Embedded Systems with ARM Cortex-M
Microcontrollers in Assembly Language and C

Chapter 2
Data Representation

Z. Gu
Hofstra University

Spring 2026

Bit, Byte, Halt-word, Word, Double-Word

One Byte (8 bits)

One Half-word (16 bits)

One Word (32 bits) 15

-‘

One Double-word (64 bits) 3

63 0
Most Significant Bit (MSB) Least Significant Bit (LSB)

Binary, Decimal and Hex

Decimal Binary Hex
9 0000 Ox0
1 0001 Ox1
2 0010 Ox2
3 0011 Ox3
4 0100 x4 Ox: Hex
5 0101 Ox5
6 0110 Ox6
7 0111 Ox7
8 1000 Ox8
9 1001 Ox9
10 1010 OXA
11 1011 OxB
12 1100 OxC
13 1101 OxD
14 1110 OXE
15 1111 OxF

Range of Unsigned Integers

One Byte (8 bits)

|
=

One Half-word (16 bits)

One Word (32 bits) 15 0
ch| 7]

One Double-word (64 bits)

63 0

Unsigned Byte @ to 255 0 to 28-1
Unsigned Halfword ©® to 65,535 0 to 2'6-1
Unsigned Word @ to 4,294,967,295 0 to 232-1

Unsigned Double-word © to 18,446,744,073,709,551,615 © to 2%-1

Unsigned Integers

Convert Decimal to Binary
Example | Example 2
Remainder Remainder
) [R — 0 A LSB 2| 32 e 0 A LSB
2 26 - 0 2[16 e 9
213 - 1 2 8 e 2
2| 6 e 0 2| 4 e 0
213 — 1 212 - %)
21— 1 MSB 211 - 1 MSB
9 0
52,,= 110100, 32,, = 100000,

Carry/borrow flag bit for unsigned arithmetic

* Given unsigned integers a and b

c=a+b
* Carry happens if c is too big to fit in n bits (i.e,,c > 2™ —1).

c c=a-b>b
* Borrow happens if ¢ < 0.

On ARM Cortex-M processors, the carry flag and the borrow
flag are physically the same flag bit in the status register.
* For an unsigned subtraction, Carry = NOT Borrow

Carry/borrow flag bit for unsigned numbers

If the traverse crosses the boundary between 0 and 2™ — 1, the carry flag is set on addition and

is cleared on subtraction.

11111|00000 ggp01

11110 00010

10010 01110
10001 4gggg 01111

A carry occurs when adding 28 and 6

Carry 111060

11100 28

+ 90110 + 6

1100010 2
g ———
Eétggrzgc'f 5-bit result

Carry flag = 1, indicating carry has occurred
on unsigned addition.

Carry flag is 1 because the result crosses
the boundary between 31 and 0.

Carry/borrow flag bit for unsigned numbers

If the traverse crosses the boundary between 0 and 2™ — 1, the carry flag is set on
addition and is cleared on subtraction.

11111{00000 o001
11110 00010

11101 00011

Borrow 1 1 1 9 ©

OO0 11 3
11010 - 00110 = @ @ 1 @ 1 - 5
1100 00111 111160 30
11000 01000 _ /
Y
10111 01001 5-bit result

e Carry flag = 9, indicating borrow has
occurred on unsigned subtraction.
* For subtraction, carry = NOT borrow.

10010 01110
10001 1gggg 01111

A borrow occurs when subtracting 5 from 3.

