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Fixed-point Format: Q Notation
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Integer Part Fractional Part

m bits n bits

UQm.n for unsigned fixed-point

Integer Part Fractional Part

m bits n bits
sign bit

Qm.n for signed fixed-point

m + n + 1 bits

Radix Point

Radix Point



Q Notation: UQm.n
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𝒇 = 𝑨𝒉 + 𝑨𝒍 × 𝟐−𝒏

10101.1012 =  𝐴ℎ + 𝐴𝑙 × 2−3

= 21 + 5 × 2−3

= 21.625

m bits n bits

Radix point

Integer Fraction

hA lA



Converting Fixed-point UQ5.3 to Float
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24 23 22 21 20 2-1 2-2 2-3

1 0 1 0 1 1 0 1

𝟏𝟎𝟏𝟎𝟏. 𝟏𝟎𝟏2 

= 𝟏 × 24 + 𝟎 × 23 + 𝟏 × 22 + 𝟎 × 21 + 𝟏 × 20 + 𝟏 × 2−1 + 𝟎 × 2−2 + 𝟏 × 2−3 

= 21.625

Integer Part Fractional Part

𝟏𝟎𝟏𝟎𝟏. 𝟏𝟎𝟏2 =
101011012

23
=

173

8
= 21.625

Radix 

Point



Converting Fixed-point Q4.3 to Float
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-24 23 22 21 20 2-1 2-2 2-3

1 0 1 0 1 1 0 1

𝟏𝟎𝟏𝟎𝟏. 𝟏𝟎𝟏2 =
101011012

23
=

−83

8
= −10.375

Integer Part Fractional PartRadix 

Point
Signed

Bit

𝟏𝟎𝟏𝟎𝟏. 𝟏𝟎𝟏2 

= 𝟏 × −𝟐𝟒 + 𝟎 × 23 + 𝟏 × 22 + 𝟎 × 21 + 𝟏 × 20 + 𝟏 × 2−1 + 𝟎 × 2−2

+ 𝟏 × 2−3 

= −10.375



U5.3 vs. Q4.3
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m bits n bits

Radix point

s

Sign bit

𝒇 = 𝑨𝒉 + 𝑨𝒍 × 𝟐−𝒏

𝒇 = 𝑨𝒉 + 𝑨𝒍 × 𝟐−𝒏
m bits n bits

Radix point

Integer Fraction

hA lA

10101.1012 =  𝐴ℎ + 𝐴𝑙 × 2−3

= 21 + 5 × 2−3

= 21.625

10101.1012 =  𝐴ℎ + 𝐴𝑙 × 2−3

= −11 + 5 × 2−3

= −10.375

Signed Fixed-point Representation Qm.n

Unsigned Fixed-point Representation Um.n



Two Ways of Calculating Two’s Complement (integer) 
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 Convert 10101 into decimal with Two’s Complement notation’

 Method 1, invert bits and add 1:

 01010 + 1 = 01011 = 11 in decimal, hence 10101 = -11 in decimal

 Method 2, calculate directly:

 𝟏 × −𝟐𝟒 + 𝟎 × 23 + 𝟏 × 22 + 𝟎 × 21 + 𝟏 × 20 = −16 + 4 + 1 = −11 in decimal

 The two definitions are mathematically identical (proof omitted)



Convert Float to Fixed-point UQ4.12
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 Calculate 𝑓 × 212 = 12867.964928 

 Round the result to nearest integer, 𝑟𝑜𝑢𝑛𝑑 12867.964928 = 12868

 Convert the integer to binary: 12868 = 0011_0010_0100_01002

 Organize into UQ4.12: 0011.0010_0100_01002

 Final result in hex: 0x3244

 Error = reconstructed_value − true_value =
12868

212 − 𝑓 = 8.5625 × 10−6 

Example:  Convert  𝑓 =  3. 141593 to UQ4.12 (4 bits integer, 12 bits fraction)

𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝑓𝑙𝑜𝑎𝑡 × 2𝑛)

UQm.n for unsigned fixed-point



Convert Float to Fixed-point Q3.12
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 Calculate 𝑓 × 212 = −12867.964928 

 Round the result to an integer, 𝑟𝑜𝑢𝑛𝑑 −12867.964928 = −12868

 Find the 16-bit two’s complement: 1100_1101_1011_11002

 12868 = 0𝑥3244 = 0011 0010 0100 01002

 Invert bits and add 1 → −12868 = 1100 1101 1011 11002

 Organize into Q3.12: 1100.1101_1011_11002

 Final result in hex: 0xCDBC

 Error = reconstructed_value − true_value = −
12868

212 − 𝑓 = 8.5625 × 10−6

Example: Convert  𝑓 =  −3. 141593 to Q3.12 (1 sign bit, 3 bits integer, 12 bits fraction)

