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Fixed-point Format: Q Notation

UQm.n for unsigned fixed-point

Integer Part Fractional Part
o
\ J I \ J

Radix Point

m bits n bits

Qm.n for signed fixed-point

Integer Part Fractional Part

sign bit

m bItS n bItS
Radlx Point

m + n + 1 bits



Q Notation: UQm.n

Integer J Fraction
Radix point

Radix Point
11 1 11 /1 11 10101.101, = Ap + 4; X 273
T v =21+5x 273
Integer (m bits) Fraction (n bits)
= 21.625



Converting Fixed-point UQ5.3 to Float

Integer Part Radix  Fractional Part
Point

10101.101,
=1x2*+0x22+1x224+0x2+1x294+1x21+0x22%24+1x273

= 21.625

10101101, 173

10101.101, = E 3




Converting Fixed-point Q4.3 to Float

Signed Integer Part Radix  Fractional Part
Bit Point
10101.101,
=1Xx(-29)+0x23+1x224+0x21+1x20+1x271+0x272
+1x273
= —10.375

10101.101, =




US.3 vs. Q4.3

Unsigned Fixed-point Representation Um.n

4, 4

—m_ m f=Ap+ A x27"
J " 10101101, = A, + A, x 273
Integer Fractlon

=21+4+5x%x273
= 21.625

Radix point

Signed Fixed-point Representation Qm.n

j_nm BT f=4,+A4,x2™
Sign bit Radix point —I 10101.101, = Ap + A; x 273

=—-11+5x%x273



Two Ways of Calculating Two’s Complement (integer)

» Convert 10101 into decimal with Two’s Complement notation’
» Method I, invert bits and add |:
» 01010+ 1 =0I0I1l =11 in decimal, hence 1010 =-11 in decimal
» Method 2, calculate directly:
» Ix(—2%)+0x23+1%x22+0x2'+1%x2°=-16+4+1=—11 in decimal

» The two definitions are mathematically identical (proof omitted)



Convert Float to Fixed-point UQ4.12

UQm.n for unsigned fixed-point

Representation = round(float X 2™)

Example: Convert f = 3.141593 to UQA4.12 (4 bits integer, 12 bits fraction)

» Calculate f x 212 = 12867.964928

» Round the result to nearest integer, round (12867.964928 ) = 12868
» Convert the integer to binary: 12868 = 0011_0010_0100_0100,

» Organize into UQ4.12:0011.0010_0100_0100,

» Final result in hex;: 9x3244

12868
212

» Error = reconstructed value — true_value = — f=8.5625x10"°



Convert Float to Fixed-point Q3.12

Qm.n for signed fixed-point

Representation = round(float X 2™)

Example: Convert f = —3.141593 to Q3.12 (I sign bit, 3 bits integer, 12 bits fraction)
» Calculate f x 21?2 = —12867.964928
» Round the result to an integer, round(—12867.964928 ) = —12868
» Find the 16-bit two’s complement: 1100_1101_1011_1100,
» 12868 = 0x3244 = 0011 0010 0100 0100,
» Invert bitsandadd | — —12868 = 11001101 1011 1100,
» Organize into Q3.12:1100.1101_1011_1100,
» Final result in hex: @xCDBC

12868
» Error = reconstructed value — true_value = —



Why use fixed-point?

' Fixed
Pomt Point

Lower Product
Cost

More bits for
Range Precision

Shorter
Development Time
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Normalization

Hidden Bit True Exponent

! ol

_ 1,75 x 253

vV

Sign  Fraction

(excluding
hidden bit)

We can convert 10.746x2°% to normalized format as follows:

10.746

3 X 8 x 26 = 1.34325 x 2°

10.746 x 2° =




[EEE Standard 754 (Signed Floating Point)

1 bit 8 bits | > 23 bits

Fraction

1 bit 11 bits ¢ » 52 bits «

Exponent Fraction

IEEE 754 value:

(—1)°% (1 + Fraction) x 2Exponent=bias

where Bias = 27 - | = 127 for single precision FP32

Bias = 2'° - | = 1023 for double precision FP64
Hidden bit refer to the implicit leading | in (| + fraction)
Fraction is also called significand or mantissa



Why Bias?

» FP32’s exponent field has 8 bits. So it can represent integers from 0 to 255.
But real exponents in normalized floating-point numbers range roughly from —
126 to +127. To store both negative and positive exponents in that 0—255
range, IEEE-754 adds a bias, shifting all values upward so they become non-
negative.