Signed Integer Representation

» Three ways to represent signed binary integers:
» Signed magnitude
value = (—1)°"9"xX Magnitude
» One’s complement (&)
at+a=2"-1
» Two’s complement (a)
a+a=2"

One’s Two’s
- SRR AT Complement Complement

Range —2n1 41,271 — [-2n1+ 1,271 —1] [-2n12nl 1]
| Zero Two zeroes (iO) Two zeroes (£0) One zero

Unique n_ n_ n

Signed Integers
Method 1: Signed Magnitude

Sign-and-Magnitude:
value = (—1)°'9"x Magnitude

* The most significant bit is the sign. 1000 0001

. . 10010
* The rest bits are magnitude. 10011

» Example: in a 5-bit system
» +7,, = 00111,
» -7, = 10111,

» Two ways to represent zero
» +0,, = 00000,
» -0, = 10000,

» Not used in modern systems
» Hardware complexity

» Two zeros 11110 01110
11111 01111

Signed Integers
Method 2: One’s Complement

One’s Complement (Q):

~ The one's complement
a+a=2"-1 Dp :
representation of a negative
00000/ binary number is the bitwise
11110 44444 00001

L 00010 NOT of its positive counterpart.

Example: in a 5-bit system
+7, = 00111,
11000,

1
N
=
()
I

+7, + (-7,,) = 00111, + 11000,
= 11111,

10001 01110 = 25 = 1

Signed Integers
Method 3: Two’s Complement (TC)

Two’s Complement («):

a+a=2" TC of a negative number can be
obtained by the bitwise NOT of its
11111 00000 o001 positive counterpart plus one.

Example 1: TC(3)

—
Original number 0booo11

Step 1: Invert ob11100
every bit

Step 2: Add 1 E3NZle[2[515[2k]
Two’s complement oblilel -3

Signed Integers
Method 3: Two’s Complement (TC)

Two’s Complement (TC)

a+a=2" TC of a negative number can be
obtained by the bitwise NOT of its
11111 00000 gggo positive counterpart plus one.

Example 2: TC(-3)

_

11000 1000 Original number eb11101
10111 01001 Step 1: Inveft 0booo10
- every bit
101107 1010 Step 2: Add 1 BRIl 2!
- Two’s complement 0booO11 3
1

01101

10010 01110
10001 4qggp 01111

Signed Integers

Method 3: Two’s Complement (TC)

Two’s Complement (TC)
a+a=2"

11111 00000 pgpgq
11110 00010

11101 00011

TC of a negative number can be
obtained by the bitwise NOT of its
positive counterpart plus one.

Example 3: TC(-16)

| Binary| Decimal
Original number 10000 -16

every bit
Two’s complement 10000 -16
Negation of -16 in 5-bit two's complement
wraps back to itself, meaning the most negative

number's two's complement is itself. (Number
range is [-16, |5],so 16 is out of range)

» Calculate TC(-6) for a 6-bit system

Quiz ANS

» Calculate TC(-6) for a 6-bit system

» For a 6-bit two's complement number: the range of representable integers is
from —32 to +31.
» —16 in 6-bit two's complement is |1 10000

» Write 16 in binary: 010000
» Take the two's complement (invert bits and add |):
» Invert bits: 101111, Add I: 1011 11+1=110000

» To take the negation of this (i.e., find the two's complement of | 10000):
» Invert bits: 001111, Add 1:001111+1=010000
» This is 16 in binary, so the negation of —16 is +16 as expected

» Unlike the 5-bit case where —16 is the minimum and its negation wraps onto
itself, in 6 bits — |6 behaves normally with correct negation

Two’s Complement (TC)

» Two's complement gets its name from the rule that “the unsigned sum of an n-
bit number and its n-bit negative is 2™”’; hence, the negation or complement of a
number x is 2™ — x, or its “Two's complement”

» Signed arithmetic:

» For 5-bit system, signed number x = 0001 | = 3,TC(x) = 11101 = -3, so their signed
sum is 00011 + [110l = 00000 (in decimal 3 + (-3) = 0)

» Unsigned arithmetic:

» Unsigned number 0001 1=3, 1 1101=29, so their unsigned sum is 00011 + [101 =
00000 (in decimal 3 + 29 = 32 = 2°).The result is incorrect as Carry flag = 1:32
cannot be represented in 5 bits since it exceeds the largest unsigned value of 2> — 1

Two’s Complement for 8-bit System

8-bit signed Int | 8-bit unsigned Int Binary
(Two’s
Complement)

