Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C

Chapter |
Computer and Assembly Language

Z. Gu

Spring 2026

| Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Why ARM processor

» ARM: Acorn RISC Machine, founded in 1990

» Public company, Headquarter at Cambridge, England, UK, 2023
Revenue: US$2.68 billion

» Arm processors are used as the main CPU for most mobile
phones and handhelds

» The world's second fastest supercomputer in 2022, the
Japanese Fugaku is based on Arm AArché4 architecture

Embedded Systems

Data Address

, , , OXFFFFFFFF
» Memory is arranged as a series of “locations”

» Each location has a unique “address”
» Each location holds a byte (byte-addressable)

» e.g.the memory location at address 0x080001B0
contains the byte value 9x70,i.e.,112

70 | Ox0680001B6

» The number of locations in memory is limited BC | Ox080001AF
_ 932 : 18 | 0x080001AE

» e.g.4 GB = 2°2 bytes =» 4,294,967,296 locations 51 | ox03000 14D

» Values stored at each location can represent A |0x080001AC

either program data or program instructions

» e.g.the value 0x70 might be the code used to tell
the processor to add two values together

9x00000000

Computer Architecture

Von-Neumann Harvard
Instructions and data are stored Data and instructions are stored
in the same memory. into separate memories.

Instruction
Memory

Instruction
Processor <:> and Data Processor
Memory

Data
Memory

Computer Architecture

Von-Neumann Harvard
Instructions and data are stored Data and instructions are stored
in the same memory. into separate memories.

Central Central
Processing Instruction Processing Instruction
Unit (CPU) and Data Unit (CPU) Memory
Memory Instruction
, Instruction - Data
Control Unit |- # Data Control Unit
—= Address
—p=| Address Instruction
Opcode l T Status Opcode l T Status | Memory
Arthmetic & Arthmetic & Address /0
Add rithmetic _
Logic Unit ross 4 Logic Unit Eséﬁ Memory Peripherals
(ALV) 1o (ALU) eSS o Address
Result/ Peripherals Result/ »| Data
Operands | Address Operands
] Data Data
Registers |-= & Data Registers |- Data
Memory
—-
Address
e —
Data

von Neumann vs. Harvard

» Von Neumann Architecture: One memory, one address space, one main bus
» Instructions and data are stored in the same memory
» CPU fetches instructions and accesses data over the same bus
» Simple and flexible, but instruction fetch and data access cannot happen at the same time
» Advantages: more efficient memory space utilization, with more flexible placement of instructions and data in memory
» Mental model: Code and data live together, competing for attention.

» Harvard Architecture: Separate memories, separate buses

Instructions stored in instruction memory; Data stored in data memory

CPU can fetch an instruction and access data simultaneously

Advantages: Higher and more predictable performance

Common in DSPs (Digital Signal Processors)

Mental model: Code and data live in different houses, with separate roads.

» ARM Cortex-M uses a modified Harvard architecture: a unified address space with separate instruction and
data paths.
» Unified address space (programmer sees one memory map)

Physically separate instruction and data buses inside the CPU

Instruction memory (Flash) and data memory (SRAM) are distinct; allows instruction fetch and data access in parallel

Why “modified”? Instructions and data have different physical paths, but they share a single, consistent address space

v Vv Vv Vv Vv

v Vv Vv

_____________________________________ ARM refers to an instruction set architecture (ISA);
> 7 Cortex-M is a microarchitecture implementing it.

von Neumann vs. Harvard: Summary

» Von Neumann: Instructions and data share the same memory and bus — no
parallel access

» Harvard: Instructions and data use separate memories and buses — parallel
access

» ARM Cortex-M: Modified Harvard: ARM Cortex-M uses a modified Harvard
architecture: a unified address space with separate instruction and data paths.

Levels of Program Code

Machine Program

C Program Assembly Program
- ~ /” 6010000100000000 "\
. . .d MOVS ri1, #0
(“int main(void){) MOV 1o 0 0010000000000000
J..nt i; . 1 1110000000000001
int total = ©; Compile B check Assemble 0100010000000001
for (i = 0; i < 10; i++) { —_— loop ADD ril, ri, re > 0001110001000000
} total += i; ADDS re, re, #1 0010100000001010
check CMP ro, #18
y s 1/ pead toop BT loop 1011111100000000
\J / \Self B self J _1110011111111110 /
» High-level language » Assembly language » Hardware
» Level of abstraction closer to » Textual representation I"epl"esentation
problem domain of instructions » Binary digits (bits)
» Provides for productivity and » Human-readable » Encoded instructions
portability format instructions and data