» For an exponent field of n bits, the bias is 2("=1- [,
» For FP32, the bias is chosen as 26-1- | = 27, so half the range is allocated for
negative exponents, and half for positive.
» Actual Exponent=Stored Exponent -127
» Stored exponent 0 — actual exponent = -127 (used for special/subnormal cases)
» Stored exponent |27 — actual exponent = 0
» Stored exponent 255 — reserved for special values (like infinity and NaN)



Decoding OXC1FF0000
into a floating-point number

» Binary 11000001111111110000000000000000
» Sign =1
» Exponent = 10000011, = 131
» Fraction = 0.1111111, =1 X271+ 1 X272 +1x23 +1x27* +1x27>+1x27° +
1x 277 =0.9921875
» f =(=1)° x (1 + Fraction) x 2Exponent—127
= (—1! x (1 + 0.9921875) x 21317127
= —1x 1.9921875 x 2*
—31.875
» If Exponent = 10000101, = 133,then f = —1 x 1.9921875 X 2° = —127.5
» If Exponent = 10000110, = 134,then f = —1 X 1.9921875 x 27 = —255

8 bits 23 bits
A A
4 NT N\
1,10000011,11111110000000000000000
............................................................................. Sign A Exponent Fraction



Decoding 9x40920000
into a floating-point number

» Binary 01000000100100000000000000000000
» Sigh = 0O
» Exponent = 10000001, = 129
» Fraction =0.001, = 0x2"1+0x272+1x%x273=0.125
» f = (—1)° x (1 + Fraction) x 25xponent—127
= (—1)% x (1 + 0.125) x 2129-127
= —1 x 1.125 x 2°
= 4.5

» How Floating Point Numbers Work (in 7 minutes!)
» https://www.youtube.com/watch?v=W_Knvo9Nu]Y



https://www.youtube.com/watch?v=W_Knvo9NuJY

Decoding OxX3F800000
into a floating-point number

» Binary ©00111111100000000000000000000000

» Sigh = 0O

» Exponent = 01111111, =127

» Fraction =0

» f = (—=1)°% x (1 + Fraction) x 2Exponent—127
= (—1)% x (1 4+ 0) x 2147127
=—-1x1x2°
= 1.0

» How Floating Point Numbers Work (in 7 minutes!)
» https://www.youtube.com/watch?v=W_Knvo9Nu]Y
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Decoding 9x41680000
into a floating-point number

» Binary 01000001011010000000000000000000

» Sigh = 0O

» Exponent = 10000010, = 130

» Fraction = 0.1101, =1 x 271 +1x272+1x27* = 0.8125

» f = (—=1)°% x (1 + Fraction) x 2Exponent—127
= (-1)" x (1 + 0.8125) x 2130-127
= 1% 1.8125 x 23



Encoding 14.5 into IEEE Std 754 Single-Precision

» Normalization:
» 23 <145 < 24,22 = 1.8125

» Hence 14.5 = 1.8125 x 23 = (1+0.8125) X 23
» Conversion:

» Sign =0
» Exponent =3+ 127 =130 =1000010,

» Fraction = 0.1101, (multiply by 2 repeatedly)

» Assume Fraction = b1 X271 +b2x2724+b3x234+b4x27%+..
» 0.8125x2=1.625=1+0.625=>bl =1
» 0.625Xx2=125=14+0.25=>b2=
» 0.25X2=05=04+05=>b3=0
» 0.5Xx2=1=>b4=|
» 14.5 = 01000001011010000000000000000OO0 in binary or Ox41680000 in hex



Encoding 1.3 into IEEE Std 754 Single-Precision

» Normalization:

) 20 <13 < zl,g =13

» Hence 1.3 = (1+0.3) x2°

» Conversion:

» Sign=20

» Exponent =0+ 127 =127 =01111111,

» Fraction = 0.01001100110011 ..., (multiply by 2 repeatedly)

» Assume Fraction = b1 x2 1 4+ b2 x224+b3x23+b4x27%+ ..
0.3xXx2=06=>bl=0
0.6 X2=12=>b2=1
0.2Xx2=04=>b3=0
04x2=08=>b4=0
0.8x2=16=>b5=
0.6 X2=12=>b6=|
» 14.5=00111111101001100110011001100110 in binary or Ox3FA66666 in hex

Repeats infinitely

v Vv VvV VvV Vv Vv



Decoding OXx3FA66666
into a floating-point number

» Binary ©0111111101001100110011001100116

» Sigh = 0O

» Exponent = 01111111, = 127
» Fraction = 0.29999995 (calculation process skipped)
» f = (—1)° x (1 + Fraction) x 25xponent—127

= (=1)° x (1 + 0.29999995) x 2127-127
= 1.29999995

» Error: 1.3 — 1.29999995 =5 x 1078

Why Is This Happening?! Floating Point Approximation4
https://www.youtube.com/watch?v=2gIxbTn7GSc
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Special Values

» Exponents 00000000 and 111111111 are reserved.

