
Z. Gu

Hofstra University

Spring 2026

Embedded Systems with ARM Cortex-M

Microcontrollers in Assembly Language and C

Chapter 2

Data Representation

1

Bit, Byte, Half-word, Word, Double-Word

2

Binary, Decimal and Hex

3

Decimal Binary Hex
0 0000 0x0
1 0001 0x1
2 0010 0x2
3 0011 0x3
4 0100 0x4
5 0101 0x5
6 0110 0x6
7 0111 0x7
8 1000 0x8
9 1001 0x9
10 1010 0xA
11 1011 0xB
12 1100 0xC
13 1101 0xD
14 1110 0xE
15 1111 0xF

0x: Hex

Range of Unsigned Integers

4

Storage Size Range Powers of 2

Unsigned Byte 0 to 255 0 to 28-1

Unsigned Halfword 0 to 65,535 0 to 216-1

Unsigned Word 0 to 4,294,967,295 0 to 232-1

Unsigned Double-word 0 to 18,446,744,073,709,551,615 0 to 264-1

Unsigned Integers

5

Convert Decimal to Binary

5210 = 1101002

Example 1

3210 = 1000002

Example 2

Carry/borrow flag bit for unsigned arithmetic

6

• Given unsigned integers 𝑎 and 𝑏

• 𝒄 = 𝒂 + 𝒃
• Carry happens if c is too big to fit in n bits (i.e., c > 2𝑛 −1).

• 𝒄 = 𝒂 − 𝒃
• Borrow happens if 𝑐 < 0.

• On ARM Cortex-M processors, the carry flag and the borrow

flag are physically the same flag bit in the status register.

• For an unsigned subtraction, Carry = NOT Borrow

Carry/borrow flag bit for unsigned numbers

7

16

00000

0 1
2

3

4

5

6

7

8 01000

00001
00010

00011

00100

00101

00110

00111

9

10

11

12

13

14
15

01001

01010

01011

01100

01101

01110
01111

24

25

26

27

28

29

30
31

11001

11010

11011

11100

11101

11110
11111

10000

17
18

19

20

21

22

23

11000

10001
10010

10011

10100

10101

10110

10111

Carry
+6

28 + 6

A carry occurs when adding 28 and 6

If the traverse crosses the boundary between 0 and 𝟐𝒏 − 𝟏, the carry flag is set on addition and

is cleared on subtraction.

• Carry flag = 1, indicating carry has occurred

on unsigned addition.

• Carry flag is 1 because the result crosses

the boundary between 31 and 0.

1 1 1 0 0

0 0 1 1 0+

1 0 0 0 1 0

1 1 1 0 0Carry

5-bit result
Extra bit is

discarded.

28

6+

2

Carry/borrow flag bit for unsigned numbers

8

16

00000

0 1
2

3

4

5

6

7

8 01000

00001
00010

00011

00100

00101

00110

00111

9

10

11

12

13

14
15

01001

01010

01011

01100

01101

01110
01111

24

25

26

27

28

29

30
31

11001

11010

11011

11100

11101

11110
11111

10000

17
18

19

20

21

22

23

11000

10001
10010

10011

10100

10101

10110

10111

Carry

-5

3 - 5

A borrow occurs when subtracting 5 from 3.

If the traverse crosses the boundary between 0 and 𝟐𝒏 − 𝟏, the carry flag is set on

addition and is cleared on subtraction.

• Carry flag = 0, indicating borrow has

occurred on unsigned subtraction.

• For subtraction, carry = NOT borrow.

0 0 0 1 1

0 0 1 0 1-

 1 1 1 1 0

1 1 1 0 0Borrow

5-bit result

3

5-

30

9

 Three ways to represent signed binary integers:

 Signed magnitude

 𝒗𝒂𝒍𝒖𝒆 = (−𝟏)𝒔𝒊𝒈𝒏× 𝑴𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆

 One’s complement (෥𝜶)

 𝜶 + ෥𝜶 = 𝟐𝒏 − 𝟏

 Two’s complement (ഥ𝜶)

 𝜶 + ഥ𝜶 = 𝟐𝒏

Signed Integer Representation

Sign-and-Magnitude
One’s

Complement

Two’s

Complement

Range [−2𝑛−1 + 1, 2𝑛−1 − 1] [−2𝑛−1 + 1, 2𝑛−1 − 1] [−2𝑛−1, 2𝑛−1 − 1]

