
Spring 2026

Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C

Chapter 1

Computer and Assembly Language

1

Z. Gu

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Why ARM processor

2

 ARM: Acorn RISC Machine, founded in 1990

 Public company, Headquarter at Cambridge, England, UK, 2023

Revenue: US$2.68 billion

 Arm processors are used as the main CPU for most mobile

phones and handhelds

 The world's second fastest supercomputer in 2022, the

Japanese Fugaku is based on Arm AArch64 architecture

Embedded Systems

3

Memory

 Memory is arranged as a series of “locations”

 Each location has a unique “address”

 Each location holds a byte (byte-addressable)

 e.g. the memory location at address 0x080001B0

contains the byte value 0x70, i.e., 112

 The number of locations in memory is limited

 e.g. 4 GB = 232 bytes ➔ 4,294,967,296 locations

 Values stored at each location can represent

either program data or program instructions

 e.g. the value 0x70 might be the code used to tell

the processor to add two values together

4

70
BC
18
01
A0

0x00000000

0xFFFFFFFF

0x080001B0
0x080001AF
0x080001AE
0x080001AD
0x080001AC

Memory

AddressData

8 bits 32 bits

5

Computer Architecture

Instructions and data are stored

in the same memory.

Von-Neumann Harvard

Data and instructions are stored

into separate memories.

6

Computer Architecture

Instructions and data are stored

in the same memory.

Von-Neumann Harvard

Data and instructions are stored

into separate memories.

von Neumann vs. Harvard

7

 Von Neumann Architecture: One memory, one address space, one main bus

 Instructions and data are stored in the same memory

 CPU fetches instructions and accesses data over the same bus

 Simple and flexible, but instruction fetch and data access cannot happen at the same time

 Advantages: more efficient memory space utilization, with more flexible placement of instructions and data in memory

 Mental model: Code and data live together, competing for attention.

 Harvard Architecture: Separate memories, separate buses

 Instructions stored in instruction memory; Data stored in data memory

 CPU can fetch an instruction and access data simultaneously

 Advantages: Higher and more predictable performance

 Common in DSPs (Digital Signal Processors)

 Mental model: Code and data live in different houses, with separate roads.

 ARM Cortex-M uses a modified Harvard architecture: a unified address space with separate instruction and
data paths.

 Unified address space (programmer sees one memory map)

 Physically separate instruction and data buses inside the CPU

 Instruction memory (Flash) and data memory (SRAM) are distinct; allows instruction fetch and data access in parallel

 Why “modified”? Instructions and data have different physical paths, but they share a single, consistent address space

ARM refers to an instruction set architecture (ISA);

Cortex-M is a microarchitecture implementing it.

von Neumann vs. Harvard: Summary

8

 Von Neumann: Instructions and data share the same memory and bus → no

parallel access

 Harvard: Instructions and data use separate memories and buses → parallel

access

 ARM Cortex-M: Modified Harvard: ARM Cortex-M uses a modified Harvard

architecture: a unified address space with separate instruction and data paths.

Levels of Program Code

9

 High-level language

 Level of abstraction closer to
problem domain

 Provides for productivity and
portability

C Program

Compile Assemble

Assembly Program

 Assembly language

 Textual representation
of instructions

 Human-readable
format instructions

Machine Program

 Hardware
representation

 Binary digits (bits)

 Encoded instructions
and data

 Computer-readable
format instructions

0010000100000000
0010000000000000
1110000000000001
0100010000000001
0001110001000000
0010100000001010
1101110011111011
1011111100000000
1110011111111110

int main(void){
 int i;
 int total = 0;
for (i = 0; i < 10; i++) {

 total += i;
 }
 while(1); // Dead loop
}

See a Program Runs

int main(void){
 int a = 0;
 int b = 1;
 int c;
 c = a + b;
 return 0;
}

10

C Code

compiler

MOVS r1, #0x00 ; int a = 0
MOVS r2, #0x01 ; int b = 1
ADDS r3, r1, r2 ; c = a + b
MOVS r0, 0x00 ; set return value
BX lr ; return

