Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter I |
Interrupt Tutorial

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
1 and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

POllj_ng S Intermpt STM32L4 icovery Kit

// Polling method
while (1) {
read button_input;
if (pushed)
exit;

Polling:

You pick up the
phone every few
seconds to check

turn_on_LED;

whether you are
getting a call. Red &

Green g
Interrupt: LEDs T // Interrupt method
Do whatever you P e 2 lo interrupt_handler(){
should do and pick LS ARl turn_on_LED;
up the phone when it ‘ g o exit;
rings. ol =T }

Copyright © Ron Leishman * http://ToonClips.com/9845

Memory Map of Cortex-M4

" OXFFFFFFFF
_ NVIC, System Timer, SCB,

0.5GB System ..
vendor-specific memory

= OxXE0000000

1GB External RAM > Off-chip memory for data

= OXA0000000

1GB — External Device > Such as SD card

— 0X60000000

0.5 GB — Peripheral SRS > AHB & APB, such as timers, GPIO
~ 0x40000000

0.5 GB — SRAM s > On-chip RAM, for heap, stack, & code
— 0x20000000
0.5 GB — Code > On-chip Flash, for code & data
— 9x00000000

> 3 One Byte (8 bits)

Data Memory

0.5GB —

1GB

1GB —

0.5 GB —

0.5 GB —

~ OXFFFFFFFF

= OxXE0000000

— 0x60000000

= 0X40000000

— 0X20000000

— 0X00000000

= OXA0000000

System

External RAM

External Device

Peripheral

SRAM

Code

One Byte (8 bits)

Heap

Zero-initialized data

Initialized data

Ox3FFFFFFF

Ox20017FFF —

Internal

— SRAM

Memory
96 KB

0X20000000 —

Instruction Memory

" OXFFFFFFFF

0.5GB |
— OxXE0000000

1GB

= OXA0000000

1GB —

— 0X60000000
0.5 GB —

= 0x40000000
0.5 GB —
— 0X20000000

— 0X00000000

System

External RAM

External Device

Peripheral

SRAM

Code

One Byte (8 bits)

Reserved

RW Data Section
RO Data Section
Text Section

Interrupt

Vector Table
Initial MSP

Reserved

Interrupt

Vector Table
Initial MSP

Ox1FFFFFFF

OX@8OFFFFF —

Internal

— Flash
Memory

1 MB

0Xx08000000 —

0Xx00000000

Interrupt Vector Table

Nested-Vectored Interrupt
Controller (NVIC)

PA.3
EXTI3T Q

-
2

EXTI3_IRQHandler

Interrupt

Vector
Table

g B -

:
.'
.'
.s
.'

.
.
.’
I}
.'
..
.
.‘
..
s
.'
.'

Interrupt Number
(8 bits)

1

a &~ ODN

Address of ISR 1
Interrupt Vector Table

Memory Address of ISR

(32 bits)
Interrupt Service Routine for interrupt 1

Interrupt Service Routine for interrupt 2
Interrupt Service Routine for interrupt 3
Interrupt Service Routine for interrupt 4
Interrupt Service Routine for interrupt 5

When interrupt x is triggered, jump to

the ISR for interrupt x. (1 < x < 255)

Interrupt Vector Table

» The Nested Vectored Interrupt Controller (NVIC), prioritizes and handles all
interrupts. The IVT holds an array of memory addresses, each entry is a
function pointer pointing to the starting memory address of an ISR.

» Every type of interrupt is assighed a number, called interrupt number, used to
index into the IVT. When interrupt x is triggered, NVIC uses the interrupt
number x as the index to look up the memory address of its corresponding
ISR, and forces the processor to jump to and execute this ISR.

» When we press the push button connected to the pin PA.3, the hardware generates

an electrical signal, called interrupt request EXTI3. When NVIC receives the interrupt

request, it forces the processor to jump to and execute, the ISR named EXTI3 IRQ
Handler.

Interrupt Vector Table

0Xx20000068

Calculate the address which holds the address of the ISR for interrupt n:
Address of pointer = 64 + 4 x n

- Main stack

Example 1: EXTI3 IRQn = 9

Address of pointer to EXTI3 ISR =64 + 4 x 9

0x0800030C void EXTI3_IRQHandler{ = 100
= 0x64

}

Example 2: SysTick IRQn = -1

0x00000064 | ©x0800030D

-~ Address of pointer to SysTick ISR = 64 + 4 x (-1)
Bit @ is 1, indicating Thumb state. = 60
0x00000008 = 0x3C

0x00000004 | 0x2000020D [— Reset Handler(); Initialize PC (program counter)
Ox00000000 | Ox20000068 — Initialize MSP (main stack pointer)
Memory Memory For interrupt number n, its ISR is stored at

address content address 64 + 4 x n, in the interrupt vector table.