» Computer-readable
format instructions

See a Program Runs

C Code

int main(void){ Assembly Code
int a = 0; MOVS rl1, #0x00 ; int a = ©
int b = 1; compiler MOVS r2, #0x01 ; int b = 1
int c; mmsssss) | ADDS r3, ri, r2 ; Cc=a+b
cC = a + b; MOVS r@, 0x00 ; set return value
return 0; BX 1r ; return

} e

Machine Code

0010000100000000 2100
0010001000000001 2201
0001100010001011 188B ADDS r3, ri1, r2
0010000000000 2000 MOVS ro, #0x00
0100011101110000 4770 ; BX 1r

MOVS rl, #0x00
MOVS r2, #0x01

e e wo

e

In Binary In Hex

Processor Registers

32 bits
-~ » Fastest way to read and write
4 RO h » Registers are within the processor chip
i; » A register stores 32-bit value
] R3 » ARM Cortex-M has
Registers R4 » RO-R12:13 general-purpose registers
R5 . » R13:Stack pointer (Shadow of MSP or PSP)
R6 > Purpose » R14:Link register (LR)
> R7 » R15: Program counter (PC)
R8
= » Special registers (xPSR, BASEPRI, PRIMASK, etc)
High 32 bits
Registers R10
R11 xPSR |)
g R12 _ BASEPRI Special
R13 (SP) R13 (MSP) R13 (PSP) PRIMASK | - Purpose
R14 (LR) FAULTMASK ’
R15 (PC) CONTROL |

()

Program Execution

» Program Counter (PC) is a register that holds the memory address of the next instruction to be
fetched from the memory.

Memory Address
|. Fetch

instruction at
PC address 4770 | 0x080001B4
2000 | 0x080001B2
PC > 188B | 0x080001B0O
2201 | Ox080001AE
3. Execute 2. Decode 2100 | 0x080001AC

the the

instruction

instruction PC = 0x080001B0
v Instruction = 188B

Three-state pipeline:
Fetch, Decode, Execution

» Pipelining allows hardware resources to be fully utilized
» One 32-bit instruction or two |6-bit instructions can be fetched.

Clock

|

Instruction Instruction Instruction

Instruction i Fetch Decode Execution

Instruction Instruction Instruction

Instruction i + 1 Fetch Decode Execution

Instruction Instruction Instruction

Instruction i + 2 Fetch Decode Execution

Pipeline of 32-bit instructions

Three-state pipeline:
Fetch, Decode, Execution

» Pipelining allows hardware resources to be fully utilized
» One 32-bit instruction or two |6-bit instructions can be fetched.

ook | B

Instruction Instruction Instruction
Fetch Decode Execution

Instructioni + 1 m
Instruction i + 2 Instruction Instruct_lon
Decode Execution
ion i Instruction Instruction
Instruction i + 2 _
Decode Execution

Pipeline of 16-bit instructions (each instruction fetch

Instruction i

Instruction Instruction

Decode Execution

Machine codes are stored in memory

'' Data " "Address

r15 :’C OXFFFFFFFF

rl4 r

rl3 Sp

ri2

ril

ri0

r9 — 4770 | 0x080001B4

8 DALY 2000 | 9x080001B2

r7 — 188B | 9x080001B0

r6 2201 | Ox080001AE

5 2100 | 0x080001AC

r4

r3

r2

ri

0 0X00000000
““““““““““““ Registers CPU T T "Memory T
» 15 4

Fetch Instruction: pc = 0x08001AC
Decode Instruction: 2100 = MOVS rl, #0x00

""" Data "Address

ri5
ri4
ri3
ri2
ril
rio

r9

r8
r7

ré
r5
r4
r3
r2
ri
r0

0x080001AC

Registers

pC
Ir

sp

>ALU

CPU

MO

2100 en

47709

2000

188B

2201

—> 2100

OXFFFFFFFF

0x080001B4
0x080001B2
0x080001BO
OX080001AE
0x080001AC

0Xx00000000

ion
itted)