Assembly Code

0010000100000000
0010001000000001
0001100010001011
0010000000000000
0100011101110000

Machine Code

In Binary

; MOVS r1, #0x00
; MOVS r2, #0x01
; ADDS r3, r1, r2
; MOVS r0, #0x00
; BX lr

2100
2201
188B
2000
4770

In Hex

Processor Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low

Registers

High

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

11

 Fastest way to read and write

 Registers are within the processor chip

 A register stores 32-bit value

 ARM Cortex-M has

 R0-R12: 13 general-purpose registers

 R13: Stack pointer (Shadow of MSP or PSP)

 R14: Link register (LR)

 R15: Program counter (PC)

 Special registers (xPSR, BASEPRI, PRIMASK, etc)

Program Execution

 Program Counter (PC) is a register that holds the memory address of the next instruction to be

fetched from the memory.

1. Fetch

instruction at

PC address

2. Decode

the

instruction

3. Execute

the

instruction

4770
2000
188B
2201
2100

0x080001B4
0x080001B2
0x080001B0
0x080001AE
0x080001AC

PC

Memory Address

12

PC = 0x080001B0
Instruction = 188B

Three-state pipeline:

Fetch, Decode, Execution

 Pipelining allows hardware resources to be fully utilized

 One 32-bit instruction or two 16-bit instructions can be fetched.

13

Pipeline of 32-bit instructions

Three-state pipeline:

Fetch, Decode, Execution

 Pipelining allows hardware resources to be fully utilized

 One 32-bit instruction or two 16-bit instructions can be fetched.

14

Pipeline of 16-bit instructions (each instruction fetch

brings in 32 bits, two 16-bit instructions)

Instruction i
Instruction

Fetch

Instruction

Decode

Instruction

Execution

Instruction

Fetch

Instruction

Decode

Instruction

Execution

Instruction

Fetch

Instruction

Decode

Instruction

Execution

Clock

Instruction i + 1

Instruction i + 2

Instruction

Fetch

Instruction

Decode

Instruction

Execution
Instruction i + 2

Machine codes are stored in memory

r15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

ALU

4770
2000
188B
2201
2100

pc

lr

sp

0x00000000

0xFFFFFFFF

0x080001B4
0x080001B2
0x080001B0
0x080001AE
0x080001AC

Registers Memory

AddressData

CPU
15

Fetch Instruction: pc = 0x08001AC
Decode Instruction: 2100 = MOVS r1, #0x00

0x080001ACr15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

ALU

4770
2000
188B
2201
2100

pc

lr

sp

0x00000000

0xFFFFFFFF

Registers Memory

AddressData

CPU

0x080001B4
0x080001B2
0x080001B0
0x080001AE
0x080001AC

16

2100 encodes the whole instruction

MOVS r1, #0x00 (details omitted)

Execute Instruction:

MOVS r1, #0x00

0x080001AC

0x00000000

r15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

ALU

4770
2000
188B
2201
2100

pc

lr

sp

0x00000000

0xFFFFFFFF

Registers Memory

AddressData

CPU

0x080001B4
0x080001B2
0x080001B0
0x080001AE
0x080001AC

17

Fetch Next Instruction: pc = pc + 2

0x080001AE

0x00000000

r15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

ALU

4770
2000
188B
2201
2100

pc

lr

sp

0x00000000

0xFFFFFFFF

Registers Memory

AddressData

CPU

0x080001B4
0x080001B2
0x080001B0
0x080001AE
0x080001AC

18

• Thumb-2 consists of a

mix of 16- & 32-bit

instructions

• In reality, we always

fetch 4 bytes from the

instruction memory

(either one 32-bit

instruction or two 16-

bit instructions)

• To simplify the demo,

we assume we only

fetch 2 bytes from the

instruction memory in

this example.