-128 128 [jJ000 0000
-127 129 [j000 000 |
2 254 ijr11r 11r1o
I 255 jrtr1r il
0 0 Ojooo 0000
I | 0jooo0 000 I
127 127 ofrrt1 11i1l

Note: Most significant bit (MSB) is the sign bit for signed int

Sign Extension

4-bit 8-bit 32-bit
3ten ool l,,. 0000 001 I, 0000 0000 0000 OOl I,
-3ien 1101, L1111 1101, TN I O 0

* Sign extension for unsigned int: fill in 0’s from the left
* Sign extension for signed int: fill in the sign bit from the left

Comparison

10
1111 01111 10000 01111 10001 4gggg 01111

Signed magnitude One’s complement Two’s Complement
representation representation representation

@ = positive Negative = invert all TC = invert all bits,
1 = negative bits of a positive then plus 1

Used in modern computers!

Comparison: unsigned vs. signed

11111 99998 papa;
11110 20010

111e1

LCBN | Unsigned| Two’s Complement Signed

1991 oo 10000 91111 — 1919 40001 10000 01111) . .
Range Riad [i)]

Unsiened Two's C | One zero One zero
nsigne |n.t wo's Comp ement Unique o o

representation representation Numbers

Range [0, 31] Range [-16,15]

TC = invert all bits,
then add 1

Range of Signed Integers
(Two’s Complement)

One Byte (8 bits)
7 0

One Half-word (16 bits)

One Word (32 bits) 15 0

]

One Double-word (64 bits) 31 0

63 0

I'Inst Significant Bit (MSB) Least Significant Bit {LSEI

Signed Byte -128 to +127 -27 to 27-1
Signed Halfword -32,768 to +32,767 -215 to 21°-1
Signed Word -2,147,483,648 to +2,147,483,647 -231 to 231-1
Signed Double-word -9,223,372,036,854,775,808 to -253 to 2%3-1

+9,223,372,036,854,775,807

Overtlow Flag for Signed Arithmetic

» When adding signed numbers represented in two’s complement, overflow occurs
only in two scenarios:

I. adding two positive numbers but getting a non-positive result, or

2. adding two negative numbers but yielding a non-negative result.

» Similarly, when subtracting signed numbers, overflow occurs in two scenarios:
I, subtracting a positive number from a negative number but getting a positive result, or

2. subtracting a negative number from a positive number but producing a negative result.

» Overflow cannot occur when adding operands with different signs or when
subtracting operands with the same signs.

» Why!?

Overtlow Flag for Signed Arithmetic

» Overflow cannot occur when adding 2 operands with different signs or when subtracting 2
operands with the same sign. Proof:

» A n-bit signed int has the range [-2™!, 2™!-1]

» n =4, number range [-16, | 5]

» 2 operands with different signs: positive one in the range of [0, 2™'-1], negative one in the

range of [-2™!, -1]. So the range of their sum must be [0-2™!, 2™I-1+(-1)]=[-2"!, 2"!-2] [-2™

, 2011

» Positive number range [0, | 5], negative number range [-16, -1]. Range of their sum [0-16, |5-1]=[-16,
| 4]

» 2 operands with the same sign: if both are positive and in the range of [0, 2™!-1], then the
range of their difference must be [0-(2™'-1), 2™!-1-0]=[-(2™'-1), 2™!-1]; if both are negative
and in the range of [-2™/, -1], then the range of their difference must be [-2™'-(-1), -1-(-2"™
I)]:[_Zn-l+ | ’ 2n-|_ |] c [_Zn-l’ 2n-|_ |]

» Both positive numbers [0, |5], range of difference [0-15, 15-0]=[-15, I5]
» Both negative numbers [-16, -1], range of difference [-16-(-1),-1-(-16)]=[-15, I5]

Overilow for Signed Add

11111 00000 gg001

11110

11101

. ©110 0 12
1100 _- 00111 + 9 @ 1 9 1 + 5
11000 01000 1 @ @ @ 1 _15
10111 _ 01001 N y
10110] 01010 Y4
10101 overtie 01011 5-bit result

|. On addition, overflow occurs if sum > 24
when adding two positives.

