
1

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 11

Interrupt Tutorial

Fall 2025

Z. Gu

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Red &

Green

LEDs

STM32L4 Discovery Kit

Up

Down

Left RightCenter

Polling vs Interrupt

2

Polling:

You pick up the

phone every few

seconds to check

whether you are

getting a call.

Interrupt:

Do whatever you

should do and pick

up the phone when it

rings.

// Polling method
while (1) {
 read_button_input;
 if (pushed)
 exit;
}

turn_on_LED;

// Interrupt method
interrupt_handler(){
 turn_on_LED;
 exit;
}

Memory Map of Cortex-M4

3

Code

SRAM

Peripheral

External RAM

External Device

System

0x00000000

0x20000000

0.5 GB

0x40000000

0.5 GB

0x60000000

0.5 GB

0xA0000000

1 GB

0xFFFFFFFF

0.5 GB

0xE0000000

1 GB

One Byte (8 bits)

4 GB

On-chip Flash, for code & data

On-chip RAM, for heap, stack, & code

AHB & APB, such as timers, GPIO

Such as SD card

Off-chip memory for data

NVIC, System Timer, SCB,

vendor-specific memory

Data Memory

4

Code

SRAM

Peripheral

External RAM

External Device

System

0x00000000

0x20000000

0.5 GB

0x40000000

0.5 GB

0x60000000

0.5 GB

0xA0000000

1 GB

0xFFFFFFFF

0.5 GB

0xE0000000

1 GB

One Byte (8 bits)

Stack

Heap

96 KB

0x20000000

0x3FFFFFFF

Internal

SRAM

Memory

0x20017FFF

Zero-initialized data

Initialized data

Instruction Memory

5

Code

SRAM

Peripheral

External RAM

External Device

System

0x00000000

0x20000000

0.5 GB

0x40000000

0.5 GB

0x60000000

0.5 GB

0xA0000000

1 GB

0xFFFFFFFF

0.5 GB

0xE0000000

1 GB

One Byte (8 bits)

Initial MSP

Interrupt

Vector Table

ReservedMapped

(aliasing)

0x08000000

0x080FFFFF

1 MB

0x00000000

0x1FFFFFFF

Internal

Flash

Memory

Initial MSP

Interrupt

Vector Table

Text Section

RO Data Section

RW Data Section

Reserved

Interrupt Vector Table

6

PA.3
EXTI3

N
V

IC

C
o

r
te

x
-

M
4

Nested-Vectored Interrupt

Controller (NVIC)

Interrupt Vector Table

Interrupt Number

(8 bits)

Memory Address of ISR

(32 bits)

1 Interrupt Service Routine for interrupt 1

2 Interrupt Service Routine for interrupt 2

3 Interrupt Service Routine for interrupt 3

4 Interrupt Service Routine for interrupt 4

5 Interrupt Service Routine for interrupt 5

… …

When interrupt x is triggered, jump to

the ISR for interrupt x. (1 ≤ x ≤ 255)

Address of ISR 1

EXTI3_IRQHandler

Interrupt

Vector

Table

Interrupt Vector Table

7

 The Nested Vectored Interrupt Controller (NVIC), prioritizes and handles all

interrupts. The IVT holds an array of memory addresses, each entry is a

function pointer pointing to the starting memory address of an ISR.

 Every type of interrupt is assigned a number, called interrupt number, used to

index into the IVT. When interrupt x is triggered, NVIC uses the interrupt

number x as the index to look up the memory address of its corresponding

ISR, and forces the processor to jump to and execute this ISR.

 When we press the push button connected to the pin PA.3, the hardware generates

an electrical signal, called interrupt request EXTI3. When NVIC receives the interrupt

request, it forces the processor to jump to and execute, the ISR named EXTI3 IRQ

Handler.

Interrupt Vector Table

8

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

0x20000068

0x00000008
0x00000004
0x00000000

Main stack

Memory

address

Memory

content

Initialize MSP (main stack pointer)

Bit 0 is 1, indicating Thumb state.

Reset_Handler(); Initialize PC (program counter)
0x20000068

0x2000020D

0x0800030D

Calculate the address which holds the address of the ISR for interrupt n:

Address of pointer = 64 + 4 × n

Example 1: EXTI3_IRQn = 9

 Address of pointer to EXTI3 ISR = 64 + 4 × 9
 = 100
 = 0x64

Example 2: SysTick_IRQn = -1

 Address of pointer to SysTick ISR = 64 + 4 × (-1)
 = 60
 = 0x3C

For interrupt number n, its ISR is stored at
address 64 + 4 x n, in the interrupt vector table.