Fetch Next Instruction: pc = pc + 2
Decode & Execute: 2201 = MOVS r2, #0x01

0x080001AE

0x00000001

0x00000000

r15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

ALU

4770
2000
188B
2201
2100

pc

lr

sp

0x00000000

0xFFFFFFFF

Registers Memory

AddressData

CPU

0x080001B4
0x080001B2
0x080001B0
0x080001AE
0x080001AC

19

Fetch Next Instruction: pc = pc + 2
Decode & Execute: 188B = ADDS r3, r1, r2

0x080001B0

0x00000001

0x00000001

0x00000000

r15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

ALU

4770
2000
188B

2201
2100

pc

lr

sp

0x00000000

0xFFFFFFFF

Registers Memory

AddressData

CPU

0x080001B4
0x080001B2
0x080001B0
0x080001AE
0x080001AC

20

Fetch Next Instruction: pc = pc + 2
Decode & Execute: 2000 = MOVS r0, #0x00

0x080001B2

0x00000001

0x00000000

0x00000000

r15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

ALU

4770
2000
188B
2201
2100

pc

lr

sp

0x00000000

0xFFFFFFFF

Registers Memory

AddressData

CPU

0x080001B4

0x080001B2

0x080001B0

0x080001AE

0x080001AC

21

Fetch Next Instruction: pc = pc + 2
Decode & Decode: 4770 = BX lr

0x080001B4

0x00000001

0x00000000

0x00000000

r15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

ALU

4770
2000
188B
2201
2100

pc

lr

sp

0x00000000

0xFFFFFFFF

Registers Memory

AddressData

CPU

0x080001B4
0x080001B2
0x080001B0
0x080001AE
0x080001AC

22

BX lr is “branch-and-exchange” return

instruction: it branches to the address held in

the link register (lr) and sets execution state

Realities

23

 In the previous example,

 PC is incremented by 2

Well, I lied!

Realities

24

 PC is always incremented by 4.

 Each time, 4 bytes are fetched from the instruction memory

 It is either two 16-bit instructions or one 32-bit instruction

If bit [15-11] = 11101, 11110, or 11111, then, it is the first half-word of a 32-bit instruction.

Otherwise, it is a 16-bit instruction.

Example:

Calculate the Sum of an Array

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int total;

int main(void){
 int i;
 total = 0;
 for (i = 0; i < 10; i++) {
 total += a[i];
 }
 while(1);
}

25

Example:

Calculate the Sum of an Array

CPU I/O Devices

Data

Memory (RAM)
Instruction

Memory (Flash)

int main(void){

 int i;

 total = 0;

 for (i = 0; i < 10; i++) {

 total += a[i];

 }

 while(1);

}

int a[10] = {1, 2, 3, 4, 5, 6, 7,

8, 9, 10};

int total;

Starting memory address

0x08000000

Starting memory address

0x20000000

26

Example:

Calculate the Sum of an Array

Instruction

Memory (Flash)

int main(void){

 int i;

 total = 0;

 for (i = 0; i < 10; i++) {

 total += a[i];

 }

 while(1);

}

Starting memory address

0x08000000

0010 0001 0000 0000

0100 1010 0000 1000

0110 0000 0001 0001

0010 0000 0000 0000

1110 0000 0000 1000

0100 1001 0000 0111

1111 1000 0101 0001

0001 0000 0010 0000

0100 1010 0000 0100

0110 1000 0001 0010

0100 0100 0001 0001

0100 1010 0000 0011

0110 0000 0001 0001

0001 1100 0100 0000

0010 1000 0000 1010

1101 1011 1111 0100

1011 1111 0000 0000

1110 0111 1111 1110

MOVS r1, #0x00

LDR r2, = total_addr

STR r1, [r2, #0x00]