Execute Instruction:
MOVS rl, #0x00

'' Data "Address

r15 | 0x080001AC | pc OxEEEEEEEE

rl4 Ir

rl3 Sp

ri2

ril

ri0

r9] 4770 | 0x080001B4

8 DALY 2000 | 9x080001B2

r7 — 188B | 9x080001B0

r6 2201 | OxXO80001AE

r5 —> 2100 | 9x080001AC

r4

r3

r2

rl | 0x00000000

0 X00000000
““““““““““““ Registers CPU]ermor@
» 17 4

Fetch Next Instruction: pc = pc + 2

'' Data ~Address

r|15| 0x08000IAE | PC OXEEFEFFEE
rl4 Ir

Thumb-2 consists of a
mix of 16- & 32-bit ri3 Sp
instructions rl?2
In reality, we always I
fetch 4 bytes from the r
instruction memory ri0
(either one 32-bit —
. . r9 4770 | 0x080001B4
instruction or two |6-
bit instructions) r8 >ALU 2000 Ox080001B2
To simplify the demo, r7 — 188B | 9x080001B0
we assume we only
fetch 2 bytes from the ré 2291 | 6x080001AF
instruction memory in r5 2100 | 6x080001AC
this example. r4

r3

r2

rl | 0x00000000

0 L 0x00000000

> s Registers = = | Memory

Fetch Next Instruction: pc = pc + 2
Decode & Execute: 2201 = MOVS r2, #0x01

'' Data "Address

r15 | 0x080001AE | pPC OXEFEEEEEE

ri4 Ir

rl3 Sp

ri2

ril

ri0

r9] 4770 | 0x080001B4

8 DALY 2000 | 9x080001B2

r7 — 188B | 9x080001B0O

ré 5[2201 | 0xO80001AE

5 2100 | 9x080001AC

r4

r3

r2 | 0x00000001

ri | 0x00000000

rO

0x00000000

““““““““““““ Registers CPU | X
» 19 8 Memory

Fetch Next Instruction: pc = pc + 2
Decode & Execute: 188B = ADDS r3, rl, r2

'' Data "Address
rl5 [0x080001BO | pPcC OXEEEEEEEE
rl4 Ir
rl3 Sp
rl2
ril
ri0
r9 —— 4770 | 0x080001B4
8 DAL 2000 | 0x080001B2
r7 — —| 188B | 9x080001B0O
r6 2201 | ox080001AE
5 2100 | x080001AC
r4
r3 | 0x00000001 |4
r2 | 0x0000000I|
rl | 0x00000000
0 L 0x00000000
> 0 Registers T 7 [Memory T

Fetch Next Instruction: pc = pc + 2
Decode & Execute: 2000 = MOVS ro, #0x00

'' Data "Address
r15 | 0x080001B2 | pc OxEEEEEEEE
rl4 Ir
rl3 Sp
ri2
ril
ri0
r9 = 4770 | 0x08000 | B4
8 DALY —— 2000 | 0x080001B2
r7 — 188B | 0x080001B0
ré 2201 | 0x080001 AE
r5 2100 | 0x080001AC
r4
r3
r2 | 0x0000000|
rl | 0x00000000
r0 | 0x00000000 P 0500000000
> BT Registers T 7 [Memory

Fetch Next Instruction: pc = pc + 2
Decode & Decode: 4770 = BX 1r

""" Data "Address

rl5 | 0x080001B4 | pPC OXFFEFFEEE

rl4 Ir

rl3 Sp

ri2

ril

ri0

r9 — » 4770 | 9x080001B4

8 DALY 2000 | 0x080001B2

r7 B 183B | 9x080001BO

ré 2201 | 0x080001AE

5 2100 | 9x080001AC

r4

r3

r2 [0x00000001I

rl | 0x00000000

r0 [0x00000000

0x00000000

““““““““““““ Registers CPU | o
> 2 g Memory

Realities

» In the previous example,
» PC is incremented by 2

Well, | lied!

Realities

» PC is always incremented by 4.
» Each time, 4 bytes are fetched from the instruction memory

» It is either two |6-bit instructions or one 32-bit instruction

- ——— — — — 16-bit half-word = == == o= o= o -

Instruction
Stream

X X X X X X X X X X X X X X X X L —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

If bit [15-11] =11101,11110,0r 11111, then, it is the first half-word of a 32-bit instruction.

Otherwise, it is a | 6-bit instruction.

Example:
Calculate the Sum of an Array

int a[1e0] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int total;

int main(void){
int 1i;
total = ©;
for (1 =0; 1< 10; i++) {
total += a[i];

}
while(1);

Example:
Calculate the Sum of an Array

CPU

Instruction
Memory (Flash)

int main(void){
int i;
total = 0;
for (i=0;i < 10; i++) {
total += a[i];
}
while(1);
}

Data
Memory (RAM)

inta[l10]={l,2,3,4,5,6,7,
8,9, 10};
int total;