2. Overflow never occurs when adding two
numbers with different signs.

Overflow occurs when
adding two positive integers
but getting a negative result.

Overilow for Signed Add

11111 00000 ggp01
11110 00010

10011 -13
°°° + 11001 + -7
1000 - 11061100 12
torer | / N’

10110] 01010 EXtra b|t iS

discarded. S-bit result

On addition, overflow occurs if
sum < —2* when adding two
negatives.

Overflow occurs when
adding two negative integers
but getting a positive result.

Signed or unsigned

» Whether the carry flag or the overflow flag should be used depends on the programmer’s intention.

If unsigned
addition, check
carry flag

If signed addition,
check overflow flag

a+b

Programmer

» When programming in high-level languages such as C, the compiler automatically chooses to use the carry
or overflow flag based on how this integer is declared in source code (“int” or“unsigned int”).

Signed or Unsigned

©b10000
b = 0b10000
CcC =a+ b

Q
|

» Whether the carry flag or the overflow flag should be used depends on the
programmer’s intention:Are a and b signed or unsigned numbers!?

4) 4)
uint a; int a;
uint b; int b;
Check the carry flag! Check the overflow flag!
c=a+b c=a+b
- J - J
C Program C Program

Signed or Unsigned

If unsigned:

a = @bl@@@@ uint a, b,
b = 0b10000 a = 16
c=a+b b =16
Cc =ada+0b
= 32 > 2°-1

» Are a and b signed or unsigned numbers!?
Carry flag set
» CPU does not know and does not care; it sets up both

carry flag and overflow flags. If signed:

int a, b;
» It is software’s (programmer/compiler) responsibility to g = -16
interpret the flags. b = -16
» The C compiler uses either the carry or the overflow flag ¢ - ?3; i’ 4

based on how this integer is declared in source code (“uint”

or “int”). Overflow flag set

Two’s Complement Simplifies Hardware Implementation

» In two’s complement, the same hardware works correctly for both signed and
unsigned addition/subtraction.

» If the product is required to keep the same number of bits as operands,
unsigned multiplication hardware works correctly for signed numbers.

» However, this is not true for division. (not discussed in this course)

Are signed and unsigned operations the same?

Addition Yes

Subtraction Yes
Multiplication Yes if the product is required to keep the same number of bits as operands
Division No

Adding two signed integers:

(-9) + 6
-9 + 6
9 fip 1 72
1(0(1|1|1 (01|10 01001 — 10110 — 10111
23 6 Two’s

Complement

29
: 3
flip +1
111({1(9]|1 > 00010 — 00011
Two’s Complement
-3 Counterpart

Subtracting two signed integers:

(-9) - 6
-9 - 6
9 fip 1 72
1(0/1|1]|1 ©0|0/1|1|0 01001 —— 10110 — 10111
23 6 Two’s

Complement

15 . _15
fl +1
1lelele|1 01111 —P, 10000 — 10001

Condition Codes

Bit Name Meaning after add or sub

N | negative | resultis negative

Z |zero result is zero

C |carry signed arithmetic out of range
V | overflow | signed arithmetic out of range

NZCV

CPSR (Current Program Status Register)

* Cis set upon an unsigned addition if the answer is wrong
* Cis cleared upon an unsigned subtract if the answer is wrong
* Vs set upon a signed addition or subtraction if the answer is wrong

Why do we care about these bits!?

Carry and Overflow Flags

IMPORTANT

Carry flag C = | (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true result > 2"-1)
Carry flag C = 0 (Borrow flag = |) upon an unsigned subtraction if the answer is wrong (true result < 0)
Overflow flagV =1 upon a signed addition or subtraction if the answer is wrong (true result > 2™'-| or true

result < -2m')

c=a+tb

Carry Overflow
(for unsigned) (for signed)

Add Carry = 1if c is too
large to fit in.

Subtract Borrow = 1,i.e.
Carry =0ifa <b.