Zero Two zeroes (±0) Two zeroes (±0) One zero

Unique

Numbers
2𝑛 − 1 2𝑛 − 1 2𝑛

10

 Example: in a 5-bit system
 +710 = 001112
 -710 = 101112

 Two ways to represent zero
 +010 = 000002
 -010 = 100002

 Not used in modern systems
 Hardware complexity

 Two zeros

Signed Integers

Method 1: Signed Magnitude

Sign-and-Magnitude:

𝒗𝒂𝒍𝒖𝒆 = (−𝟏)𝒔𝒊𝒈𝒏× 𝑴𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆

• The most significant bit is the sign.

• The rest bits are magnitude.

11

Signed Integers

Method 2: One’s Complement

One’s Complement (෥𝜶):

𝜶 + ෥𝜶 = 𝟐𝒏 − 𝟏

Example: in a 5-bit system

+710 = 001112
-710 = 110002

The one's complement

representation of a negative

binary number is the bitwise

NOT of its positive counterpart.

+710 + (-710) = 001112 + 110002
 = 111112

 = 2
5 - 1

12

Signed Integers

Method 3: Two’s Complement (TC)

Two’s Complement (ഥ𝜶):

𝜶 + ഥ𝜶 = 𝟐𝒏 TC of a negative number can be

obtained by the bitwise NOT of its

positive counterpart plus one.

Binary Decimal

Original number 0b00011 3
Step 1: Invert

every bit
0b11100

Step 2: Add 1 + 0b00001

Two’s complement 0b11101 -3

Example 1: TC(3)

13

Signed Integers

Method 3: Two’s Complement (TC)

Two’s Complement (TC)

𝜶 + ഥ𝜶 = 𝟐𝒏 TC of a negative number can be

obtained by the bitwise NOT of its

positive counterpart plus one.

Example 2: TC(-3)

Binary Decimal

Original number 0b11101 -3
Step 1: Invert

every bit
0b00010

Step 2: Add 1 + 0b00001
Two’s complement 0b00011 3

14

Signed Integers

Method 3: Two’s Complement (TC)

Two’s Complement (TC)

𝜶 + ഥ𝜶 = 𝟐𝒏 TC of a negative number can be

obtained by the bitwise NOT of its

positive counterpart plus one.

Example 3: TC(-16)

Binary Decimal

Original number 10000 -16
Step 1: Invert

every bit
01111

Step 2: Add 1 + 10000
Two’s complement 10000 -16

Negation of -16 in 5-bit two's complement

wraps back to itself, meaning the most negative

number's two's complement is itself. (Number

range is [-16, 15], so 16 is out of range)

Quiz

 Calculate TC(-6) for a 6-bit system

Quiz ANS

 Calculate TC(-6) for a 6-bit system

 For a 6-bit two's complement number: the range of representable integers is
from −32 to +31.

 −16 in 6-bit two's complement is 110000

 Write 16 in binary: 010000

 Take the two's complement (invert bits and add 1):

 Invert bits: 101111, Add 1: 101111+1=110000

 To take the negation of this (i.e., find the two's complement of 110000):

 Invert bits: 001111, Add 1: 001111+1=010000

 This is 16 in binary, so the negation of −16 is +16 as expected

 Unlike the 5-bit case where −16 is the minimum and its negation wraps onto
itself, in 6 bits −16 behaves normally with correct negation

Two’s Complement (TC)

17

 Two's complement gets its name from the rule that “the unsigned sum of an n-

bit number and its n-bit negative is 2𝑛”; hence, the negation or complement of a

number x is 2𝑛 − 𝑥, or its “Two's complement”

 Signed arithmetic:

 For 5-bit system, signed number x = 00011 = 3, TC(x) = 11101 = -3, so their signed

sum is 00011 + 11101 = 00000 (in decimal 3 + (-3) = 0)

 Unsigned arithmetic:

 Unsigned number 00011=3, 11101=29, so their unsigned sum is 00011 + 11101 =

00000 (in decimal 3 + 29 = 32 = 25). The result is incorrect as Carry flag = 1: 32

cannot be represented in 5 bits since it exceeds the largest unsigned value of 25 − 1

Two’s Complement for 8-bit System

8-bit signed Int

(Two’s

Complement)

8-bit unsigned Int Binary

-128 128 1 0 0 0 0 0 0 0

-127 129 1 0 0 0 0 0 0 1

… … …

-2 254 1 1 1 1 1 1 1 0

-1 255 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 1

… … . . .

