; Cortex-M3 System Tick Interrupt

Dividend        RN    6         ; Defines dividend for register 6
Divisor         RN    5         ; Defines divisor for register 5



Directive: ALIGN
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AREA example, CODE, ALIGN = 3  ; Memory address begins at a multiple of 8
    ADD r0, r1, r2                 ; Instructions start at a multiple of 8

    AREA myData, DATA, ALIGN = 2   ; Address starts at a multiple of four
a   DCB 0xFF                       ; The first byte of a 4-byte word
    ALIGN 4, 3                     ; Align to the last byte (3) of a word (4)
b   DCB 0x33                       ; Set the fourth byte of a 4-byte word
c   DCB 0x44                       ; Add a byte to make next data misaligned
    ALIGN                          ; Force the next data to be aligned
d   DCD 12345                      ; Skip three bytes and store the word



Directive: INCLUDE or GET
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 The INCLUDE or GET directive is to include an assembly source file within another 

source file. 

 It is useful to include constant symbols defined by using EQU and stored in a 

separate source file. 

 INCLUDE constants.s       ; Load Constant Definitions
  AREA main, CODE, READONLY
  EXPORT  __main            
  ENTRY                     
__main  PROC                      
  ...
  ENDP                      
  END 
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