
Z. Gu

Spring 2026

Embedded Systems with ARM Cortex-M

Microcontrollers in Assembly Language and C

Chapter 3

ARM Instruction Set Architecture

1 Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

History

2

ARMv3 ARMv4/v4T ARMv5 ARMv6 ARMv7 ARMv8

Thumb/

Thumb-2/

ARM32Thumb/ARM32

1993 1995 1998 2002 2004 2014

ARMv2ARMv1

1985 1986

Thumb/

Thumb-2/

ARM32/

ARM64

M4A8/A9

ARM9

TDMI

ARM7

TDMI
ARM1 ARM2 ARM6

M3

M7
ARM

11

ARM

946E

ARM

10 R4

M0M1

2010

A15/A7M0+

2009 2022

ARMv9

A510/A710

M23/M33 M35P M55

2016 2018

A55 R82R7

Arm Cortex

M85

ARM Processors

3

 ARM Cortex-A family:

 Applications processors

 Support OS and high-performance applications

 Such as Smartphones, Smart TV

 ARM Cortex-R family:

 Real-time processors with high performance and

high reliability

 Support real-time processing and mission-critical

control

 ARM Cortex-M family:

 Microcontroller

 Cost-sensitive, support SoC

ARM Family

4

v1 v2 v3 v4T v5 v6

ARM1 ARM2
Cortex

M0

Cortex

M0+

Cortex

M1

ARM-6 ARM-7T ARM-9

ARM-10ARM-7

ARM-11

v6-M v7-M v7-A v7-Rv8-M v8-A v8-R

Cortex

M3

Cortex

M4

Cortex

M7

Cortex

A5

Cortex

A7

Cortex

A8

Cortex

A9

Cortex

A12

Cortex

A15

Cortex

A17

Cortex

A35

Cortex

A53

Cortex

A76

Cortex

A78

Cortex

R4

Cortex

R5

Cortex

R7

Cortex

R8

Cortex

M23

Cortex

M33

Cortex

M35P

Cortex

M55

Cortex

M85

Cortex

R52

Cortex

R82

v9-A

Cortex

X2

Cortex

A710

Cortex

X1

Cortex

A715

Cortex

A510

Cortex

X3

M: Microcontroller. A: Application. R: Real-time

Neoverse

N2

Neoverse

N1

32-bit A32

16/32-bit T32

(i.e., Thumb-2)

T32, A32 and A64

A32 &

16-bit Thumb-1
A32 &

32-bit

Thumb-2

16-bit

Thumb-1

T32 &

A32

ARM3

v4

ARM-v8

Instruction Sets

5

 Instructions:

 Encoded to binary machine code by

assembler

 Executed at runtime by hardware

 Early 32-bit ARM vs Thumb/Thumb-2

 Early ARM has larger power consumption and

larger program size

 16-bit Thumb, first used in ARM7TDMI

processors in 1995

 Thumb-2: a mix of 16-bit (high code density)

and 32-bit (high performance) instructions

 ARM Cortex-M:

 Subset of Thumb-2

ARM Processors

6

Armv6-M

Cortex-M7

Cortex-M4

Cortex-M3

Cortex-M1

Cortex-M0+

Cortex-M0

Armv7-M

Cortex-M85

Cortex-M55

Cortex-M35P

Cortex-M33

Cortex-M23

Armv8-M

Performance

(MIPS/MHz)

Thumb-1

Thumb-2,

DSP, FPU

Thumb-2, DSP,

FPU, TrustZone,

Helium

Mainline

Baseline

Processor Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low

Registers

High

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

7

 Fastest way to read and write

 Registers are within the processor chip

 Each register has 32 bits

 ARM Cortex-M4 has

 Register Bank: R0 – R15

 R0-R12: 13 general-purpose registers

 R13: Stack pointer (Shadow of MSP or
PSP)

 R14: Link register (LR)

 R15: Program counter (PC)

 Special registers

 xPSR, BASEPRI, PRIMASK, etc

Register Bank Special Registers

Processor Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low

Registers

High

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

8

Register Bank Special Registers

 Low Registers (R0 – R7)