Overflow = 1 if c is too
large or too small to fit in

\

ARM Cortex-M has no dedicated borrow
flag, carry flag is reused.
For unsigned subtract, Borrow = Carry

Signed Subtraction is converted to sign
addition
a—b=a+(-b)

Characters

American
Standard
Code for
Information
Interchange

Standard ASCI|
0-127
Extended ASCI|
0-255
ANSI
0-255
Unicode
0 - 65535

w N N = = ~
R N [t N [

00 NUL 32 20 SP 64 40 @ 96 60
o1 SOH 33 21 ! 65 41 A 97 61
02 STX 34 22 " 66 42 B 98 62
03 ETX 35 23 # 67 43 C 99 63
04 EOT 36 24 $ 68 44 D 100 64
05 ENQ 37 25 % 69 45 E 101 65
06 ACK 38 26 & 70 46 F 102 66
o7 BEL 39 27 ? 71 47 G 103 67
08 BS 40 28 (72 48 H 104 68
09 HT 41 29) 73 49 I 105 69
0A LF 42 2A * 74 4A J 106 6A
eB VT 43 2B + 75 4B K 107 6B
ecC FF 44 2C 76 4C L 108 6C
eD CR 45 2D - 77 4D M 109 6D
OE SO 46 2E . 78 4E N 110 6E
oF SI 47 2F / 79 4F 0 111 6F
10 DLE 48 30 0 80 50 P 112 70
11 DC1 49 31 1 81 51 Q 113 71
12 DC2 50 32 2 82 52 R 114 72
13 DC3 51 33 3 83 53 S 115 73
14 DC4 52 34 4 84 54 T 116 74
15 NAK 53 35 5 85 55 U 117 75
16 SYN 54 36 6 86 56 \') 118 76
17 ETB 55 37 7 87 57 W 119 77
18 CAN 56 38 8 88 58 X 120 78
19 EM 57 39 9 89 59 Y 121 79
1A SuB 58 3A : 920 5A Z 122 7A
1B ESC 59 3B 5 91 5B [123 7B
1C FS 60 3C < 92 5C \ 124 7C
1D GS 61 3D = 93 5D] 125 7D
1E RS 62 3E > 94 5E n 126 7E
1F us 63 3F ? 95 5F 127 7F

Standard ASCII: Encoding 128 characters

|_Dec_| Hex | Char | Dec | Hex | Char | Dec | Hex | Char | Dec | Hex | Char |
(3

R wYw—AAANK X =T <t 50T OSSHHXUWKE SO QAN OO

Null-terminated String

Memory| Memory
Address Letter
str + 12 > o0x00 \o

str + 11 > 0x79
str + 10 > ox6C
str + 9 > 0x62
str + 8 > oxe6D
str + 7 > 0x65
str + 6 > 0x73
str + 5 > 0x73
str + 4 > ox41
str + 3 > 0x20 space
str + 2 > ox4D M

str + 1 > 0x52 R
str > ox41 A

char str[13] = “ARM Assembly”;
// The length has to be at least
// 13 even though it has 12

// letters. The NULL terminator
// should be included.

>Du unmsS oYK

or simply
char str[] = “ARM Assembly”;

String Comparison

Strings are compared based on their ASCI| values

» 47 <%jar” <“jargon” <“jargonize”

» “CAT” <“Cat” <“DOG” <“Dog” <*“cat” <“dog”
» Y127 <%1237 <2’<“AB” <“Ab” <*ab” <*abc”

String Length

» Stings are terminated with a null character (NUL,ASCII value 6x00)

Pointer dereference operator Array subscript operator

int strlen (char *pStr){ int strlen (char *pStr){
int i = 0; int i = 0;
// loop until *pStr is NULL // loop until pStr[i] is NULL
while(*pStr) { while(pStr[i])
i++; 1++;
pStr++;
} return i;
return i; }
}