127 127 0 1 1 1 1 1 1 1

Note: Most significant bit (MSB) is the sign bit for signed int

15

Sign Extension

• Sign extension for unsigned int: fill in 0’s from the left
• Sign extension for signed int: fill in the sign bit from the left

Decimal Binary

4-bit 8-bit 32-bit

3ten 0011two 0000 0011two 0000 0000 0000 0011two

-3ten 1101two 1111 1101two 1111 1111 1111 1101two

Comparison

20

00000/

10000

0 1
2

3

4

5

6

7

8 01000

00001
00010

00011

00100

00101

00110

00111

9

10

11

12

13
14

15

01001

01010

01011

01100

01101

01110
01111

-8

-7

-6

-5

-4

-3

-2
-1

10111

10110

10101

10100

10011

10010
10001

-15
-14

-13

-12

-11

-10

-9

11000

11111
11110

11101

11100

11011

11010

11001

00000/

11111

0 1
2

3

4

5

6

7

8 01000

00001
00010

00011

00100

00101

00110

00111

9

10

11

12

13
14

15

01001

01010

01011

01100

01101

01110
01111

-8

-7

-6

-5

-4

-3

-2
-1

11000

11001

11010

11011

11100

11101
11110

-15
-14

-13

-12

-11

-10

-9

10111

10000
10001

10010

10011

10100

10101

10110

-16

00000

0 1
2

3

4

5

6

7

8 01000

00001
00010

00011

00100

00101

00110

00111

9

10

11

12

13

14
15

01001

01010

01011

01100

01101

01110
01111

-8

-7

-6

-5

-4

-3

-2
-1

11001

11010

11011

11100

11101

11110
11111

10000

-15
-14

-13

-12

-11

-10

-9

11000

10001
10010

10011

10100

10101

10110

10111

One’s complement

representation

Negative = invert all

bits of a positive

Two’s Complement

representation

TC = invert all bits,

then plus 1

Signed magnitude

representation

0 = positive

1 = negative

Used in modern computers!

Comparison: unsigned vs. signed

21

-16

00000

0 1
2

3

4

5

6

7

8 01000

00001
00010

00011

00100

00101

00110

00111

9

10

11

12

13

14
15

01001

01010

01011

01100

01101

01110
01111

-8

-7

-6

-5

-4

-3

-2
-1

11001

11010

11011

11100

11101

11110
11111

10000

-15
-14

-13

-12

-11

-10

-9

11000

10001
10010

10011

10100

10101

10110

10111

Unsigned int

representation

Range [0, 31]

Two’s Complement

representation

Range [-16,15]

TC = invert all bits,

then add 1

Unsigned Two’s Complement Signed

Range [0, 2𝑛−1] [−2𝑛−1, 2𝑛−1 − 1]

Zero One zero One zero

Unique

Numbers
2𝑛 2𝑛

Range of Signed Integers

(Two’s Complement)

22

Storage Size Range Powers of 2

Signed Byte -128 to +127 -27 to 27-1

Signed Halfword -32,768 to +32,767 -215 to 215-1

Signed Word -2,147,483,648 to +2,147,483,647 -231 to 231-1

Signed Double-word -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

-263 to 263-1

Overflow Flag for Signed Arithmetic

23

 When adding signed numbers represented in two’s complement, overflow occurs

only in two scenarios:

1. adding two positive numbers but getting a non-positive result, or

2. adding two negative numbers but yielding a non-negative result.

 Similarly, when subtracting signed numbers, overflow occurs in two scenarios:

1. subtracting a positive number from a negative number but getting a positive result, or

2. subtracting a negative number from a positive number but producing a negative result.

 Overflow cannot occur when adding operands with different signs or when

subtracting operands with the same signs.

 Why?

