Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 1|
Interrupt

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Polling vs Interrupt

» Interrupt-driven operations
» Allows CPU to perform other tasks until external/internal devices require service

» CPU stops the current code and starts to execute an ISR

Polling Interrupt

Software periodically checks CPU takes action only if an event occurs
Waste lot of CPU cycles Does not waste CPU cycles

Triggered by software Triggered by hardware or software
Occurs periodically Can occur any time

Interrupts

» Motivations

» Inform a program of some external events timely

// Polling
» Implement multi-tasking with priority support while (1) {
read button_input;

Suppose you are waiting for an important if (pushed)
phone call. exit;

}
Polling: turn_on_LED;
You pick up the phone every three
secc?nds to check whether you are // Interrupt
getting a call. interrupt_handler(){

turn_on_LED;

Interrupt: exit;
Do whatever you should do and pick up }

the phone when it rings.

%

xample: Push a button to turn on a LED

» Check whether a button +3V
has been pressed!?

» Polling

» Repeatedly read IDR and Processor Chip Input Pin
check whether bit 3 is set PA.3 Joy_up |
(i.e., busy wait) Input <— -

» OK if CPU has nothing else
to do

Pull down
resistor =

» Interrupt -

» When hardware detects a
rising or fall edge, hardware
generates a service request

» CPU responses to the Voltage on PA.3
service request and starts £
to execute the
corresponding service
subroutine

Polling vs Interrupt

» Interrupt-driven operations

» Allows CPU to perform other
tasks until external/internal
devices require service

» CPU automatically stops the
current code and starts to
execute an ISR

How to support interrupt?

Edge

Detector

Interrupt
Request

Flash

ISR

ISR: Interrupt
Service Handler

Microcontroller Chip

Interrupt

ARM Cortex-M

Controller

Execution
Core

Stop the current code
Service the interrupt request
(i.e. turn on the LED)
Resume the previous code

JUuuduuL

How to support interrupt?

Which one service first (interrupt priority)
| How to locate the corresponding ISR?

Edge ARM Cortex-M]
Detector
]
| Interrupt Interrupt]
Request Controller Execution
| Core |
|]
|]
e — Coordinates multiple interrupt sources

| AR * Enable and disable a specific interrupt |
]

How to resume the code that has been suspended?

How to support interrupt?

Edge
Detector

Interrupt
Request

ARM Cortex-M

Coordinates multiple interrupt sources
* Enable and disable a specific interrupt
Which one service first (interrupt priority)
How to locate the corresponding ISR?
How to resume the code that has been suspended?

Execution
Core

JUuuduuL

Interrupt

Interrupt Vector Table
PC = Memory Address
nnu e of SysTick_Handler
. Memory Address of
start Main() :
main program o SysTick Handler
void main () { v .A.\c;d f
emo ress o
9 ADCA n:RQHandI er Interrupt Service Routine (ISR)
1. Interrupt signal detected. . 0 void SysTick_Handler ()
2. Processor stops main. Execute ISR | |1
3. Auto stacking: PUSH {R0-r3,r12,LR,PC,PSR} }
} \l

Continue to the execution

. 1. Interrupt returns. Active bits will be cleared.
of main program

2. Auto unstacking: POP {R0-r3,r12,LR,PC,PSR}

Interrupt Service Routine Vector Table

Type of

» Start address for the exception Address

Description

Priority Acronym

hander for each exception type is
fixed and pre-defined

» Processor loads PC with this
fixed, pre-defined address

» Exception Vector Table typically
starts at memory address
0x00000000 (or relocated
depending on Vector Table Offset
Register (VTOR))

» Program Counter pc =
Ox00000004 initially

0x0000_0000

priority

Stack Pointer

0x0000_0004 fixed |Reset Reset Vector

Non maskable interrupt. The RCC

. Clock Security System (CSS) is

0x0000_0008 fixed |NMI_Handler linked to the NMI vector.
0x0000_000C fixed |HardFault_Handler All class of fault
0x0000_0010 settable | MemManage_Handler | Memory management
0x0000_0014 settable |BusFault_Handler Pre-fetch fault, memory access fault
0x0000_0018 settable |UsageFault_Handler | Undefined instruction or illegal state
0x0000_001C-
0x0000 002B Reserved

System service call via SWI
0x0000_002C settable |SVC_Handler instruction
9x0000 0030 settable | DebugMon_Handler | Debug Monitor
0x0000_0034 - Reserved
9x0000 0038 settable | PendSV_Handler Pendable request for system service

settable | SysTick_Handler System tick timer

0x0000_003C

ISR Vector Table

For interrupt number n: (interrupt
shown in the xPSR)

Common Microcontroller Software
Interface Standard (CMSIS) Interrupt
Number =16 + n