Convert to Upper Case

42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 S5A

62 63 64 65 66 67 68 69 6A 6B 6C 6D G6E 6F 70 71 72 73 74 75 76 77 78 79 T7A

‘a’ - ‘A’ = Ox61 - Ox41 = Ox20 = 32

void toUpper(char *pStr){ void toUpper(char *pStr){
char *p; int i;
char ¢ = pStr[o];
for(*p = pStr; *p; ++p){ for(i = @; c; i++, c = psStr[i];) {
if(*p >= *a’ && *p <= ’2°) if(c >= ’a’ && c <= ’2°)
¥p -= ‘3’ - A’; pStr[i] -= ‘a’ - ‘A’;
//or: *p -= 32; // or: pStr[i] -= 32;
} }
} }

» Unsigned integer arithmetic

» Signed integer arithmetic

» 2’s complement

» ASCII strings

References

» Lecture |.Why use two's complement?
» https://www.youtube.com/watch?v=I]CefgV80ck&list=PLR]hV4hUhlymmp5CCelFPyxb
knsdeXCc8&index=|
» Lecture 2: Carry flag for unsigned addition and subtraction
» https://www.youtube.com/watch?v=MxGW2WurKuM&list=PLR]hV4hUhlymmp5CCel
FPyxbknsdcXCc8&index=2
» Lecture 3: Overflow flag for signed addition and subtraction

» https://www.youtube.com/watch?v=BIn6iyYIGio&list=PLR|hV4hUhlymmp5CCelFPyxb
knsdcXCc8&index=3

https://www.youtube.com/watch?v=lJCefqV80ck&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=1
https://www.youtube.com/watch?v=lJCefqV80ck&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=1
https://www.youtube.com/watch?v=lJCefqV80ck&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=1
https://www.youtube.com/watch?v=MxGW2WurKuM&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=2
https://www.youtube.com/watch?v=MxGW2WurKuM&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=2
https://www.youtube.com/watch?v=MxGW2WurKuM&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=2
https://www.youtube.com/watch?v=BIn6iyYIGio&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=3
https://www.youtube.com/watch?v=BIn6iyYIGio&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=3
https://www.youtube.com/watch?v=BIn6iyYIGio&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=3

	Slide 1: Z. Gu Hofstra University
	Slide 2: Bit, Byte, Half-word, Word, Double-Word
	Slide 3: Binary, Decimal and Hex
	Slide 4: Range of Unsigned Integers
	Slide 5: Unsigned Integers
	Slide 6: Carry/borrow flag bit for unsigned arithmetic
	Slide 7: Carry/borrow flag bit for unsigned numbers
	Slide 8: Carry/borrow flag bit for unsigned numbers
	Slide 9: Signed Integer Representation
	Slide 10: Signed Integers Method 1: Signed Magnitude
	Slide 11: Signed Integers Method 2: One’s Complement
	Slide 12: Signed Integers Method 3: Two’s Complement (TC)
	Slide 13: Signed Integers Method 3: Two’s Complement (TC)
	Slide 14: Signed Integers Method 3: Two’s Complement (TC)
	Slide 15: Quiz
	Slide 16: Quiz ANS
	Slide 17: Two’s Complement (TC)
	Slide 18: Two’s Complement for 8-bit System
	Slide 19: Sign Extension
	Slide 20: Comparison
	Slide 21: Comparison: unsigned vs. signed
	Slide 22: Range of Signed Integers (Two’s Complement)
	Slide 23: Overflow Flag for Signed Arithmetic
	Slide 24: Overflow Flag for Signed Arithmetic
	Slide 25: Overflow for Signed Add
	Slide 26: Overflow for Signed Add
	Slide 27: Signed or unsigned
	Slide 28: Signed or Unsigned
	Slide 29: Signed or Unsigned
	Slide 30: Two’s Complement Simplifies Hardware Implementation
	Slide 31: Adding two signed integers: (-9) + 6
	Slide 32: Subtracting two signed integers: (-9) - 6
	Slide 33: Condition Codes
	Slide 34: Carry and Overflow Flags
	Slide 35: Characters
	Slide 36: Null-terminated String
	Slide 37: String Comparison
	Slide 38: String Length
	Slide 39: Convert to Upper Case
	Slide 40: Summary
	Slide 41: References

