Embedded Systems with ARM Cortex-M
Microcontrollers in Assembly Language and C

Chapter 3
ARM Instruction Set Architecture

Z. Gu

Spring 2026

| Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

History
/ Thumb/
Thumb-2/
Thumb/ ARM32/
Thumb-2/ ARM64
Thumb/ARM32 ARM32
ARMv1 ARMv2 ARMv3 ARMv4/Nv4T ARMV5 ARMV6 ARMv7 ARMVS ARMV9
1085 1986 1993 1995 1098 2002 2004 2009 2010 2014 2016 2018 202>
* * * * * * * M55TM85
ARM1 ARM2 ARM6 ARM7 ARM ARM ARM M3T M1 MOTMOJ' TA15/A7TM23/M33TM35PT
TDMI 946E 10 11 R4 AS8/A9 M4 R7 M7 A55 R82 A510/A710
_)
ARM9 N
TDMI Arm Cortex

ARM Processors
» ARM Cortex-A family:

» Applications processors
» Support OS and high-performance applications
» Such as Smartphones, Smart TV

» ARM Cortex-R family:

» Real-time processors with high performance and
high reliability

» Support real-time processing and mission-critical
control

» ARM Cortex-M family:

» Microcontroller

» Cost-sensitive, support SoC

ARM Family

Cort
(o 71328

16/32-bit T32
(i.e., Thumb-2)

Cortex
M85

A32
Cortex
A15
Cortex
A12

T32, A32 and A64
Neoverse
N2
Cortex
X3

Thumb-1 coe) (oo
A32 &
S2-bit A32 16bit Thumb-1 || 3301t v G| 1T (50
Thumb-2

< ARM3) <ARM-7>
< ARM1 > < ARM2 > <ARM-6> <ARM-V8> <ARM-7T> <ARM-9>
v2 v3 v4 5

v1 v4T Y,

Cortex) Cortex Cortex Cortex Cortex Cortex
MO+ M4 M33 A7 R5 A53 R82 A710

ARM-11 Cortex) Cortex Cortex Cortex Cortex Cortex
MO M3 M23 A5 R4 A35 R52 A510

v6 v6-M v7-M v8-M v7-A v7-R v8-A v8-R v9-A

M: Microcontroller. A: Application. R: Real-time

Instruction Sets

» Instructions:

» Encoded to binary machine code by

Thumb:? assembler
(16-tit and 32-bitinsfructions)

Cortex-Md

» Executed at runtime by hardware

» Early 32-bit ARM vs Thumb/Thumb-2

» Early ARM has larger power consumption and
larger program size

» 16-bit Thumb, first used in ARM7TDMI
processors in 1995

» Thumb-2:a mix of |16-bit (high code density)
and 32-bit (high performance) instructions

» ARM Cortex-M:
» Subset of Thumb-2

Cortex-M3
ARM

Cortex-M0

(32-0it Instructions|

Thumb
(f6-bit
Instructions|

ARM Processors

Performance Thumb-2, DSP,
(MIPS/MHz) FPU, TrustZone,
A Helium
Thumb-2, A
DSP, FPU Cortex-M85
Cortex-M7 .
Cortex-M55 | ¢ Mainline
Cortex-M4 Cortex-M35P
Cortex-M3 Cortex-M33
Thumb-1 Armv7-M
_ Baseline
Cortex-M1 Cortex-M23 }
Cortex-M0O+ Armv8-M
Cortex-MO
Armv6-M

Processor Registers

Low
Registers

High
Registers

R9
R10
R11
R12

General
R6 > Purpose

Register

32 bits

xPSR

BASEPRI

R13 (SP)

R13 (MSP)

R13 (PSP)

PRIMASK

R14 (LR)
R15 (PC)

Register Bank

FAULTMASK

CONTROL

Special

> Purpose

Register

J

Special Registers

Fastest way to read and write
Registers are within the processor chip
Each register has 32 bits