Overflow Flag for Signed Arithmetic

24

 Overflow cannot occur when adding 2 operands with different signs or when subtracting 2
operands with the same sign. Proof:

 A n-bit signed int has the range [-2n-1, 2n-1-1]
 n = 4, number range [-16, 15]

 2 operands with different signs: positive one in the range of [0, 2n-1-1], negative one in the
range of [-2n-1, -1]. So the range of their sum must be [0-2n-1, 2n-1-1+(-1)]=[-2n-1, 2n-1-2] [-2n-

1, 2n-1-1]
 Positive number range [0, 15], negative number range [-16, -1]. Range of their sum [0-16, 15-1]=[-16,

14]

 2 operands with the same sign: if both are positive and in the range of [0, 2n-1-1], then the
range of their difference must be [0-(2n-1-1), 2n-1-1-0]=[-(2n-1-1), 2n-1-1]; if both are negative
and in the range of [-2n-1, -1], then the range of their difference must be [-2n-1-(-1), -1-(-2n-

1)]=[-2n-1+1, 2n-1-1]  [-2n-1, 2n-1-1]
 Both positive numbers [0, 15], range of difference [0-15, 15-0]=[-15, 15]

 Both negative numbers [-16, -1], range of difference [-16-(-1), -1-(-16)]=[-15, 15]

Overflow for Signed Add

25

-16

00000

0 1
2

3

4

5

6

7

8 01000

00001
00010

00011

00100

00101

00110

00111

9

10

11

12

13

14
15

01001

01010

01011

01100

01101

01110
01111

-8

-7

-6

-5

-4

-3

-2
-1

11001

11010

11011

11100

11101

11110
11111

10000

-15
-14

-13

-12

-11

-10

-9

11000

10001
10010

10011

10100

10101

10110

10111

Overflow +5

Overflow occurs when

adding two positive integers

but getting a negative result.

1. On addition, overflow occurs if 𝑠𝑢𝑚 ≥ 24

when adding two positives.

2. Overflow never occurs when adding two

numbers with different signs.

Overflow for Signed Add

26

-16

00000

0 1
2

3

4

5

6

7

8 01000

00001
00010

00011

00100

00101

00110

00111

9

10

11

12

13

14
15

01001

01010

01011

01100

01101

01110
01111

-8

-7

-6

-5

-4

-3

-2
-1

11001

11010

11011

11100

11101

11110
11111

10000

-15
-14

-13

-12

-11

-10

-9

11000

10001
10010

10011

10100

10101

10110

10111

Overflow
-7

Overflow occurs when

adding two negative integers

but getting a positive result.

On addition, overflow occurs if

𝑠𝑢𝑚 < −24 when adding two

negatives.

Signed or unsigned

27

 Whether the carry flag or the overflow flag should be used depends on the programmer’s intention.

 When programming in high-level languages such as C, the compiler automatically chooses to use the carry

or overflow flag based on how this integer is declared in source code (“int” or “unsigned int”).

Signed or Unsigned

28

uint a;
uint b;
…
c = a + b
…

C Program

Check the carry flag!

a = 0b10000
b = 0b10000
c = a + b

 Whether the carry flag or the overflow flag should be used depends on the
programmer’s intention: Are a and b signed or unsigned numbers?

int a;
int b;
…
c = a + b
…

C Program

Check the overflow flag!

Signed or Unsigned

29

 CPU does not know and does not care; it sets up both
carry flag and overflow flags.

 It is software’s (programmer/compiler) responsibility to
interpret the flags.

 The C compiler uses either the carry or the overflow flag
based on how this integer is declared in source code (“uint”
or “int”).

a = 0b10000
b = 0b10000
c = a + b

 Are a and b signed or unsigned numbers?

If unsigned:
uint a, b;
a = 16
b = 16
c = a + b
 = 32 > 25-1
Carry flag set

If signed:
int a, b;
a = -16
b = -16
c = a + b
 = -32 < -24

Overflow flag set

Two’s Complement Simplifies Hardware Implementation

30

 In two’s complement, the same hardware works correctly for both signed and

unsigned addition/subtraction.

 If the product is required to keep the same number of bits as operands,

unsigned multiplication hardware works correctly for signed numbers.

 However, this is not true for division. (not discussed in this course)

Operation Are signed and unsigned operations the same?