 Can be accessed by any instruction

 High Register (R8 – R12)

 Can only be accessed by some instructions

 Stack Pointer (R13)

 Cortex-M4 supports two stacks

 Main SP (MSP) for privileged access (e.g.
exception handler)

 Process SP (PSP) for application access

 Program Counter (R15)

 Memory address of the current instruction

Processor Registers vs Peripheral Registers

9

ARM Cortex-M Core

Registers

ALU

Control Unit

Registers

GPIO A

Registers

GPIO B

Registers

UART1

Registers

SPI

Registers

ADC

Processor Registers vs Peripheral Registers

10

 Processor can directly access processor registers

 ADD r3,r1,r0 ; r3 = r1 + r0

 Processor access peripheral registers via memory mapped I/O

 Each peripheral register is assigned a fixed memory address at the chip design stage

 Processor treats peripherals registers the same as data memory

 Processor uses load/store instructions to read from/write to memory (to be covered

in future lectures)

C vs Assembly

11

Load-Modify-Store

12

Translating C to assembly

• Load values from memory into registers

• Modify value by applying arithmetic operations

• Store result from register to memory

Load-Modify-Store

13

ARM Cortex-M4 Organization (STM32L4)

14

System-on-a-chip

Instructions

System Bus

In
te

rr
u

p
t

C
o

n
tr

o
ll
e

r

(N
V

IC
)

Memory

Protection

Unit (MPU)

Instruction Bus

Data Bus

Interrupts

`

M
e

m
o

ry

In
te

rf
a

c
e

Cortex-M4 Processor Core

SW/JTAG

In
s

tr
u

c
ti

o
n

 F
e

tc
h

 U
n

it

In
s

tr
u

c
ti

o
n

 D
e

c
o

d
e

r

A
L

U

P
ro

c
e

s
s

o
r

C
o

n
tr

o
l

U
n

it

T
ra

c
e

 &
 D

e
b

u
g

In
te

rf
a

c
e

Flash

Memory

AHB to APB Bridge 1

AHB to APB Bridge 2

APB1

ABP2

LCD

TIM2

TIM3

TIM4

TIM6

TIM7

USART2

USART3

USART4

USART5

LPUART1

SPI2

SPI3

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

USB 2.0 FS

bxCAN

SWPMI1

LPTIM1

LPTIM2

OpAmp

GPIO Port A

GPIO Port B

GPIO Port C

GPIO Port D

GPIO Port E

GPIO Port F

GPIO Port G

GPIO Port H

EXTI

WKUP

TIM1/PWM

TIM8/PWM

TIM15

TIM16

TIM17

USART1

SPI1

SAI1

SAI2

DFSDM

COMP1

COMP2

Firewall

A
H

B
 B

u
s
 M

a
tr

ix

Direction Memory

Access (DMA)

Controllers

Data
SRAM

Advanced

Peripheral Bus

(APB)

Advanced High-

performance Bus

(AHB)
F

P
U

 (
o

p
ti

o
n

a
l)

S
in

g
le

 I
n

s
tr

u
c

ti
o

n

M
u

lt
ip

le
 D

a
ta

 (
D

S
P

)

Assembly Instructions

15

 Arithmetic and logic

 Add, Subtract, Multiply, Divide, Shift, Rotate

 Data movement

 Load, Store, Move

 Compare and branch

 Compare, Test, If-then, Branch, compare and branch on zero

 Miscellaneous

 Breakpoints, wait for events, interrupt enable/disable, data memory barrier, data

synchronization barrier

Instruction Format: Labels

16

label mnemonic operand1, operand2, operand3 ; comments

Instruction Format: Labels

17

label mnemonic operand1, operand2, operand3 ; comments

 Place marker, marking the memory address of the current instruction

 Used by branch instructions to implement if-then or goto

 Must be unique

Instruction Format: Mnemonic

18

label mnemonic operand1, operand2, operand3 ; comments

 The name of the instruction

 Operation to be performed by processor core

Instruction Format: Operands

19

label mnemonic operand1, operand2, operand3 ; comments

 Operands

 Registers

 Constants (called immediate values)

 Number of operands varies

 No operands: DSB

 One operand: BX LR

 Two operands: CMP R1, R2

 Three operands: ADD R1, R2, R3

 Four operands: MLA R1, R2, R3, R4

 Normally

 operand1 is the destination register, and operand2 and operand3 are source operands.

 operand2 is usually a register, and the first source operand

 operand3 may be a register, an immediate number, a register shifted to a constant number of bits, or a register

plus an offset (used for memory access).