ARM Cortex-M4 has
» Register Bank: R@ - R15
RO-R12: 13 general-purpose registers

R13: Stack pointer (Shadow of MSP or
PSP)

R14: Link register (LR)
R15: Program counter (PC)

» Special registers
xPSR, BASEPRI, PRIMASK, etc

Processor Registers

Low
Registers R4

R9

High
Registe%‘s R10
R11

R12

General
R6 > Purpose

Register

32 bits

xPSR

BASEPRI

R13 (SP)

R13 (MSP)

R13 (PSP)

PRIMASK

R14 (LR)
R15 (PC)

Register Bank

FAULTMASK

CONTROL

Special

> Purpose

Register

J

Special Registers

v

v

v

v

Low Registers (RO — R7)

» Can be accessed by any instruction

High Register (R8 — R12)

» Can only be accessed by some instructions
Stack Pointer (R13)

» Cortex-M4 supports two stacks

» Main SP (MSP) for privileged access (e.g.
exception handler)

» Process SP (PSP) for application access
Program Counter (R15)
» Memory address of the current instruction

Processor Registers vs Peripheral Registers

ARM Cortex-M Core

INIRIRIRIRINENE

Processor Registers vs Peripheral Registers

» Processor can directly access processor registers
» ADD r3,rl,ro ; P3 =rl1l + ro

» Processor access peripheral registers via memory mapped I/O
» Each peripheral register is assigned a fixed memory address at the chip design stage
» Processor treats peripherals registers the same as data memory

» Processor uses load/store instructions to read from/write to memory (to be covered
in future lectures)

C vs Assembly

C Program

int x = -2;

X =X + 1;
Task: Compute >
2+ 1 Assembly program
AREA c,CODE
LDR ro, =x @ Microprocessor

LDR r1,[re] @
ADD r1, ri, #1 @
STR r1,[re] @

AREA d,DATA
X DCW -2

Load-Modity-Store

Assembly program

AREA c,CODE
C Program — vas
° @| LDR ro, =x
< &| LDR r1,[ro]
int x = -2; | €& aADD r1, ri, #1
X=X +1;7 O| STR ri1,[re]
. n A ..
AREA d,DATA
* x DCW -1
Translating C to assembly s e s

* Load values from memory into registers
* Modify value by applying arithmetic operations
» Store result from register to memory

Load-Modify-Store

o =
= ——

Lo Save 32-bit data in T m e
P @ register R1 into memory. TTe—
! .
Ii - -~ -
| 32 bits @ R0 holds the memory S
Y - - address of | vgr_fa_bre X. N
_R0[ex20000000 |-~ """ @ R1=R1+1 T~ \
A
R1- @xFFFFFFFE [| Memory \
R2 * I f' address /\/\
R3 "\ f
i 0x20000004 | Bx00
= ALU I -
R4 S > Ir 0x20000003 | OXFF | 1
RS 1 — | 0x20000002 | OXFF | 1)/
.
R6 . _| ex2eeeece1 | OxFF | "
R7 o ™ ©x20000000 [OXFE | | |
R8 > {O;;_\ R II
RO e, T, 5 /\/\ ;'
R10 Py ot [
O o 3 2] I
R11 o, 7o
. ™ - - - «
R13 (SP) e
Control Unit
R14 (LR} Data Memory
R15 (PC)
Processor Core

ARM Cortex-M4 Organization (STM32L4)