Addition Yes

Subtraction Yes

Multiplication Yes if the product is required to keep the same number of bits as operands

Division No

Adding two signed integers:

(-9) + 6

31

-9 6

-3

01001 10110 10111
flip +19 -9

00010 00011
flip +1 3

Two’s

Complement

1 0 1 1 1 0 0 1 1 0

1 1 1 0 1

Simple Hardware Adder

23 6

29

+

Two’s Complement

Counterpart

Subtracting two signed integers:

(-9) - 6

32

-9 6

-15

01001 10110 10111
flip +19 -9

Two’s

Complement

1 0 1 1 1 0 0 1 1 0

Simple Hardware Subtractor

23 6

17

-

01111 10000 10001
flip +115 -15

1 0 0 0 1

Condition Codes

33
33

• C is set upon an unsigned addition if the answer is wrong

• C is cleared upon an unsigned subtract if the answer is wrong

• V is set upon a signed addition or subtraction if the answer is wrong

Why do we care about these bits?

Bit Name Meaning after add or sub

N negative result is negative

Z zero result is zero

C carry signed arithmetic out of range

V overflow signed arithmetic out of range

31 0

N Z C V

CPSR (Current Program Status Register)

Carry and Overflow Flags

34

Carry

(for unsigned)

Overflow

(for signed)

Add 𝐶𝑎𝑟𝑟𝑦 = 1 if 𝑐 is too

large to fit in. 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 1 if 𝑐 is too

large or too small to fit inSubtract 𝐵𝑜𝑟𝑟𝑜𝑤 = 1, i.e.

𝐶𝑎𝑟𝑟𝑦 = 0 if 𝑎 < 𝑏.

𝑐 = 𝑎 ± 𝑏

• ARM Cortex-M has no dedicated borrow

flag, carry flag is reused.

• For unsigned subtract, 𝐵𝑜𝑟𝑟𝑜𝑤 = 𝐶𝑎𝑟𝑟𝑦

• Signed Subtraction is converted to sign

addition

• 𝑎 − 𝑏 = 𝑎 + (−𝑏)

Carry flag C = 1 (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true result > 2n-1)

Carry flag C = 0 (Borrow flag = 1) upon an unsigned subtraction if the answer is wrong (true result < 0)

Overflow flag V =1 upon a signed addition or subtraction if the answer is wrong (true result > 2n-1-1 or true

result < -2n-1)

IMPORTANT

35

Characters

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
0 00 NUL 32 20 SP 64 40 @ 96 60 ‘
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ’ 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i
10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ^ 126 7E ~
31 1F US 63 3F ? 95 5F _ 127 7F DEL

American

Standard

Code for

Information

Interchange

Standard ASCII: Encoding 128 characters

• Standard ASCII
0 - 127

• Extended ASCII
 0 - 255

• ANSI
 0 - 255

• Unicode

 0 - 65535

Null-terminated String

36

Memory
Address

Memory
Content

Letter

str + 12 → 0x00 \0

str + 11 → 0x79 y
str + 10 → 0x6C l
str + 9 → 0x62 b
str + 8 → 0x6D m
str + 7 → 0x65 e
str + 6 → 0x73 s
str + 5 → 0x73 s
str + 4 → 0x41 A

str + 3 → 0x20 space

str + 2 → 0x4D M
str + 1 → 0x52 R

str → 0x41 A

char str[13] = “ARM Assembly”;
// The length has to be at least
// 13 even though it has 12
// letters. The NULL terminator
// should be included.

or simply

char str[] = “ARM Assembly”;

String Comparison

37

Strings are compared based on their ASCII values

 “j” < “jar” < “jargon” < “jargonize”

 “CAT” < “Cat” < “DOG” < “Dog” < “cat” < “dog”

 “12” < “123” < “2”< “AB” < “Ab” < “ab” < “abc”

String Length

38

Array subscript operator []

int strlen (char *pStr){
 int i = 0;

 // loop until pStr[i] is NULL
 while(pStr[i])
 i++;

 return i;
}

Pointer dereference operator *

int strlen (char *pStr){
 int i = 0;

 // loop until *pStr is NULL
 while(*pStr) {
 i++;
 pStr++;
 }
 return i;
}

 Stings are terminated with a null character (NUL, ASCII value 0x00)