Qm.n for signed fixed-point

𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝑓𝑙𝑜𝑎𝑡 × 2𝑛)



Why use fixed-point?
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Floating 
Point

Fixed 
Point
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Normalization
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We can convert 10.74626 to normalized format as follows:

10.746 × 26 =
10.746

8
× 8 × 26 = 1.34325 × 29



IEEE Standard 754 (Signed Floating Point)
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IEEE 754 value:

(−1)𝑆× (1 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛) × 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−𝐵𝑖𝑎𝑠

where Bias = 27 - 1 = 127 for single precision FP32 

          Bias = 210 - 1 = 1023 for double precision FP64

Hidden bit refer to the implicit leading 1 in (1 + fraction)

Fraction is also called significand or mantissa



Why Bias?
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 FP32’s exponent field has 8 bits. So it can represent integers from 0 to 255. 
But real exponents in normalized floating-point numbers range roughly from –
126 to +127.  To store both negative and positive exponents in that 0–255 
range, IEEE-754 adds a bias, shifting all values upward so they become non-
negative.

 For an exponent field of n bits, the bias is 2(n−1)- 1.

 For FP32, the bias is chosen as 2(8−1)- 1 = 127, so half the range is allocated for 
negative exponents, and half for positive. 

 Actual Exponent=Stored Exponent -127

 Stored exponent 0 → actual exponent = -127 (used for special/subnormal cases)

 Stored exponent 127 → actual exponent = 0

 Stored exponent 255 → reserved for special values (like infinity and NaN)



Decoding 0xC1FF0000 
into a floating-point number
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 Binary 11000001111111110000000000000000
 Sign = 1
 Exponent = 100000112 = 131

 Fraction = 0.11111112 = 1 × 2−1 + 1 × 2−2 + 1 × 2−3 + 1 × 2−4 + 1 × 2−5 + 1 × 2−6 +
1 × 2−7 = 0.9921875

 𝑓 = −1 𝑆 × 1 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−127

= −1 1 × 1 + 0.9921875 × 2131−127

= −1 × 1.9921875 × 24

= −31.875
 If Exponent = 100001012 = 133, then 𝑓 = −1 × 1.9921875 × 26 = −127.5
 If Exponent = 100001102 = 134, then 𝑓 = −1 × 1.9921875 × 27 = −255



Decoding 0x40920000
into a floating-point number
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https://www.youtube.com/watch?v=W_Knvo9NuJY

 Binary 01000000100100000000000000000000

 Sign = 0

 Exponent = 100000012 = 129

 Fraction = 0.0012 = 0 × 2−1 + 0 × 2−2 + 1 × 2−3 = 0.125

 𝑓 = −1 𝑆 × 1 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−127

= −1 0 × 1 + 0.125 × 2129−127

= −1 × 1.125 × 22

= 4.5

 How Floating Point Numbers Work (in 7 minutes!)

 https://www.youtube.com/watch?v=W_Knvo9NuJY

https://www.youtube.com/watch?v=W_Knvo9NuJY


Decoding 0x3F800000
into a floating-point number
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https://www.youtube.com/watch?v=W_Knvo9NuJY

 Binary 00111111100000000000000000000000  

 Sign = 0

 Exponent = 011111112 = 127

 Fraction = 0

 𝑓 = −1 𝑆 × 1 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−127

= −1 0 × 1 + 0 × 2127−127

= −1 × 1 × 20

= 1.0

 How Floating Point Numbers Work (in 7 minutes!)

 https://www.youtube.com/watch?v=W_Knvo9NuJY

https://www.youtube.com/watch?v=W_Knvo9NuJY


Decoding 0x41680000
into a floating-point number
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 Binary 01000001011010000000000000000000 

 Sign = 0

 Exponent = 100000102 = 130

 Fraction = 0.11012 = 1 × 2−1 + 1 × 2−2 + 1 × 2−4 = 0.8125

 𝑓 = −1 𝑆 × 1 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−127

= −1 0 × 1 + 0.8125 × 2130−127

= 1 × 1.8125 × 23

= 14.5



Encoding 14.5 into IEEE Std 754 Single-Precision
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 Normalization:

 23 < 14.5 < 24,
14.5

23 = 1.8125

 Hence 14.5 = 1.8125 × 23 = (1 + 0.8125) × 23

 Conversion:

 𝑆𝑖𝑔𝑛 = 0

 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 3 + 127 = 130 = 10000102

 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.11012 (multiply by 2 repeatedly)

 Assume 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑏1 × 2−1 + 𝑏2 × 2−2 + 𝑏3 × 2−3 + 𝑏4 × 2−4 + ⋯