Interrupt Service Routine (ISR)

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0Xx00000000

Memory
address

- stack

0x0800030D

NG

0x2000020D

— |nitialize PC

0Xx20000068

— |nitialize SP

Memory
content

Bit @ is 1, indicating Thumb state.

void EXTI3_IRQHandler{

System
Exceptions

interrupt vector table of STM32L4.
The first word holds the top of the
main stack. The next 15 words hold
the pointers of 15 system exception
handlers. The next are pointers to
vender-specific interrupt handlers.

22

21

20

19

18

17

16

15

14

13

12

1

10

0x00000074
0x00000070
0x0000006C
0x00000068
0x00000064
0x00000060
0x0000005C
0x00000058
0x00000054
0x00000050
0x0000004C
0x00000048
0x00000044
0x00000040
0x0000003C
0x00000038
0x00000034
0x00000030
0x0000002C
0x00000028
0x00000024
0x00000020
0x0000001C
0x00000018
0x00000014
0x00000010
0x0000000C
0x00000008
0x00000004

0x00000000

DMA1_Channel3_IRQHandler

DMA1_Channel2_IRQHandler

DMA1_Channel1_IRQHandler

EXTI4_IRQHandler

EXTI3_IRQHandler

void EXTI3_Handler () {

EXTI2_IRQHandler

EXTI1_IRQHandler

EXTIO_IRQHandler

RCC_IRQHandler

FLASH_IRQHandler

RTC_WKUP_IRQHandler

TAMPER_STAMP_IRQHandler

PVD_IRQHandler

WWDG_IRQHandler

SysTick_Handler

v

:

PendSV_Handler

Reserved

DebugMon_Handler

SVC_Handler

void SysTick_Handler () {

}

v

void SVC_Handler () {

Y

Reserved

Reserved

Reserved

Reserved

UsageFault_Handler

BusFault_Handler

MemManage_Handler

HardFault_Handler

NMI_Handler

Reset_Handler

Top_of_Stack

)

void Reset_Handler () {

;1.1.ain();

Value to initialize the Program Counter (PC)

——— Value to initialize the Stack Pointer (SP)

Single Interrupt

0x20000068 h SP —> XXXXXXXX

- stack

time

/__/ >

/__/
0x0800030C

void EXTI3_IRQHandler{

/__/ o o 0

T B EXTI3
0x00000064 | ©x0800030D Suppose EXTI3 arrives. Assume Interrupt Number 12

-~ software has already enabled Enable Register nnn-n
T —" EXTI3 by setti

y setting the
Ox00000008 corresponding bit in the interrupt Active Register nnn-n
0X00000004 | ©x2000020D | Initialize PC | EN@bIE Register. The interrupt Pending Register nnn-n

Ox00000000 | Ox20000068 > Initialize SP | NUMber of EXTI3 is pre-defined as

Memory Memory 9. Interrupt priority register shows Priority Register nn-n

address content that its priority is set to 2.

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

N —

0x0800030D

N

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

. Stacking

y

time

void EXTI3_IRQHandler{

NVIC first writes 1 to the pending
bit of EXTI3 in the interrupt
pending register. NVIC starts to

the stacking process, and pushes,

8 registers to preserve the
running environment. (If FPU is
used, more registers are pushed
into the stack during the
stacking.)

EXTI3
Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: 1 :n
Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

—_— ..

0x0800030D

=

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

. Stacking

y

XXX XX
Sp — XPSR

void EXTI3_IRQHandler{

NVIC first pushes program status
register (xPSR) onto the stack.

EXTI3
Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: 1 :n
Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

—_— ..

0x0800030D

=

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

. Stacking

y

XXX XX XX
XPSR
SP —> | PC(ri5)

time

void EXTI3_IRQHandler{

NVIC then pushes program
counter (PC), which is r15.

EXTI3
Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: 1 :n
Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

—_— ..

0x0800030D

=

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

. Stacking

y

XAXXXXXXX
XPSR
PC(ri15)
SP —> LR(ri4)

time

void EXTI3_IRQHandler{

NVIC then pushes link register
(LR), which is r14.