1/0 Devices

Starting mem ddress
0x08000000

Starting mem address
0x20000000

Example:
Calculate the Sum of an Array

0010 0001 0000 0000
0100 1010 0000 1000
0110 0000 0001 0001 MOVS rl,#0x00

Instruction LDR r2,= total_addr
Memory (Flash) 0010 0000 0000 0000 STR rl,[r2, #0x00]
1110 0000 0000 1000 MOVS r0. #0x00
0100 1001 0000 0111 B Check
int main(void){ 1111 10000101 0001 Loop:LDR rl,=a_addr
int i; 0001 0000 0010 0000 LDR rl,[rl,r0,LSL #2]
for (12 0.1 < 10:44) 0100 1010 0000 0100 | <= LDR r2,= total_addr
total += afi; 0110 1000 0001 0010 LDR ~ r2,[r2,7#0x00]
} ’ ADD rl,rl,r2
b bite(1); 0100 0100 0001 0001 LDR r2,= total addr
) 0100 1010 0000 001 | STR rl, [r2,#0x00]
Starting memory address 0110 0000 0001 0001 ADDS rO0,r0,#I
0x08000000 0001 1100 0100 0000 Chec';:_:rMP 'I‘_O’ #0x0A
oop
0010 1000 0000 1010 Nop
1101 1011 11110100 Slf: B Self

1011 1111 0000 0000
oottt tnio

Example:
Calculate the Sum of an Array

Data
Memory (RAM)

inta[l10]={l,2,3,4,5,6,7,8,9, 10};
int total;

Assume the starting memory address of
the data memory is 0x20000000

0x20000054
0x20000050
0x2000004C
0Xx20000048
0x20000044
0x20000040
0x2000003C
0Xx20000038
0x20000034
0Xx20000030
0x2000002C
0x20000028
0x20000024
0Xx20000020
0x2000001C
0x20000018
0x20000014
0Xx20000010
0x2000000C
0x20000008
0Xx20000004
0X20000000

0Xx00000000
0Xx00000000
0x00000000
0Xx00000000
0Xx00000000
0x00000000
0x00000000
0x00000000
0Xx00000000
0x00000000
0Xx00000000
0Xx00000000
0X0000000A
0x00000009
0x00000008
0x00000007
0x00000006
0x00000005
0x00000004
0x00000003
0x00000002
0x00000001

total
a[9]
a[8]
a[7]
a[6]
a[5]
a[4]
a[3]
a[2]
a[1]
a[e]

0x00000000
0X0000000A
0x00000009
0x00000008
0x00000007
0x00000006
0x00000005
0x00000004
0x00000003
0x00000002
0x00000001

Loading Code and Data into Memory

int counter;

int a[5] = {1, 2, 3, 4, 5};

int main{void){
int 1i;

int b[5];

counter = 8;

for (i =8; 1 < 5; i++){
b[i] = a[i];
counter++

}
while(1);

C Program:
Copying an Array

@xFFFF, FFFF

SRAM Start Address

Data Memory
(SRAM)

Instruction Memaory
Start Address

Bxeees , ee0e

Instruction
Memory

(Flash Memory)

ARM Cortex-M uses a modified Harvard architecture: a unified
address space with separate instruction and data paths.

Loading Code and Data into Memory

@xFFFF, FFFF

int counter;

int a[5] = {1, 2, 3, 4, 5};

- - - Data Memory
int main{void){ (SRAM)
[int i; |
int b[5]; SRAM Start Address

counter = 9;
for (i = @; i ¢ 5; i++){

I .
b[i] = a[4i]; nstruction

Memory

} counter++ (Flash Memory)
} while(1); Instruction Memaory
Start Address
Dissection of a C Program:
Copying an Array 8x2880 , P08

Loading Code and Data into Memory

To improve performance, some
variables are not stored in memory.
Variable i will be stored in a register.

Dissection of a C Program:
Copying an Array

Instruction Memory

Memory

(Flash Memory)

Start Address

0x0000,0000

SRAM End Address tack Start
l Main Stack ac
int counter; _— int b[5]:
) [| — < — f} Stack Pointer (SP)
""Iln.‘ ‘pl""
int a[s] = {1, 2, 3, 4, 5}; |—|Z ~ - Stack grows down
, —— - N |« Stack End
int main(void){ - "'-"“"'-.,H ~ — Heap End
|ir|1: i- I_ — — - \
2 - ~
— - \ \
int b[5]; P— — — Heap grows up
N S T -+—— Heap Start
counter = 8; ~ S Zero-nitialized Data
for (i = @; i < 5; i++){ — ~ 7~ counter = 0;
b[i] = a[i]; Data Memory — . Initialized Data
counter++ ~ SRAM Start (SRAM) af5] ={1,2,3,4,5};
ddress 7
} SRAM Start Address
while(1); \
} * Stack is mandatory
\ Instruction * Heap is used only if

dynamic allocation (e.g.
malloc, calloc) is used.