13
12
11
10

-1
-2

-3

-6
-7

System -8
Exceptions
-9

Interrupt
Number

0x00000074
0x00000070
0x0000006C
0x00000068
0x00000064
0x00000060
0x0000005C
0x00000058
0x00000054
0x00000050
0x0000004C
0x00000048
0x00000044
0x00000040
0x0000003C
0x00000038
0x00000034
0x00000030
0x0000002C
0x00000028
0x00000024
0x00000020
0x0000001C
0x00000018
0x00000014
0x00000010
0x0000000C
0x00000008
0x00000004
0x00000000

Memory
Address

DMA1_Channel3_IRQHandler

DMA1_Channel2_IRQHandler

DMA1_Channel1_IRQHandler

EXTI4_IRQHandler

EXTI3_IRQHandler

EXTI2_IRQHandler

EXTI1_IRQHandler

EXTIO_IRQHandler

Y

void DMA1_Channel1_IRQHandler () {

}

void EXTI1_Handler () {

}

RCC_IRQHandler

FLASH_IRQHandler

RTC_WKUP_IRQHandler

TAMPER_STAMP_IRQHandler

PVD_IRQHandler

WWDG_IRQHandler

SysTick_Handler

Y

void EXTIO_Handler () {

}

PendSV_Handler

Reserved

DebugMon_Handler

SVC_Handler

void SysTick_Handler () {

}

Reserved

Reserved

Reserved

Reserved

UsageFault_Handler

BusFault_Handler

MemManage_Handler

HardFault_Handler

NMI_Handler

Reset_Handler

Top_of_Stack

Memory Contents (32 bits)

v

void SVC_Handler () {

}

void Reset_Handler () {
.r;;ain();

}

Value to initialize the Program Counter (PC)

Automatic Stacking & Unstacking

Interrupt
Exit
Interrupt Handler /
| |
Interrupt ! ! .
Signal : Unstacking

v

User Program User Program

™~

Stacking

> Time

Handler Mode Thread Mode

Thread Mode

Stacking: hardware automatically pushes eight register into the stack
(xPSR,PC,LR,r12,r3,r2,r1,ro)
(additional registers if Floating Point unit is active)

Unstacking: hardware automatically pops these eight register off the stack

Automatic Stacking & Unstacking

Full descending stack

0ld SP —> SP + Ox20 | xxxxxxxx |€—— New SP
SP + @x1C XPSR A
SP + 0x18 | PC (ri5)
SP + 0x14 | LR (ri4)
Stacking SP + Ox10 r12 Unstacking
SP + 0x0C r3
SP + 0x08 r2
V'SP + ox04 r1
New SP —> SP ro <«——— 01d SP

Stack Pointer: MSP vs PSP

32 bits
(RO] For interrupts, which stack does
E; auto stacking/unstacking use?
Low R3
Registers < R4 Depends on
R5 Seneral * processor mode: thread vs handler
R6 Purpose * setting in the control register
R7 Register
" Re
R9 .
i 32 bits
reio) < R10
egisters ~N
R11 xPSR
R13 (SP) R13 (MSP)| [R13(PSP) PRIMASK | » Purpose
R14 (LK) FAULTMASK Register
R15 (PC) [CONTROL L

* MSP: Main Stack Pointer (selected at reset)

* PSP: Process Stack Pointer
* RI3 (SP) refers to whichever SP is active, either MSP or PSP

Control Register

31 - 3 2 1 (%]
Reserved FPCA | SPSEL | nPRIV
0: FP inactive (default)
1: FP active
B)’ default, MSP is used. 9: SP = MSP (default)
1: SP = PSP if in Thread Mode

0: Thread mode has privileged access (default)
1: Thread mode has unprivileged access

ISP |Privileged

Handler Mode SP = MSP and SPSEL =0 Privileged
Thread Mode Depending on SPSEL Depending on nPRIV

For simple applications, MSP is used.

Automatic Stacking & Unstacking

0ld SP ——> SP + OX20 | XXXXXXXX
SP + Ox1C xPSR |)
SP + @x18 | PC (ri15) * Stacking: The processor
automatically pushes these eight
Eull SP + 0x14 | LR (ri4) registers into the currently
Descending SP + Ox10 r12 > selected stack before ISR
Stack | sp + @xac r3 T osars
SP + 0x08 r2 « Unstacking: The processor
Y sp + oxo4 r1 automatically pops these eight
register out of the currently
New SP SP + 0x00 ro / selected stack when an interrupt

hander exits.

MSP vs PSP

Handler Mode How does the processor

SPSEL = O know which stack was
MSP is used selected? Use LR to indicate

|. Exit ISR

2. Auto unstacking by using
currently selected stack

|. Auto stacking by using currently
selected selected stack
2. Start to execute ISR

Thread Mode

Start of
main()

SPSEL = © SPSEL = 1
MSP is used. PSP is used.