EXTI3
Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: 1 :n
Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

—_— ..

0x0800030D

=

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

. Stacking

y

XAXXXXXXX
XPSR
PC(ri15)
LR(ri4)

SPp —> ri2

time

void EXTI3_IRQHandler{

NVIC pushes r12 (intra-procedure
call scratch register).

EXTI3
Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: 1 :n
Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

T }“.

0x0800030D

N

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

. Stacking

y

XXX XX XX
XPSR
PC(ri15)
LR(ri4)
rl2

time SP —> r3

void EXTI3_IRQHandler{

NVIC pushes r3.

EXTI3
Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: 1 :n
Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

0x0800030D

N

Memory
content

- stack

. Stacking

y

time

void EXTI3_IRQHandler{

}

0x2000020D — Initialize PC
0x20000068 [— Initialize SP

NVIC pushes r2.

SP —>

Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: R :n

KAXXXXXXX

XPSR

PC(ri15)

LR(r14)

ri2

r3

r2

EXTI3

Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

0x0800030D

N

Memory
content

- stack

. Stacking

y

time

void EXTI3_IRQHandler{

}

0x2000020D — Initialize PC
0x20000068 [— Initialize SP

NVIC pushes r1.

SP —>

Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: R :n

KAXXXXXXX

XPSR

PC(ri15)

LR(r14)

ri2

r3

r2

rl

EXTI3

Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

0x0800030D

N

Memory
content

- stack

. Stacking

y

time

void EXTI3_IRQHandler{

}

0x2000020D — Initialize PC
0x20000068 [— Initialize SP

NVIC pushes rO.

SP —>

Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: R :n

KAXXXXXXX

XPSR

PC(ri15)

LR(r14)

ri2

r3

r2

rl

ro

EXTI3

Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

/__/ }...

0x0800030D

N

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

. Stacking

y

void EXTI3_IRQHandler{

After NVIC pushes these 8
registers onto the stack, the size
of the stack increases by 4*8=32
bytes, and the stack pointer is
decremented by 32. (ARM Cortex
uses full descending stacks.)

XXXXXXXX |[SP + 0x20
XPSR SP + 0x1C
Eull PC(ri5) |[SP + 0x18
Descending LR(r14) |SP + ox14
Stack ri2 SP + ©x10
time r3 SP + 0x0C
> r2 SP + 0Ox08
ri SP + 0x04
sp —>V ro SP
EXTI3

Interrupt Number 12

Enable Register nnn-n
Active Register nnn-n
Pending Registernnn: 1 :n
Priority Register Bn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

/__/ }...

0x0800030D

N

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

4 Stacking

“IES]

void EXTI3_IRQHandler{

NVIC looks up interrupt vector
table and finds the starting
address of ISR 9 for EXTI3. It
changes status of interrupt 9, from
pending to active state by setting

It then forces the processor to
branch to and start to execute ISR

9.

its active bit to 1 in Active Register.

=

XXXXXXXX |[SP + 0x20
XPSR SP + 0x1C
Eull PC(ri5) |[SP + 0x18
Descending LR(r14) |SP + ox14
Stack ri2 SP + ©x10
time r3 SP + 0x0C
> r2 SP + 0Ox08
ri SP + 0x04
sp —>V ro SP
EXTI3

Interrupt Number 12

Enable Register nnn-n
Active Register nnn: :n
Pending Register nnni 0 :n
Priority Register Bn-n

Single Interrupt

0x20000068] A Stacking XXXXXXXX |SP + 0x20
XPSR SP + 0x1C
- stack \I ISR 9 Full PC(ri5) |[SP + 0x18
T Descending ||_LR(r14) |SP + @x14
rogram . Stack ri2 |SP + 0x10
- fime r3 |SP + @xecC
% > r2 SP + 0Ox08
rl SP + 0x04
0x0800030C sp —>V re SP
void EXTI3_IRQHandler{
Nl EXTI3
0x00000064 | @x0800630D ISR 9 completes its execution by | 1S TUPE Number =12
T executing BX LR as its last Enable Reglster nnn-n
)) B
0x00000008 > “
0x00000004 | ©x2000020D [— Initialize PC Pending Registernnn 0 n
Ox00000000 | 0x20000068 — Initialize SP R—