Program Counter (PC)

Instruction memory is programmed in Flash once at load time; only
data sections are copied/initialized in SRAM at reset

View of a Binary Program

ELF Image
File View

ELF Header

(Frogram Header 1 anie
inpuf SeCtion |

Tnput Sechion 2

Tnput Sechion n

Section Header Table

RAM

Loading View

Read-write
Section (RW)

Readonly
Section (RO)

Execution View
Uninitialized i
variahles are
initiahized 1o zero, A 7 limit
. Zero Initialized S
Section (Z|
) RAM Z| base
— [RANRW limit
Copy o Read-write
Section (RW
ROM to RAM lib RAM_RW base
VA
RO ROM RO limi
Readonly ROt
0000000y Section (RO) ROM RO base

STM32L4

Parallel Interface
FSMC 8-/16-bit

Connectivity

USB OTG,
1x SD/SDIO/MMC, 3 x SPI,

Cortex-M4
80 MHz
FPU
MPU
Display ETM

LCD driver 8 x 40 DMA

ART
Accelerator™

(TFT-LCD, SRAM, NOR,
NAND)

3 x I?)C, 1x CAN, 1 x Quad
SPI;
5 x USART + 1 x ULP

Digital

AES (256-bit), TRNG, 2 x
SAl, DFSDM (8 channels)

Timers

17 timers including:
2 X 16-bit advanced motor
control timers
2 X ULP timers
7 X 16-bit-timers
2 X 32-bit timers

Up to
1-Mbyte Flash Analog
with ECC
Dual Bank

3 x 16-bit ADC, 2 x DAC,
2 x comparators, 2 x op
1/0s 128-Kbyte RAM

amps
1 X temperature sensor

Up to 114 I/Os
Touch-sensing controller

p 33 from st.com

512MB <

1GB

1GB

s12MB <

s1amB <

@XFFFFFFFF

0xE0100000
OxE0000000

oxCo00eRee

0xA0000Le0

0x80000000

0x60000000

0x40026400
0x40000000

0x20000000

0x08000000
0Xx00000000

Cortex-M3 Internal
Peripherals (64 KB)

External
Device

External
RAM

Peripheral
(153KB)
SRAM
(Data Memory)

Flash Memory

(Instruction Memory)

SRAM end address

< Stack start
Main Stack
Y, 4 Stack
/ pointer (SP)
/ Stack grows down.
7 d «+—— Stack end
/ <+— Heap end
4 Heap grows up.

« Heap start

0x20000000 Data

SRAM start address

} 128MB

	Slide 1
	Slide 2: Why ARM processor
	Slide 3: Embedded Systems
	Slide 4: Memory
	Slide 5: Computer Architecture
	Slide 6: Computer Architecture
	Slide 7: von Neumann vs. Harvard
	Slide 8: von Neumann vs. Harvard: Summary
	Slide 9: Levels of Program Code
	Slide 10: See a Program Runs
	Slide 11: Processor Registers
	Slide 12: Program Execution
	Slide 13: Three-state pipeline: Fetch, Decode, Execution
	Slide 14: Three-state pipeline: Fetch, Decode, Execution
	Slide 15: Machine codes are stored in memory
	Slide 16: Fetch Instruction: pc = 0x08001AC Decode Instruction: 2100 = MOVS r1, #0x00
	Slide 17: Execute Instruction: MOVS r1, #0x00
	Slide 18: Fetch Next Instruction: pc = pc + 2
	Slide 19: Fetch Next Instruction: pc = pc + 2 Decode & Execute: 2201 = MOVS r2, #0x01
	Slide 20: Fetch Next Instruction: pc = pc + 2 Decode & Execute: 188B = ADDS r3, r1, r2
	Slide 21: Fetch Next Instruction: pc = pc + 2 Decode & Execute: 2000 = MOVS r0, #0x00
	Slide 22: Fetch Next Instruction: pc = pc + 2 Decode & Decode: 4770 = BX lr
	Slide 23: Realities
	Slide 24: Realities
	Slide 25: Example: Calculate the Sum of an Array
	Slide 26: Example: Calculate the Sum of an Array
	Slide 27: Example: Calculate the Sum of an Array
	Slide 28: Example: Calculate the Sum of an Array
	Slide 29: Loading Code and Data into Memory
	Slide 30: Loading Code and Data into Memory
	Slide 31: Loading Code and Data into Memory
	Slide 32: View of a Binary Program
	Slide 33: STM32L4
	Slide 34: Memory Map