MOVS r0, #0x00

B Check

Loop: LDR r1, = a_addr

LDR r1, [r1, r0, LSL #2]

LDR r2, = total_addr

LDR r2, [r2, #0x00]

ADD r1, r1, r2

LDR r2, = total_addr

STR r1, [r2,#0x00]

ADDS r0, r0, #1

Check: CMP r0, #0x0A

BLT Loop

NOP

Self: B Self

27

Example:

Calculate the Sum of an Array

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000
0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x0000000A

0x00000009

0x00000008

0x00000007

0x00000006

0x00000005

0x00000004

0x00000003

0x00000002

0x00000001

Data

Memory (RAM)

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int total;

Assume the starting memory address of

the data memory is 0x20000000

0x20000054

0x20000050

0x2000004C

0x20000048

0x20000044

0x20000040

0x2000003C
0x20000038

0x20000034

0x20000030

0x2000002C

0x20000028

0x20000024

0x20000020

0x2000001C

0x20000018

0x20000014

0x20000010

0x2000000C

0x20000008

0x20000004

0x20000000

Memory

address

in bytes

Memory

content

total= 0x00000000

a[9] = 0x0000000A

a[8] = 0x00000009

a[7] = 0x00000008

a[6] = 0x00000007

a[5] = 0x00000006

a[4] = 0x00000005

a[3] = 0x00000004

a[2] = 0x00000003

a[1] = 0x00000002

a[0] = 0x00000001

28

Loading Code and Data into Memory

29

ARM Cortex-M uses a modified Harvard architecture: a unified

address space with separate instruction and data paths.

Loading Code and Data into Memory

30

Loading Code and Data into Memory

31

• Stack is mandatory

• Heap is used only if

dynamic allocation (e.g.

malloc, calloc) is used.

Instruction memory is programmed in Flash once at load time; only

data sections are copied/initialized in SRAM at reset

View of a Binary Program

32

33

STM32L4

from st.com

Memory

Map

34

	Slide 1
	Slide 2: Why ARM processor
	Slide 3: Embedded Systems
	Slide 4: Memory
	Slide 5: Computer Architecture
	Slide 6: Computer Architecture
	Slide 7: von Neumann vs. Harvard
	Slide 8: von Neumann vs. Harvard: Summary
	Slide 9: Levels of Program Code
	Slide 10: See a Program Runs
	Slide 11: Processor Registers
	Slide 12: Program Execution
	Slide 13: Three-state pipeline: Fetch, Decode, Execution
	Slide 14: Three-state pipeline: Fetch, Decode, Execution
	Slide 15: Machine codes are stored in memory
	Slide 16: Fetch Instruction: pc = 0x08001AC Decode Instruction: 2100 = MOVS r1, #0x00
	Slide 17: Execute Instruction: MOVS r1, #0x00
	Slide 18: Fetch Next Instruction: pc = pc + 2
	Slide 19: Fetch Next Instruction: pc = pc + 2 Decode & Execute: 2201 = MOVS r2, #0x01
	Slide 20: Fetch Next Instruction: pc = pc + 2 Decode & Execute: 188B = ADDS r3, r1, r2
	Slide 21: Fetch Next Instruction: pc = pc + 2 Decode & Execute: 2000 = MOVS r0, #0x00
	Slide 22: Fetch Next Instruction: pc = pc + 2 Decode & Decode: 4770 = BX lr
	Slide 23: Realities
	Slide 24: Realities
	Slide 25: Example: Calculate the Sum of an Array
	Slide 26: Example: Calculate the Sum of an Array
	Slide 27: Example: Calculate the Sum of an Array
	Slide 28: Example: Calculate the Sum of an Array
	Slide 29: Loading Code and Data into Memory
	Slide 30: Loading Code and Data into Memory
	Slide 31: Loading Code and Data into Memory
	Slide 32: View of a Binary Program
	Slide 33: STM32L4
	Slide 34: Memory Map