Convert to Upper Case

39

Pointer dereference operator *

void toUpper(char *pStr){
 char *p;

 for(*p = pStr; *p; ++p){
 if(*p >= ’a’ && *p <= ’z’)
 *p -= ‘a’ – ‘A’;
 //or: *p -= 32;
 }
}

Array subscript operator []

void toUpper(char *pStr){
 int i;
 char c = pStr[0];
 for(i = 0; c; i++, c = pStr[i];) {
 if(c >= ’a’ && c <= ’z’)
 pStr[i] -= ‘a’ – ‘A’;
 // or: pStr[i] -= 32;
 }
}

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A

a b c d e f g h i j k l m n o p q r s t u v w x y z

61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A

‘a’ – ‘A’ = 0x61 – 0x41 = 0x20 = 32

Summary

 Unsigned integer arithmetic

 Signed integer arithmetic

 2’s complement

 ASCII strings

40

References

 Lecture 1. Why use two's complement?

 https://www.youtube.com/watch?v=lJCefqV80ck&list=PLRJhV4hUhIymmp5CCeIFPyxb

knsdcXCc8&index=1

 Lecture 2: Carry flag for unsigned addition and subtraction

 https://www.youtube.com/watch?v=MxGW2WurKuM&list=PLRJhV4hUhIymmp5CCeI

FPyxbknsdcXCc8&index=2

 Lecture 3: Overflow flag for signed addition and subtraction

 https://www.youtube.com/watch?v=BIn6iyYIGio&list=PLRJhV4hUhIymmp5CCeIFPyxb

knsdcXCc8&index=3

https://www.youtube.com/watch?v=lJCefqV80ck&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=1
https://www.youtube.com/watch?v=lJCefqV80ck&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=1
https://www.youtube.com/watch?v=lJCefqV80ck&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=1
https://www.youtube.com/watch?v=MxGW2WurKuM&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=2
https://www.youtube.com/watch?v=MxGW2WurKuM&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=2
https://www.youtube.com/watch?v=MxGW2WurKuM&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=2
https://www.youtube.com/watch?v=BIn6iyYIGio&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=3
https://www.youtube.com/watch?v=BIn6iyYIGio&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=3
https://www.youtube.com/watch?v=BIn6iyYIGio&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=3

	Slide 1: Z. Gu Hofstra University
	Slide 2: Bit, Byte, Half-word, Word, Double-Word
	Slide 3: Binary, Decimal and Hex
	Slide 4: Range of Unsigned Integers
	Slide 5: Unsigned Integers
	Slide 6: Carry/borrow flag bit for unsigned arithmetic
	Slide 7: Carry/borrow flag bit for unsigned numbers
	Slide 8: Carry/borrow flag bit for unsigned numbers
	Slide 9: Signed Integer Representation
	Slide 10: Signed Integers Method 1: Signed Magnitude
	Slide 11: Signed Integers Method 2: One’s Complement
	Slide 12: Signed Integers Method 3: Two’s Complement (TC)
	Slide 13: Signed Integers Method 3: Two’s Complement (TC)
	Slide 14: Signed Integers Method 3: Two’s Complement (TC)
	Slide 15: Quiz
	Slide 16: Quiz ANS
	Slide 17: Two’s Complement (TC)
	Slide 18: Two’s Complement for 8-bit System
	Slide 19: Sign Extension
	Slide 20: Comparison
	Slide 21: Comparison: unsigned vs. signed
	Slide 22: Range of Signed Integers (Two’s Complement)
	Slide 23: Overflow Flag for Signed Arithmetic
	Slide 24: Overflow Flag for Signed Arithmetic
	Slide 25: Overflow for Signed Add
	Slide 26: Overflow for Signed Add
	Slide 27: Signed or unsigned
	Slide 28: Signed or Unsigned
	Slide 29: Signed or Unsigned
	Slide 30: Two’s Complement Simplifies Hardware Implementation
	Slide 31: Adding two signed integers: (-9) + 6
	Slide 32: Subtracting two signed integers: (-9) - 6
	Slide 33: Condition Codes
	Slide 34: Carry and Overflow Flags
	Slide 35: Characters
	Slide 36: Null-terminated String
	Slide 37: String Comparison
	Slide 38: String Length
	Slide 39: Convert to Upper Case
	Slide 40: Summary
	Slide 41: References