Memory Memory Priority Register nn-n

address content

Single Interrupt

0x20000068] - : XXXXXXXX [SP + ©x20
g Sacking Jnstacking XPSR__|SP + @x1C
- stack \II/ Eull PC(ri5) |[SP + 0x18
I Descending ||_LR(r14) |SP + @x14
BX LR Stack ri2 SP + 0x10
- s r3 SP + 0x0C
/_/'\\:4 > r2 SP + 0x08
rl SP + 0x04
0x0800030C Sp —>V s <p
void EXTI3_IRQHandler{
L
— ~— Instruction BX LR informs NVIC to EXTI3
0x00000064 | Ox0800030D perform the unstacking process. Interrupt Number 12
-~ The active bit in Active Register is Enable Register nnn-n
cleared. The unstacking proFess Active Reglsternnn n
0x00000008 pops the values of the 8 registers, g 4
0Xx00000004 | 0x2000020D — Initialize PC | out of the stack. Therefore, the Pending Register nnn-n

Memory Memory environment) is recovered, to the Y R€Y
address content
__ time instant immediately before | ...

> 23 ISR started.

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

—_— o

0x0800030D

N

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

Stacking

IER
|

Unstacking

void EXTI3_IRQHandler{

NVIC pops the 8 registers in the
reverse order when they were
pushed, thus recovering their
original values.

SP —>

Interrupt Number 12

Enable Register nnn-n
Active Register nnnL ‘n
Pending Registernnn-n
Priority Register nn-n

KAXXXXXXX

XPSR

PC(ri15)

LR(r14)

ri2

r3

r2

rl

ro

EXTI3

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

0x0800030D

4 Stacking

- stack

IER

|
BX LR

Unstacking

time

void EXTI3_IRQHandler{

}

=

0x2000020D

— |nitialize PC

0Xx20000068

— |nitialize SP

Memory
content

SP —>

Interrupt Number 12

Enable Register nnn-n
Active Register nnnL ‘n
Pending Registernnn-n

KAXXXXXXX

XPSR

PC(ri15)

LR(r14)

ri2

r3

r2

rl

EXTI3

Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

0x0800030D

=

4 Stacking

- stack

IER

|
BX LR

Unstacking

time

void EXTI3_IRQHandler{

}

0x2000020D

— |nitialize PC

0Xx20000068

— |nitialize SP

Memory
content

SP —>

Interrupt Number 12

Enable Register nnn-n
Active Register nnnL ‘n
Pending Registernnn-n

KAXXXXXXX

XPSR

PC(ri15)

LR(r14)

ri2

r3

r2

EXTI3

Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

0x0800030D

=

4 Stacking

- stack

IER

|
BX LR

Unstacking

time SP —>

void EXTI3_IRQHandler{

}

0x2000020D

— |nitialize PC

0Xx20000068

— |nitialize SP

Memory
content

Interrupt Number 12

Enable Register nnn-n
Active Register nnnL ‘n
Pending Registernnn-n

KAXXXXXXX

XPSR

PC(ri15)

LR(r14)

ri2

r3

EXTI3

Priority Register nn-n

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

0x0800030D

=

4 Stacking

- stack

Unstacking

IER

|
BX LR

time

void EXTI3_IRQHandler{

}

0x2000020D

— |nitialize PC

0Xx20000068

— |nitialize SP

Memory
content

SP —>

Interrupt Number 12

Enable Register nnn-n
Active Register nnnL ‘n
Pending Registernnn-n

KAXXXXXXX

XPSR

PC(ri15)

LR(r14)

ri2

EXTI3

Priority Register nn-n

Single Interrupt

0x20000068 N Stacking Unstacking XXXXXXXX

XPSR
- stack \I i @ l/ PC(ri5)
T sP —> | LR(r14)
BX LR

- time

0x0800030C

void EXTI3_IRQHandler{

EXTI3

}

0x00000064 | 0x0800030D Interrupt Number 12

— crae Regser (IR I I
T N T

rceve regiter ICNICHICHL © IR
0x00000008 0L
0x00000004 | 8x2000020D | Initialize PC Pending Registernnn-n
0x00000000 | 0x20000068 — Initialize SP

address content

Single Interrupt

0x20000068 N Stacking Unstacking XXXXXXXX

S
- stack \I ISR 9 l/ SP — PCX(PrlRS)
|
BX LR

- time

0x0800030C

void EXTI3_IRQHandler{

EXTI3

}

0x00000064 | 0x0800030D Interrupt Number 12

— crae Regser (IR I I
T N T

rceve regiter ICNICHICHL © IR
0x00000008 0L
0x00000004 | 8x2000020D | Initialize PC Pending Registernnn-n
0x00000000 | 0x20000068 — Initialize SP