Interrupt Service Routine (ISR)

9

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Memory

address

Memory

content

Initialize SP

Bit 0 is 1, indicating Thumb state.

Initialize PC

Top_of_Stack

Reset_Handler

NMI_Handler

HardFault_Handler

MemManage_Handler

BusFault_Handler

UsageFault_Handler

Reserved

Reserved

Reserved

Reserved

SVC_Handler

DebugMon_Handler

PendSV_Handler

SysTick_Handler

WWDG_IRQHandler

PVD_IRQHandler

TAMPER_STAMP_IRQHandler

RTC_WKUP_IRQHandler

FLASH_IRQHandler

RCC_IRQHandler

EXTI0_IRQHandler

EXTI1_IRQHandler

EXTI2_IRQHandler

EXTI3_IRQHandler

EXTI4_IRQHandler

DMA1_Channel1_IRQHandler

DMA1_Channel2_IRQHandler

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

0x00000020

0x00000024

0x00000028

0x0000002C

0x00000040

0x00000044

0x00000048

0x0000004C

0x00000050

0x00000054

0x00000058

0x0000005C

0x00000060

0x00000064

0x00000068

0x0000006C

0x00000070

0x00000074 DMA1_Channel3_IRQHandler

……

void Reset_Handler () {

 ...

 main();

 ...

}

Value to initialize the Stack Pointer (SP)

Value to initialize the Program Counter (PC)

void SysTick_Handler () {

 ...

}

void SVC_Handler () {

 ...

}

…
…

…
…

0x00000030

0x00000034

0x00000038

0x0000003C

System

Exceptions

void EXTI3_Handler () {

 ...

}

1

2

3

4

5

6

7

8

9

10

11

16

17

18

19

20

21

22

23

24

25

26

27

28

29

12

13

14

15

Reserved

interrupt vector table of STM32L4.
The first word holds the top of the
main stack. The next 15 words hold
the pointers of 15 system exception
handlers. The next are pointers to
vender-specific interrupt handlers.

12 11 10 9 8

Single Interrupt

10

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

EXTI3

Suppose EXTI3 arrives. Assume
software has already enabled
EXTI3 by setting the
corresponding bit in the interrupt
Enable Register. The interrupt
number of EXTI3 is pre-defined as
9. Interrupt priority register shows
that its priority is set to 2.

12 11 10 9 8

Single Interrupt

11

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC first writes 1 to the pending
bit of EXTI3 in the interrupt
pending register. NVIC starts to
the stacking process, and pushes,
8 registers to preserve the
running environment. (If FPU is
used, more registers are pushed
into the stack during the
stacking.)

12 11 10 9 8

Single Interrupt

12

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx

xPSR
0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC first pushes program status
register (xPSR) onto the stack.

12 11 10 9 8

Single Interrupt

13

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx

xPSR
PC(r15)

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC then pushes program
counter (PC), which is r15.

12 11 10 9 8

Single Interrupt

14

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx

xPSR
PC(r15)
LR(r14)

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack
SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC then pushes link register
(LR), which is r14.

12 11 10 9 8

Single Interrupt

15

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC pushes r12 (intra-procedure
call scratch register).

12 11 10 9 8

Single Interrupt

16

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC pushes r3.

12 11 10 9 8

Single Interrupt

17

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC pushes r2.

12 11 10 9 8

Single Interrupt

18

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC pushes r1.

12 11 10 9 8

Single Interrupt

19

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1
r0

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

NVIC pushes r0.

12 11 10 9 8

Single Interrupt

20

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx SP + 0x20
xPSR SP + 0x1C

PC(r15) SP + 0x18
LR(r14) SP + 0x14
r12 SP + 0x10
r3 SP + 0x0C
r2 SP + 0x08
r1 SP + 0x04
r0 SP

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

1

Full

Descending

Stack

After NVIC pushes these 8
registers onto the stack, the size
of the stack increases by 4*8=32
bytes, and the stack pointer is
decremented by 32. (ARM Cortex
uses full descending stacks.)

12 11 10 9 8

Single Interrupt

21

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx SP + 0x20
xPSR SP + 0x1C

PC(r15) SP + 0x18
LR(r14) SP + 0x14
r12 SP + 0x10
r3 SP + 0x0C
r2 SP + 0x08
r1 SP + 0x04
r0 SP

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

Full

Descending

Stack

1

0

ISR 9

NVIC looks up interrupt vector
table and finds the starting
address of ISR 9 for EXTI3. It
changes status of interrupt 9, from
pending to active state by setting
its active bit to 1 in Active Register.
It then forces the processor to
branch to and start to execute ISR
9.