Recall: Link Register for calling functions

ye‘ void foo (void) {
L0
“ﬂ'o\ oo o

int main(void{ aster co
v o o0
e 0 o
o suspendéed caller — return;
foo(); Resum

void foo(void) ;

}
oo o <
}
Compiler
LR = PC + 4
oo PC = foo
PC —> BL foo x foo PROC
PC + 4—> ¢ e oo
BX LR
ENDP

Which stack to use when an interrupt returns?

» When an interrupt (ISR) occurs on an ARM Cortex-M core:

» The CPU automatically saves (stacks) part of the current context — registers R0-R3,R12, LR, PC,
and xPSR — to the stack.

» It then loads the ISR’s address into PC, and sets LR to a special EXC_RETURN value — not a
normal function return address.

» Link Register (LR) now has two usages:
» For subroutine calls: LR holds the return address (the instruction after BL).

» For interrupts: LR holds EXC_RETURN value indicating how to restore context when exiting the
interrupt. The CPU recognizes this special pattern (bits [31:28] = OxF) and performs an exception
return sequence rather than a regular branch. It returns to the original PC before the interrupt
occurred.

Thread mode: Normal program execution; Handler mode: ISR execution.

If an interrupt occurs while already in Handler mode (nested interrupt), LR is set to a different EXC_RETURN
value (OxFFFFFFFI) to indicate that the CPU should return to Handler mode when that ISR completes.

EXC_RETURN value Meaning
OxFFFFFFFI Return to Handler mode, using MSP (for nested interrupts)
OxFFFFFFF9 Return to Thread mode, using MSP

> 19 OxFFFFFFFD Return to Thread mode, using PSP

Stacking & Unstacking

Assume SPSEL = © and no FP is used = User program uses MSP.

XPSR,PC,LR,R12, Interrupt
R3,R2,R1,R0 Exit
Interrupt Handler /
| |
Int;r::lat E i Unstacking
& ' , o/ from MSP
User Program \ i User Program
| |
i Stacking :
| onto MSP i ST
, , ime
Thread Mode I Handler Mode I Thread Mode
| 1
| |
MSP | MSP | MSP
| |
LR = Some Value i LR = OxXFFFFFFF9 i LR is recovered to old value

Stacking & Unstacking

Assume SPSEL = 1 and no FP is used = User program uses PSP.

XPSR,PC,LR,R12, Interrupt
R3,R2,R1,R0 Exit
. ISR
Interrupt |]
Signal : Unstacking
from PSP

User Program User Program

Stacking
onto PSP

> Time
Thread Mode

PSP MSP PSP

LR = Some Value

1
1
1
1
1
1
1
!
1
Handler Mode : Thread Mode
1
1
1
1
1
1
1
1
1
1

An example to illustrate
stacking and unstacking

(assuming MSP is used by the
main program)

Interrupt: Stacking & Unstacking

__main PROC RO 0 XXXXXXXX | 0X20000200
MOV r3, #0 R2 y) OX200001F8
R3 3 OXx200001F4
ENDP
addr = 9x0800001C R4 4 0x200001F0
SysTick Handler PROC R12 12 0x200001EC
EXPORT SysTick Handler R13(SP) MSP OXx200001E8
ADD r4, #1 0x0800001C |R14(LR) | 0x08001000 ©Xx200001E4
BL sine 0x08000020 |R15(PC) | ©x08000044 Ox200001E0
BX ir Ux0B0000Z4 0X200001DC
ENDP
XPSR | ©x21000000 0x200001D8
0x200001D4
MSP | 9x20000200 X
0x200001D0
PSP | 9x00000000 Ox200001CF

Interrupt: Stacking & Unstacking

__main PROC RO %) XXXXXXXX | ©X20000200
MOV r3,#0 R2 2 OXx200001F8
R3 3 OXx200001F4
ENDP
addr = 9x0800001C R4 4 0x200001F0
SysTick Handler PROC R12 12 0x200001EC
EXPORT SysTick Handler R13(SP) MSP OXx200001E8
ADD r3, #1 R14(LR) | 0x08001000 Ox200001E4
ADD r4, #1 R15(PC) | 0x08000044 OX200001E0
BX ir ©x200001DC
ENDP
XPSR | 9x21000000 0x200001D8
©x200001D4
MSP | 9x20000200 X
©x200001D0
PSP | 6x00000000 Ox200001CF