Sign ]
l Exponent (8 bits) Fraction (23 bits)
A A
Y
AN O O O 0 0 © © © O O O O O O 0 0 © © © O O O 0 0 0 @ 0 ©0 @0 © ©

\
J

Nl O 0 0 0 0 O © O O © O 0 0 0 0 0 O © © O © O 9 0 0 ©0 @0 © © 0 O
A1 1 1 1 1 1 1 1 90 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 @0 0 @0 0 O

s 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 @0 0 0O

NaN x Any Non-zero Value
|— Do not care 0: Quiet NaN (QNaN)
1: Signalling NaN (SNaN)

» Example of Not-A-Number (NaN)
» log(-10.0), sqrt(-1.0), 0.0/0.0, —c0 + oo,



Subnormalized Float Number

» To represent numbers between 0 and the minimum positive number that the
normalized format can represent.

» Normalized Format

(—1)5 x (1 + Fraction) x 2bxponent=127

» Sub-normalized Format

(—1)° X Fraction x 27126



Overtlow and Underflow

Overflow Underflow Overflow
A
K—M e N\ —
| SS | | | (( |
| | | | ) | >
-3.40x10%* -1.17x10%% © 1.17x107%® 3.40x10*®
A

Zero is not underflow.

Smallest Positive Normal Number: O 00000001 000V VVVVONNVO

(-1 (1 +0) x 217127 = 27126 » 1,18 x 10738

Smallest Positive Subnormal Number: O 00000000 0000000V

(—1)())( (0 + 2—23) X 21—127 — 2—149 ~ 1.40 X 10—45



Overtlow and Underflow

Overflow Underflow Overflow

— / A N —

| (,S | | | (( |
| | | | ) | >
-3.40x10% -1.17x10%% © 1.17x107%® 3.40x10%
A

Zero is not underflow.

To find the largest representable number:

Exponent = largest possible finite value = 254 (since 255 is reserved for infinity and NaN)
Mantissa =all Is —» 1.11111111111111111111111, =1+ (1 —2723)
Numbers farthest from zero:

(—1)SX (1 4+ (1 _ 2—23)) x 2254-127 _ i(2128 _ 2104) ~ +3.40 X 1038



Resolution

» Given a hypothetical five-bit floating-point system (similar to IEEE 754).
» the sign bit,an exponent (2 bits), and a fraction (2 bits)

Range of floating-point numbers
A

Range of fixed-point numbers

A
I I I I I I
-3%-3% -3 -2%-2%-2% -2 -1%-1%-1% -1 -% -% -% © % % % 1 1% 1% 1% 2 2% 2% 2% 3 3% 3%

. L . .

Resolution = % Resolution = % Resolution = % Resolution = %
¢ — e e e e e — —_———E—— | e e e e e e e e e e —
Resolution degrades Resolution degrades

® Normalized numbers ® Subnormal numbers



Tradeoif between Range and Precision

A simplified 5-bit floating-point (IEEE 754 style)

@ Normalized numbers @ Subnormal numbers

PPt

-3%-3% -3 -24-2%-2% -2 -1%-1%-14 -1 -4 -V -h 0© 4 A oA 1 14 1% An 2 24 24 24 3 34 3%

» Floating-Point
» Resolution: difference between two neighbor numbers
» Precision decreases as the magnitude increases
» Fixed-Point
» Numbers are evenly distributed among the representable range
» Precision is fixed



FP formats used in Al and machine learning

» bfl6 (bfloatl6) and bf8 (bfloat8) are cRange  Precision
floating point formats used in Al and SEponem e
machine learning for efficient FP32 & o3 T ng ,
computation with lower precision while 5 m10
retaining useful range. FP16 55— [TTTTITIT]

» bf8 is cutting edge and experimental for ol GO m7

- BF16 = 11
very efficient Al deployment where a8 | mo
accuracy can be slightly sacrificed for 5— [
speed and lower memory footprints. bfl 6 e4d m3
is established as a good practical balance 8— il
for many ML tasks

BES o e3 m4
____________________________________________________________________________________________ (E3M4)
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