12 11 10 9 8

Single Interrupt

22

Program

time

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

xxxxxxxx SP + 0x20
xPSR SP + 0x1C

PC(r15) SP + 0x18
LR(r14) SP + 0x14
r12 SP + 0x10
r3 SP + 0x0C
r2 SP + 0x08
r1 SP + 0x04
r0 SP

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

SP

Memory

address

Memory

content

Initialize SP
Initialize PC

Stacking

Full

Descending

Stack

1

0

ISR 9

BX LR

ISR 9 completes its execution by
executing BX LR as its last
instruction.

12 11 10 9 8

Single Interrupt

23

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx SP + 0x20
xPSR SP + 0x1C

PC(r15) SP + 0x18
LR(r14) SP + 0x14
r12 SP + 0x10
r3 SP + 0x0C
r2 SP + 0x08
r1 SP + 0x04
r0 SPSP

Full

Descending

StackBX LR

Instruction BX LR informs NVIC to
perform the unstacking process.
The active bit in Active Register is
cleared. The unstacking process
pops the values of the 8 registers,
out of the stack. Therefore, the
processor’s state (running
environment) is recovered, to the
time instant immediately before
ISR started.

12 11 10 9 8

Single Interrupt

24

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1
r0SP

BX LR

NVIC pops the 8 registers in the
reverse order when they were
pushed, thus recovering their
original values.

12 11 10 9 8

Single Interrupt

25

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1SP

BX LR

12 11 10 9 8

Single Interrupt

26

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2SP

BX LR

12 11 10 9 8

Single Interrupt

27

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3SP

BX LR

12 11 10 9 8

Single Interrupt

28

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12SP

BX LR

12 11 10 9 8

Single Interrupt

29

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx

xPSR
PC(r15)
LR(r14)SP

BX LR

12 11 10 9 8

Single Interrupt

30

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx

xPSR
PC(r15)SP

BX LR

12 11 10 9 8

Single Interrupt

31

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxx

xPSRSP

BX LR

12 11 10 9 8

Single Interrupt

32

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

0

xxxxxxxxSP

BX LR

After unstacking completes, the
running environment has been
fully recovered from the stack. All
registers have their original
values, as if the interrupt has
never happened.

12 11 10 9 8

Single Interrupt

33

Program

time

ISR 9

Enable Register 0 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 2 8

Interrupt Number

...

0x00000064

void EXTI3_IRQHandler{
 ...
}

0x0800030C

EXTI3

0x20000068

0x00000008
0x00000004
0x00000000 0x20000068

0x2000020D

0x0800030D

stack

Stacking Unstacking

Memory

address

Memory

content

Initialize SP
Initialize PC

xxxxxxxxSP

Program
BX LR

Afterwards, the processor
continues to execute the user
program, which was interrupted
by EXTI3, ISR 9.

Nested Interrupts:

Example of Preemption

34

Program

time

12 11 10 9 8

Enable Register 1 0 0 1 0

Active Register 0 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 5 3

Interrupt Number

EXTI3

xxxxxxxxSP

DMA1_Channel2

EXTI3

Suppose EXTI 3 arrives
at this time instant.

Nested Interrupts:

Example of Preemption

35

Program

time

ISR 9

Stacking

12 11 10 9 8

Enable Register 1 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 5 3

Interrupt Number

EXTI3

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1
r0SP

DMA1_Channel2

EXTI3

1

NVIC first performs
stacking, and pushes 8
registers onto the stack.
NVIC then forces the
processor to execute
ISR 9 for EXTI3.

Nested Interrupts:

Example of Preemption

36

Program

time

ISR 9

Stacking

12 11 10 9 8

Enable Register 1 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0

Priority Register 4 7 3

Interrupt Number

EXTI3

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1
r0SP

DMA1_Channel2

EXTI3 DMA1_Channel2

1

1

3 5

Lower priority value means higher urgency.

Suppose another
interrupt (DMA 1
Channel 2) arrives,
before ISR 9 completes.
This new interrupt has
higher urgency than the
current interrupt being
served, hence NVIC has
to respond to the new
coming interrupt.

Nested Interrupts:

Example of Interrupt Preemption

37

Program

time

ISR 9

Stacking

12 11 10 9 8

Enable Register 1 0 0 1 0

Active Register 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 5 3

Interrupt Number

EXTI3

ISR 12

Stacking xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1
r0
xPSR

PC(r15)
LR(r14)
r12
r3
r2
r1
r0

DMA1_Channel2

EXTI3 DMA1_Channel2

11
SP

NVIC stops the current ISR
9 and performs another
stacking by pushing
another set of 8 registers,
onto the stack. Note that
these two sets of registers
have different values. The
first set holds register
values, for the user
program. The second set
hold register values, for the
interrupt service routine 9.
After the stacking, NVIC
starts to execute ISR 12 of
the new coming interrupt.