address content

Single Interrupt

0x20000068 N Stacking Unstacking XXXXXXXX

o v\Il/v SP — XPSR
!
BX LR

0x0800030C

void EXTI3_IRQHandler{

EXTI3

}

0x00000064 | 0x0800030D Interrupt Number 12

— crae Regser (IR I I
T N T

rceve regiter ICNICHICHL © IR
0x00000008 0L
0x00000004 | 8x2000020D | Initialize PC Pending Registernnn-n
0x00000000 | 0x20000068 — Initialize SP

address content

Single Interrupt

0Xx20000068

0x0800030C

0x00000064

0x00000008
0x00000004
0x00000000

Memory
address

- stack

N —

0x0800030D

N

0x2000020D —— |nitialize PC

0x20000068 [— Initialize SP

Memory
content

IER
|
BX LR

4 Stacking Unstacking

time

void EXTI3_IRQHandler{

After unstacking completes, the
running environment has been
fully recovered from the stack. All
registers have their original
values, as if the interrupt has
never happened.

EXTI3
Interrupt Number 12

Enable Register nnn-n
Active Register nnnL ‘n
Pending Registernnn-n
Priority Register nn-n

Single Interrupt

0x20000068 N Stacking Unstacking SP == | X000

— stack \II/
|
BX LR

- time
/‘\/ >
/__/
0x0800030C
void EXTI3_IRQHandler{
/—\/ e o o
N W EXTI3

0x00000064 | ©x0800030D Afterwards, the processor Interrupt Number 12

L continues to execute the user Enable Register nnn-n
N] . .
v B, s, | Acve register [N ICNNCH IS
0x00000008 g
0x00000004 | 0x2000020D | |nitialize PC Pending Registernnn-n
0x00000000 | 0x20000068 — Initialize SP
Memory Memory Priority Register nn-n

address content

Nested Interrupts:
Example of Preemption

EXTI3

time

Suppose EXTI 3 arrives DMA1_Channel2 EXTI3
at this time instant. Interrupt Number 12

Enable Register -nn-n
Active Register -nn-n
Pending Register-nn-n
Priority Register -n-

Nested Interrupts:
Example of Preemption

XXXXXXXX
XPSR

" Stacking PC(ri5)

\I ISR 9 LR(r14)
ri2
r3
Program =

EXTI3 . 2

SP — ro

NVIC first performs DMA1_Channel2 EXTI3
stacking, and pushes 8 | 1nterrupt Number 12

NVIC then forces the | Enable Reg.ster-nn-n
:osrsgefsos;ng)t(%?fecute Active Register [IECINEEE" 1 BP

Pending Register-nn-n
Priority Register -n-n

Nested Interrupts:
Example of Preemption

XXXXXXXX
XPSR
" Stacking PC(ri5)

\I ISR 9 LR(r14)
ri2
E
r2

EXTI3 DMA1_Channel2

time ri
" SP — ro
Suppose another
interrupt (DMA 1 DMA1_Channel2 EXTI3
Channel 2) arrives, Interrupt Number 12

before ISR 9 completes.

This new interrupt has SiElE ReplsEsr -nn-n
higher urgency than the Active Register -nnL An
current interrupt being 1

served, hence NVIC has | Pending Reglster nn-n
to respond to the new Priority Redister B

coming interrupt. VR . 3 An-k An

> 36 Lower priority value means higher urgency.

Nested Interrupts:
Example of Interrupt Preemption

Stacking XXXXXXXX

XPSR
+ Stacking I ISR 12 PC(r15)

r
:
EXTI3 DMA1_Channel2 fime :i
NVIC] re
stops the current ISR
9 and performs another XPSR
stacking by pushing DMA1_Channel2 EXTI3 PC(ri5)
another set of 8 registers, LR(r14)
onto the stack. Note that Interrupt Number 12 ri2

these two sets of registers Enable Register -nn-n 2

have different values. The

r2
first set holds register Active Reglster 1 nn n 1
values, for the user — —— SP —> 0
program. The second set Pending Register -nn-n L
hold register values, for the o)
interrupt service routine 9. Priority Register -n-n
After the stacking, NVIC

starts to execute ISR 12 Of F---------omo o
the new coming interrupt.