 0.8125 × 2 = 1.625 = 1 + 0.625 => b1 = 1

 0.625 × 2 = 1.25 = 1 + 0.25 => b2 = 1

 0.25 × 2 = 0.5 = 0 + 0.5 => b3 = 0

 0.5 × 2 = 1 => b4 = 1

 14.5 = 01000001011010000000000000000000 in binary or 0x41680000 in hex



Encoding 1.3 into IEEE Std 754 Single-Precision
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 Normalization:

 20 < 1.3 < 21,
1.3

20 = 1.3

 Hence 1.3 =  (1 + 0.3) × 20

 Conversion:

 𝑆𝑖𝑔𝑛 = 0

 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 0 + 127 = 127 = 011111112

 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.01001100110011 …2 (multiply by 2 repeatedly)

 Assume 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑏1 × 2−1 + 𝑏2 × 2−2 + 𝑏3 × 2−3 + 𝑏4 × 2−4 + ⋯
 0.3 × 2 = 0.6 => b1 = 0

 0.6 × 2 = 1.2 => b2 = 1

 0.2 × 2 = 0.4 => b3 = 0

 0.4 × 2 = 0.8 => b4 = 0

 0.8 × 2 = 1.6 => b5 = 1

 0.6 × 2 = 1.2 => b6 = 1

 14.5 = 00111111101001100110011001100110 in binary or 0x3FA66666 in hex

Repeats infinitely



Decoding 0x3FA66666 
into a floating-point number
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 Binary 00111111101001100110011001100110 

 Sign = 0

 Exponent = 011111112 = 127

 Fraction = 0.29999995 (calculation process skipped)

 𝑓 = −1 𝑆 × 1 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−127

= −1 0 × 1 + 0.29999995 × 2127−127

= 1.29999995

 Error: 1.3 − 1.29999995 = 5 × 10−8

Why Is This Happening?! Floating Point Approximation4

https://www.youtube.com/watch?v=2gIxbTn7GSc 

https://www.youtube.com/watch?v=2gIxbTn7GSc
https://www.youtube.com/watch?v=2gIxbTn7GSc
https://www.youtube.com/watch?v=2gIxbTn7GSc
https://www.youtube.com/watch?v=2gIxbTn7GSc
https://www.youtube.com/watch?v=2gIxbTn7GSc


Special Values

22

 Exponents 00000000 and 111111111 are reserved.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fraction (23 bits)Exponent (8 bits)
Sign

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+0

-0

+∞

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-∞

xNaN Any Non-zero ValueX

0: Quiet NaN (QNaN)

1: Signalling NaN (SNaN)
Do not care

 Example of Not-A-Number (NaN)

 log(-10.0), sqrt(-1.0), 0.0/0.0, −∞ + ∞, 



Subnormalized Float Number

23

 To represent numbers between 0 and the minimum positive number that the 

normalized format can represent.

 Normalized Format

 Sub-normalized Format

−1 𝑆 × 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 2−126

−1 𝑆 × (𝟏 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛) × 2Exponent−127



Overflow and Underflow
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Smallest Positive Normal Number: 

(−1)0× 1 + 0 × 21−127 = 2−126 ≈ 1.18 × 10−38

0 00000001 00000000000000000000000 

Smallest Positive Subnormal Number: 

(−1)0× 0 + 2−23 × 21−127 = 2−149 ≈ 1.40 × 10−45

0 00000000 00000000000000000000001 



Overflow and Underflow
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To find the largest representable number:

Exponent = largest possible finite value = 254 (since 255 is reserved for infinity and NaN)

Mantissa = all 1s → 1.111111111111111111111112 = 1 + 1 − 2−23

Numbers farthest from zero:

(−1)𝑆× 1 + 1 − 2−23 × 2254−127 = ± 2128 − 2104 ≈ ±3.40 × 1038



Resolution
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 Given a hypothetical five-bit floating-point system (similar to IEEE 754). 

 the sign bit, an exponent (2 bits), and a fraction (2 bits) 



Tradeoff between Range and Precision
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 Floating-Point

 Resolution: difference between two neighbor numbers

 Precision decreases as the magnitude increases

 Fixed-Point

 Numbers are evenly distributed among the representable range

 Precision is fixed

A simplified 5-bit floating-point (IEEE 754 style)



FP formats used in AI and machine learning

28

 bf16 (bfloat16) and bf8 (bfloat8) are 

floating point formats used in AI and 

machine learning for efficient 

computation with lower precision while 

retaining useful range.

 bf8 is cutting edge and experimental for 

very efficient AI deployment where 

accuracy can be slightly sacrificed for 

speed and lower memory footprints. bf16 

is established as a good practical balance 

for many ML tasks
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