Nested Interrupts:

Example of Preemption

38

Program

time

ISR 9

Stacking

12 11 10 9 8

Enable Register 1 0 0 1 0

Active Register 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 5 3

Interrupt Number

EXTI3

ISR 12

Stacking Unstacking xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1
r0

DMA1_Channel2

EXTI3 DMA1_Channel2

10

SP

After ISR12 completes,
NVIC performs
unstacking, pops out
eight registers from the
stack, and recovers the
running environment,
for ISR 9.

Nested Interrupts:

Example of Preemption

39

Program

time

ISR 9

Stacking

12 11 10 9 8

Enable Register 1 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 5 3

Interrupt Number

EXTI3

ISR 12

Stacking Unstacking

ISR 9

xxxxxxxx

xPSR
PC(r15)
LR(r14)
r12
r3
r2
r1
r0

DMA1_Channel2

EXTI3 DMA1_Channel2

1

SP

NVIC continues
execution of ISR 9.

Nested Interrupts:

Example of Preemption

40

Program

time

ISR 9

Stacking Unstacking

Program

12 11 10 9 8

Enable Register 1 0 0 1 0

Active Register 0 0 0 0

Pending Register 0 0 0 0 0

Priority Register 3 4 7 5 3

Interrupt Number

EXTI3

ISR 12

Stacking Unstacking

ISR 9

xxxxxxxxSP

DMA1_Channel2

EXTI3 DMA1_Channel2

0

After ISR 9 completes,
NVIC performs
unstacking to recover
the running
environment of the
user program. The user
program then resumes
its execution.

Nested Interrupts:

Tail Chaining

41

 EXTI3 → ISR 9

 EXTI4 → ISR 10

 Suppose EXTI4 has lower urgency
than EXTI3.
 EXTI4 has a higher numeric priority value

than EXTI3.

 If interrupt 4 EXTI4 arrives before the
interrupt 3 EXTI3’s handler completes,
NVICC will continue the execution of the
current ISR 9 for EXTI3. After it
completes, unstacking and stacking are
performed, before the new ISR 10 for
EXTI4 starts.

 The middle unstacking and stacking
are unnecessary in this example. Tail
chaining is an optimization technique
to reduce the interrupt latency.
 Typically unstacking and stacking each

takes 12 cycles.. However, tail chaining
takes only 6 cycles.

1

Program

time

Stacking Unstacking

Program

Stacking Unstacking

EXTI3 EXTI4

ISR 9

ISR 10

Program

time

ISR 9

Stacking

Unstacking

Program

ISR 10

EXTI3 EXTI4

Tail Chaining

12 cycles

12 cycles

6 cycles

	Slide 1: Z. Gu
	Slide 2: Polling vs Interrupt
	Slide 3: Memory Map of Cortex-M4
	Slide 4: Data Memory
	Slide 5: Instruction Memory
	Slide 6: Interrupt Vector Table
	Slide 7: Interrupt Vector Table
	Slide 8: Interrupt Vector Table
	Slide 9: Interrupt Service Routine (ISR)
	Slide 10: Single Interrupt
	Slide 11: Single Interrupt
	Slide 12: Single Interrupt
	Slide 13: Single Interrupt
	Slide 14: Single Interrupt
	Slide 15: Single Interrupt
	Slide 16: Single Interrupt
	Slide 17: Single Interrupt
	Slide 18: Single Interrupt
	Slide 19: Single Interrupt
	Slide 20: Single Interrupt
	Slide 21: Single Interrupt
	Slide 22: Single Interrupt
	Slide 23: Single Interrupt
	Slide 24: Single Interrupt
	Slide 25: Single Interrupt
	Slide 26: Single Interrupt
	Slide 27: Single Interrupt
	Slide 28: Single Interrupt
	Slide 29: Single Interrupt
	Slide 30: Single Interrupt
	Slide 31: Single Interrupt
	Slide 32: Single Interrupt
	Slide 33: Single Interrupt
	Slide 34: Nested Interrupts: Example of Preemption
	Slide 35: Nested Interrupts: Example of Preemption
	Slide 36: Nested Interrupts: Example of Preemption
	Slide 37: Nested Interrupts: Example of Interrupt Preemption
	Slide 38: Nested Interrupts: Example of Preemption
	Slide 39: Nested Interrupts: Example of Preemption
	Slide 40: Nested Interrupts: Example of Preemption
	Slide 41: Nested Interrupts: Tail Chaining