Instruction Format: Comments

20

label mnemonic operand1, operand2, operand3 ; comments

 Everything after the semicolon (;) is a comment

 Explain programmers’ intentions or assumptions

ARM Instruction Format

21

label mnemonic operand1, operand2, operand3 ; comments

target ADD r0, r2, r3 ; r0 = r2 + r3

label mnemonic commentdestination

operand

2nd source

operand

1st source

operand

ARM Instruction Format

22

label mnemonic operand1, operand2, operand3 ; comments

Examples: Variants of the ADD instruction

ADD r1, r2, r3 ; r1 = r2 + r3

ADD r1, r3 ; r1 = r1 + r3

ADD r1, r2, #4 ; r1 = r2 + 4

ADD r1, #15 ; r1 = r1 + 15

Example Assembly Program:

Copying a String

23

Example Assembly Program:

Copying a String

24

Assembly Directives

25

AREA Make a new block of data or code

ENTRY Declare an entry point where the program execution starts

ALIGN Align data or code to a particular memory boundary

DCB Allocate one or more bytes (8 bits) of data

DCW Allocate one or more half-words (16 bits) of data

DCD Allocate one or more words (32 bits) of data

SPACE Allocate a zeroed block of memory with a particular size

FILL Allocate a block of memory and fill with a given value.

EQU Give a symbol name to a numeric constant

RN Give a symbol name to a register

EXPORT Declare a symbol and make it referable by other source files

IMPORT Provide a symbol defined outside the current source file

INCLUDE/GET Include a separate source file within the current source file

PROC Declare the start of a procedure

ENDP Designate the end of a procedure

END Designate the end of a source file

 Directives are NOT instructions. Instead, they are used

to provide key information for assembly.

Directive: AREA

26

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The AREA directive indicates to the assembler the start of a new data or code section.

 Areas are the basic independent and indivisible unit processed by the linker.

 Each area is identified by a name and areas within the same source file cannot share the

same name.

 An assembly program must have at least one code area.

 By default, a code area can only be read (READONLY) and a data area may be read from

and written to (READWRITE).

Directive: ENTRY

27

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The ENTRY directive marks the start point to execute a program.

 There must be exactly one ENTRY directive in an application, no matter how many

source files the application has.

Directive: END

28

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The END directive indicates the end of a source file.

 Each assembly program must end with this directive.

Directive: PROC and ENDP

29

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 PROC and ENDP are to mark the start and end of a function (also called subroutine or

procedure).

 A single source file can contain multiple subroutines, with each of them defined by a pair

of PROC and ENDP.

 PROC and ENDP cannot be nested. We cannot define a function within another function.

Directive: EXPORT and IMPORT

30

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The EXPORT declares a symbol and makes this symbol visible to the linker.

 The IMPORT gives the assembler a symbol that is not defined locally in the current

assembly file. The symbol must be defined in another file.

 The IMPORT is similar to the “extern” keyword in C.