LCD SPI2
TIM2 SPI3
TIM3 12C1/SMBUS
SWITAG TIM4 12C2/SMBUS
TIM6 12C3/SMBUS
TIM7 USB 2.0 FS
Cortex-M4 Processor Core Instructions Flash USART2 g)\(/SPAI\DIIH
- _ = = | Instruction Bus - Memory USART4 LPTIMA
= o |2 |54]|= T2 (28 l Data USART5 LPTIM2
g 3,5 82| T o5 |se Memory % |[@———| SRAM LPUART1 OpAmp
= ®0l0 |2s| o 315 |Es Protection £ 7\
INtEITUPLS] O D828 5 (3| |k|=E Unit (MPU) < | Advanced High-
‘5_2 ﬁg §3 ﬁg Sl|<|8|5 e | @ | performance Bus APBA
2 s=|8 |22 S|% Data Bus - (AHB) [AHB to APB Bridge 1 | Advanced
g F [[E5| Kk 2|5 D |- > . Peripheral Bus
E a |02 2|® ol = A AHB to APB Bridge 2 [4——— .. (APB)
System Bus
GPIO Port A +
GPIO Port B
e GPIO Port C EXTI SPI1
Direction Memory || GPIO Port D WKUP SAI1
Access (DMA) GPIO Port E TIM1/PWM sSAI2
Controllers < GPIO Port F TIM8/PWM DFSDM
GPIO Port G TIM15 COMP1
GPIO Port H TIM16 COMP2
TIM17 Firewall
USART1

System-on-a-chip

Assembly Instructions

» Arithmetic and logic
» Add, Subtract, Multiply, Divide, Shift, Rotate
» Data movement
» Load, Store, Move
» Compare and branch
» Compare, Test, lf-then, Branch, compare and branch on zero
» Miscellaneous

» Breakpoints, wait for events, interrupt enable/disable, data memory barrier, data
synchronization barrier

Instruction Format: Labels

label mnemonic operandl, operand2, operand3 ; comments

Instruction Format: Labels

label mnemonic operandl, operand2, operand3 ; comments

» Place marker, marking the memory address of the current instruction
» Used by branch instructions to implement if-then or goto

» Must be unique

Instruction Format: Mnemonic

label mnemonic operandl, operand2, operand3 ; comments

» The name of the instruction

» Operation to be performed by processor core

Instruction Format: Operands

label mnemonic operandl, operand2, operand3 ; comments

» Operands
» Registers

» Constants (called immediate values)

» Number of operands varies
» No operands: DSB
» Oneoperand: BX LR
» Two operands: CMP R1, R2
» Three operands: ADD R1, R2, R3
» Four operands: MLA R1, R2, R3, R4

» Normally
» operandl is the destination register, and operand2 and operand3 are source operands.
» operand2 is usually a register, and the first source operand

» operand3 may be a register, an immediate number, a register shifted to a constant number of bits, or a register
plus an offset (used for memory access).

Instruction Format: Comments

label mnemonic operandl, operand2, operand3 ; comments

» Everything after the semicolon (;) is a comment

» Explain programmers’ intentions or assumptions

ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

target ADD ro, r =r2 + r3

AV AR

label mnemonic destination |t source 2" source comment
operand operand operand

ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

Examples: Variants of the ADD instruction
ADD rl1, r2, r3 ; Pl =r2 + r3

ADD rl1, r3 ; Pl =r1 + r3
ADD rl1, r2, #4 ; rl =r2 + 4
ADD rl1, #15 ; rl =rl + 15

Example Assembly Program:
Copying a String

" AREA string_copy, CODE, READONLY
EXPORT _ main
ALIGN
ENTRY
__main PROC

strcpy LDR rl, =srcStr
LDR re, =dstStr
loop LDRB r2, [r1], #1
STRB r2, [re], #1

Retrieve address of the source string

Retrieve address of the destination string
Load a byte & increase src address pointer
Store a byte & increase dst address pointer

We Wwe Wwe we e Wwe e

CMP r2, #e Check for the null terminator
BNE loop Copy the next byte if string is not ended
stop B stop Dead loop. Embedded program never exits.
_ ENDP
2 AREA myData, DATA, READWRITE
ALIGN
DEICHN) |srcStr DCB "The source string.",0 ; Strings are null terminated
Area dstStr DCB "The destination string.",@® ; dststr has more space than srcstr
END

Example Assembly Program:
Copying a String

I
: [AREA string_copy, CODE, READONLY |
! | EXPORT __main | rmp——
Ay R Decives
v ENTRY s
__main |PROC | -7