Nested Interrupts:
Example of Preemption

Stacking Unstacking XXXXXXXX

" Stacking I I PCX(PP51R5)

ri2
program :
r
EXTI3 DMA1_Channel2 time =
g SP —> ro
After ISR12 completes,
NVIC performs DMA1 Channel2 EXTI3
unstacking, pops out Interrupt Number 12

St T To T T
running environment, Active RegIStel‘L %) ‘nnL An
for ISR 5. Pending Register -nn-n
Priority Register -n-n

Nested Interrupts:
Example of Preemption

Stacking Unstacking XXXXXXXX

" Stacking I I PCX(PP51R5)
IED oo

E
r2

EXTI3 DMA1_Channel2 e 1

SP — ro

NVIC continues

execution of ISR 9 DMA1_Channel2 EXTI3

Interrupt Number 12

Enable Register -nn-n
Active Register -nnL ‘n
Pending Register-nn-n
Priority Register -n-

Nested Interrupts:
Example of Preemption

Stacking Unstacking SP —> | XXXXXXXX

4 Stacking I I Unstacking

'\I ISR 9 ISR 9 I/'
,EXTIB,DMALChanneIZ ostam

time

»

After ISR 9 completes,
NVIC performs DMA1_Channel2 EXTI3

unstacking to recover Interrupt Number 12

the running

: Enable Register
e e : -nn-n
user program. The user Active Register -nnL 4“
program then resumes

b esamen i Pending Register -nn-n
Priority Register -n-

Nested Interrupts:
Tail Chaining

EXTI3 — ISR 9
EXTI4 — ISR 10

Suppose EXTI4 has lower urgency
than EXTI3.

» EXTI4 has a higher numeric priority value
than EXTI3.

» If interrupt 4 EXTI4 arrives before the
interrupt 3 EXTI3’s handler completes,
NVICC will continue the execution of the
current ISR 9 for EXTI3. After it
completes, unstacking and stacking are

performed, before the new ISR 10 for
EXTI4 starts.

The middle unstacking and stacking
are unnecessary in this example.Tail
chaining is an optimization technique
to reduce the interrupt latency.

» Typically unstacking and stacking each

takes 12 cycles.. However, tail chaining
takes only 6 cycles.

12 cycles

Stacking ~ Unstacking

12 cyclesl I

Unstacking

§ | 5o |
=

EXTI3 EXTI4

Stacking

time

n

»

Tail Chaining

s |8

.6 cycles
'\I ISR 9 y

Unstacking

Stacking

EXTI3 EXTI4

£y

	Slide 1: Z. Gu
	Slide 2: Polling vs Interrupt
	Slide 3: Memory Map of Cortex-M4
	Slide 4: Data Memory
	Slide 5: Instruction Memory
	Slide 6: Interrupt Vector Table
	Slide 7: Interrupt Vector Table
	Slide 8: Interrupt Vector Table
	Slide 9: Interrupt Service Routine (ISR)
	Slide 10: Single Interrupt
	Slide 11: Single Interrupt
	Slide 12: Single Interrupt
	Slide 13: Single Interrupt
	Slide 14: Single Interrupt
	Slide 15: Single Interrupt
	Slide 16: Single Interrupt
	Slide 17: Single Interrupt
	Slide 18: Single Interrupt
	Slide 19: Single Interrupt
	Slide 20: Single Interrupt
	Slide 21: Single Interrupt
	Slide 22: Single Interrupt
	Slide 23: Single Interrupt
	Slide 24: Single Interrupt
	Slide 25: Single Interrupt
	Slide 26: Single Interrupt
	Slide 27: Single Interrupt
	Slide 28: Single Interrupt
	Slide 29: Single Interrupt
	Slide 30: Single Interrupt
	Slide 31: Single Interrupt
	Slide 32: Single Interrupt
	Slide 33: Single Interrupt
	Slide 34: Nested Interrupts: Example of Preemption
	Slide 35: Nested Interrupts: Example of Preemption
	Slide 36: Nested Interrupts: Example of Preemption
	Slide 37: Nested Interrupts: Example of Interrupt Preemption
	Slide 38: Nested Interrupts: Example of Preemption
	Slide 39: Nested Interrupts: Example of Preemption
	Slide 40: Nested Interrupts: Example of Preemption
	Slide 41: Nested Interrupts: Tail Chaining