Directive: Defining Data

31

Directive Description Memory Space

DCB Define Constant Byte Reserve 8-bit values

DCW Define Constant Half-word Reserve 16-bit values

DCD Define Constant Word Reserve 32-bit values

DCQ Define Constant Reserve 64-bit values

DCFS Define single-precision

floating-point numbers

Reserve 32-bit values

DCFD Define double-precision

floating-point numbers

Reserve 64-bit values

SPACE Defined Zeroed Bytes Reserve a number of zeroed bytes

FILL Defined Initialized Bytes Reserve and fill each byte with a value

Directive: Defining Data

32

AREA myData, DATA, READWRITE

hello DCB "Hello World!",0 ; Allocate a string that is null-terminated

dollar DCB 2,10,0,200 ; Allocate integers ranging from -128 to 255

scores DCD 2,3.5,-0.8,4.0 ; Allocate 4 words containing decimal values

miles DCW 100,200,50,0 ; Allocate integers between –32768 and 65535

Pi_S DCFS 3.14 ; Allocate a single-precision floating number

Pi_D DCFD 3.14 ; Allocate a double-precision floating number

p SPACE 255 ; Allocate 255 bytes of zeroed memory space

f FILL 20,0xFF,1 ; Allocate 20 bytes and set each byte to 0xFF

binary DCB 2_01010101 ; Allocate a byte in binary

octal DCB 8_73 ; Allocate a byte in octal

char DCB ‘A’ ; Allocate a byte initialized to ASCII of ‘A’

Directive: EQU and RN

33

 The EQU directive associates a symbolic name to a numeric constant.

 Similar to the use of #define in a C program, the EQU can be used to define a

constant in an assembly code.

 The RN directive gives a symbolic name to a specific register.

; Interrupt Number Definition (IRQn)
BusFault_IRQn EQU -11 ; Cortex-M3 Bus Fault Interrupt
SVCall_IRQn EQU -5 ; Cortex-M3 SV Call Interrupt
PendSV_IRQn EQU -2 ; Cortex-M3 Pend SV Interrupt
SysTick_IRQn EQU -1 ; Cortex-M3 System Tick Interrupt

Dividend RN 6 ; Defines dividend for register 6
Divisor RN 5 ; Defines divisor for register 5

Directive: ALIGN

34

AREA example, CODE, ALIGN = 3 ; Memory address begins at a multiple of 8
 ADD r0, r1, r2 ; Instructions start at a multiple of 8

 AREA myData, DATA, ALIGN = 2 ; Address starts at a multiple of four
a DCB 0xFF ; The first byte of a 4-byte word
 ALIGN 4, 3 ; Align to the last byte (3) of a word (4)
b DCB 0x33 ; Set the fourth byte of a 4-byte word
c DCB 0x44 ; Add a byte to make next data misaligned
 ALIGN ; Force the next data to be aligned
d DCD 12345 ; Skip three bytes and store the word

Directive: INCLUDE or GET

35

 The INCLUDE or GET directive is to include an assembly source file within another

source file.

 It is useful to include constant symbols defined by using EQU and stored in a

separate source file.

 INCLUDE constants.s ; Load Constant Definitions
 AREA main, CODE, READONLY
 EXPORT __main
 ENTRY
__main PROC
 ...
 ENDP
 END

	Slide 1: Z. Gu
	Slide 2: History
	Slide 3: ARM Processors
	Slide 4: ARM Family
	Slide 5: Instruction Sets
	Slide 6: ARM Processors
	Slide 7: Processor Registers
	Slide 8: Processor Registers
	Slide 9: Processor Registers vs Peripheral Registers
	Slide 10: Processor Registers vs Peripheral Registers
	Slide 11: C vs Assembly
	Slide 12: Load-Modify-Store
	Slide 13: Load-Modify-Store
	Slide 14: ARM Cortex-M4 Organization (STM32L4)
	Slide 15: Assembly Instructions
	Slide 16: Instruction Format: Labels
	Slide 17: Instruction Format: Labels
	Slide 18: Instruction Format: Mnemonic
	Slide 19: Instruction Format: Operands
	Slide 20: Instruction Format: Comments
	Slide 21: ARM Instruction Format
	Slide 22: ARM Instruction Format
	Slide 23: Example Assembly Program: Copying a String
	Slide 24: Example Assembly Program: Copying a String
	Slide 25: Assembly Directives
	Slide 26: Directive: AREA
	Slide 27: Directive: ENTRY
	Slide 28: Directive: END
	Slide 29: Directive: PROC and ENDP
	Slide 30: Directive: EXPORT and IMPORT
	Slide 31: Directive: Defining Data
	Slide 32: Directive: Defining Data
	Slide 33: Directive: EQU and RN
	Slide 34: Directive: ALIGN
	Slide 35: Directive: INCLUDE or GET