- -
-

—

-

Code strcpy ['LDR rl, =srcStr | ; Retrieve address of the source string
Area < | LDR re, =dstStr ; Retrieve address of the destination string
loop |LDRB r2, [rl], #1 | ; Load a byte & increase src address pointer
STRB r2, [re], #1 | ; Store a byte & increase dst address pointer
|
|

ICMP r2, #0 ; Check for the null terminator

| BNE loop ; Copy the next byte if string is not ended
stop B __ stop _ _ _ __ ; Dead loop. Embedded program never exits.
kel 2 Assembly Instructions
N [EnDP |
| 08 o |
|AREA myData, DATA, READNRITE|
(ALIGN

gata < |srcstr [DcB _'Fhe_sal;e_st?irg.r,e_ O Strings are null terminated
rea dstStr | DCB "The destination str‘ing.",(?)J ; dststr has more space than srcstr
______ AT T T T T — A
[
[
|

Program
Comments

Assembly Directives

» Directives are NOT instructions. Instead, they are used
to provide key information for assembly.

AREA Make a new block of data or code
ENTRY Declare an entry point where the program execution starts
ALIGN Align data or code to a particular memory boundary
DCB Allocate one or more bytes (8 bits) of data
DCW Allocate one or more half-words (16 bits) of data
DCD Allocate one or more words (32 bits) of data
SPACE Allocate a zeroed block of memory with a particular size
FILL Allocate a block of memory and fill with a given value.
EQU Give a symbol name to a numeric constant
RN Give a symbol name to a register
EXPORT Declare a symbol and make it referable by other source files
IMPORT Provide a symbol defined outside the current source file
INCLUDE/GET [Include a separate source file within the current source file
PROC Declare the start of a procedure
ENDP Designate the end of a procedure
END Designate the end of a source file

Directive: AREA

AREA myData, DATA, READWRITE ; Define a data section
Array bcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The AREA directive indicates to the assembler the start of a new data or code section.
» Areas are the basic independent and indivisible unit processed by the linker.

» Each area is identified by a name and areas within the same source file cannot share the
same name.

» An assembly program must have at least one code area.

» By default,a code area can only be read (READONLY) and a data area may be read from
and written to (READWRITE).

Directive: ENTRY

AREA myData, DATA, READWRITE ; Define a data section
Array bcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The ENTRY directive marks the start point to execute a program.

» There must be exactly one ENTRY directive in an application, no matter how many
source files the application has.

Directive: END

AREA myData, DATA, READWRITE ; Define a data section
Array bcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The END directive indicates the end of a source file.

» Each assembly program must end with this directive.

Directive: PROC and ENDP

AREA myData, DATA, READWRITE ; Define a data section
Array bcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» PROC and ENDP are to mark the start and end of a function (also called subroutine or
procedure).

» A single source file can contain multiple subroutines, with each of them defined by a pair
of PROC and ENDP.

» PROC and ENDP cannot be nested.We cannot define a function within another function.

Directive: EXPORT and IMPORT

AREA myData, DATA, READWRITE ; Define a data section
Array bcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The EXPORT declares a symbol and makes this symbol visible to the linker.

» The IMPORT gives the assembler a symbol that is not defined locally in the current
assembly file. The symbol must be defined in another file.

» The IMPORT is similar to the “extern” keyword in C.

Directive: Defining Data

Directive |Description Memory Space
DCB Define Constant Byte Reserve 8-bit values
DCW Define Constant Half-word | Reserve 16-bit values
DCD Define Constant Word Reserve 32-bit values
DCQ Define Constant Reserve 64-bit values
DCFS Define single-precision Reserve 32-bit values
floating-point numbers
DCFD Define double-precision Reserve 64-bit values
floating-point numbers
SPACE Defined Zeroed Bytes Reserve a number of zeroed bytes
FILL Defined Initialized Bytes Reserve and fill each byte with a value

Directive: Defining Data

AREA myData, DATA, READWRITE

hello DCB "Hello World!",0 ; Allocate a string that is null-terminated
dollar DCB 2,10,0,200 ; Allocate integers ranging from -128 to 255
scores DCD 2,3.5,-0.8,4.0 ; Allocate 4 words containing decimal values
miles DCW 100,200,50,0 ; Allocate integers between -32768 and 65535
Pi S DCFS 3.14 ; Allocate a single-precision floating number
Pi D DCFD 3.14 ; Allocate a double-precision floating number
p SPACE 255 ; Allocate 255 bytes of zeroed memory space

f FILL 20,0xFF,1 ; Allocate 20 bytes and set each byte to OxFF
binary DCB 2 01010101 ; Allocate a byte in binary

octal DCB 8 73 ; Allocate a byte in octal

char DCB ‘A’ ; Allocate a byte initialized to ASCII of ‘A’

Directive: EQU and RN

; Interrupt Number Definition (IRQn)

BusFault IRQn EQU -11 ; Cortex-M3 Bus Fault Interrupt
SVCall IRQn EQU -5 ; Cortex-M3 SV Call Interrupt
PendSV_IRQn EQU -2 ; Cortex-M3 Pend SV Interrupt
SysTick IRQn EQU -1 ; Cortex-M3 System Tick Interrupt
Dividend RN 6 ; Defines dividend for register 6
Divisor RN 5 ; Defines divisor for register 5

» The EQU directive associates a symbolic name to a numeric constant.

» Similar to the use of #define in a C program, the EQU can be used to define a
constant in an assembly code.

» The RN directive gives a symbolic name to a specific register.

Directive: ALIGN

AREA example, CODE, ALIGN = 3 ; Memory address begins at a multiple of 8
ADD ro, ri1, r2 ; Instructions start at a multiple of 8

AREA myData, DATA, ALIGN = 2 ; Address starts at a multiple of four

a DCB OxFF ; The first byte of a 4-byte word
ALIGN 4, 3 ; Align to the last byte (3) of a word (4)
b DCB 0x33 ; Set the fourth byte of a 4-byte word
c DCB ox44 ; Add a byte to make next data misaligned
ALIGN ; Force the next data to be aligned
d DCD 12345 ; Skip three bytes and store the word

Directive: INCLUDE or GET

INCLUDE constants.s ; Load Constant Definitions
AREA main, CODE, READONLY
EXPORT _ main
ENTRY
__main PROC
ENDP
END

» The INCLUDE or GET directive is to include an assembly source file within another
source file.

» It is useful to include constant symbols defined by using EQU and stored in a
separate source file.

	Slide 1: Z. Gu
	Slide 2: History
	Slide 3: ARM Processors
	Slide 4: ARM Family
	Slide 5: Instruction Sets
	Slide 6: ARM Processors
	Slide 7: Processor Registers
	Slide 8: Processor Registers
	Slide 9: Processor Registers vs Peripheral Registers
	Slide 10: Processor Registers vs Peripheral Registers
	Slide 11: C vs Assembly
	Slide 12: Load-Modify-Store
	Slide 13: Load-Modify-Store
	Slide 14: ARM Cortex-M4 Organization (STM32L4)
	Slide 15: Assembly Instructions
	Slide 16: Instruction Format: Labels
	Slide 17: Instruction Format: Labels
	Slide 18: Instruction Format: Mnemonic
	Slide 19: Instruction Format: Operands
	Slide 20: Instruction Format: Comments
	Slide 21: ARM Instruction Format
	Slide 22: ARM Instruction Format
	Slide 23: Example Assembly Program: Copying a String
	Slide 24: Example Assembly Program: Copying a String
	Slide 25: Assembly Directives
	Slide 26: Directive: AREA
	Slide 27: Directive: ENTRY
	Slide 28: Directive: END
	Slide 29: Directive: PROC and ENDP
	Slide 30: Directive: EXPORT and IMPORT
	Slide 31: Directive: Defining Data
	Slide 32: Directive: Defining Data
	Slide 33: Directive: EQU and RN
	Slide 34: Directive: ALIGN
	Slide 35: Directive: INCLUDE or GET