. Suppose SysTick interrupt
Interrupt: [y e L7

__main PROC RO 0 XXXXXXXX | 0X20000200
. addr =48x08000044 R1 1 OX200001FC
MOV r3,#0 RO 5 OX200001F8

R3 3 OX200001F4
ENDP
addr = 9x0800001C R4 4 0Xx200001F0

SysTick Handler PROC R12 12 0x200001EC
EXPORT SysTick Handler R13(SP) MSP OXx200001E8
ADD r3, #1 R14(LR) | 0x08001000 OX200001E4
ADD r4, #1 R15(PC) | 0x08000044 OX200001E0
BX 1r Ox200001DC
ENDP

XPSR | Ox21000000 0Xx200001D8
OX200001D4

MSP | 0x20000200 X
OX200001D0

PSP | 9x00000000 Ox200001CF

Interrupt: Stacking & Unsyy:Xe {1\

__main PROC

addr = Ox08000044

MOV r3,#0

ENDP

addr = 9x0800001C

SysTick Handler PROC
EXPORT SysTick Handler

ADD r3, #1
ADD r4, #1
BX 1r
ENDP

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

OXFFFFFFF9

0x0800001C

0x21000000

0Xx200001EQ

0Xx00000000

R12
R3
R2
R1

XXXXXXXX

0x21000000

0x08000044

0x08001000

12

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Unsyy:Xe {1\

__main PROC
addr = 9x08000044

MOV r3,#0

ENDP

addr = 9x0800001C

SysTick Handler PROC

EXPORT SysTick Handler
ADD r3, #1
ADD r4, #1
BX 1r
ENDP

LR = OxFFFFFFF9 to
indicate MSP is used.

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

OXFFFFFFF9

0x0800001C

0x21000000

0Xx200001EQ

0Xx00000000

R12
R3
R2
R1

XXXXXXXX

0x21000000

0x08000044

0x08001000

12

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Unstacking

__main PROC
addr = 9x08000044

MOV r3,#0

ENDP

addr = 9x0800001C

SysTick Handler PROC

EXPORT SysTick Handler
ADD r3, #1 ‘...
ADD r4, #1
BX 1r
ENDP

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

OXFFFFFFF9

0x0800001C

0x21000000

OXx200001EQ

0Xx00000000

R12
R3
R2
R1

XXXXXXXX

0x21000000

0x08000044

0x08001000

12

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Unstacking

__main PROC
addr = 9x08000044

MOV r3,#0

ENDP

addr = 9x0800001C

SysTick Handler PROC

EXPORT SysTick Handler
ADD r3, #1
ADD r4, #1 ‘...
BX 1r
ENDP

R4

R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

OXFFFFFFF9

0x08000020

0x21000000

OXx200001EQ

0Xx00000000

R12
R3
R2
R1

XXXXXXXX

0x21000000

0x08000044

0Xx08001000

12

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Unstacking

__main PROC

addr = Ox08000044

MOV r3,#0

ENDP

addr = 9x0800001C

SysTick Handler PROC
EXPORT SysTick Handler

ADD r3, #1
ADD r4, #1
BX 1r
ENDP

=

LR = OxFFFFFFF9 to
indicate MSP is used.

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

OxFFFFFFF9

0x08000024

0x21000000

0Xx200001EQ

0Xx00000000

R12
R3
R2
R1

XXXXXXXX

0x21000000

0x08000044

0Xx08001000

12

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Ung¥NSy:-Vel 4| [

__main PROC

addr = Ox08000044

MOV r3,#0

ENDP

addr = 9x0800001C

SysTick Handler PROC
EXPORT SysTick Handler

ADD r3, #1
ADD r4, #1
BX 1r
ENDP

=

LR = OxFFFFFFF9 to
indicate MSP is used.

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

OxFFFFFFF9

0x08000024

0x21000000

0Xx200001EQ

0Xx00000000

R12
R3
R2
R1

XXXXXXXX

0x21000000

0x08000044

0Xx08001000

12

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Ung¥NSy:-Vel 4| [

__main PROC RO 0 XXXXXXXX | 0X20000200
MOV r3,#0 R2 2 OX200001F8
R3 3 OXx200001F4
ENDP
addr = 0x0800001C R4 5 0x200001F0
SysTick Handler PROC R12 12 0x200001EC
EXPORT SysTick Handler R13(SP) MSP OX200001E8
ADD r3, #1 R14(LR) | Ox08001000 OX200001E4
ADD r4, #1 R15(PC) | 0x08000044 Ox200001E0
BXAr ©x200001DC
ENDP
XPSR | 9x21000000 0x200001D8
0x200001D4
Note the new value MSP | ©x20000200
of R3 is lost!!! 0x200001D0
PSP | 9x00000000 Ox200001CF

Interrupt: Stacking & Unstacking

__main PROC RO 0 XXXXXXXX | 0X20000200
MOV r3,#0 R2 2 OXx200001F8
R3 3 OXx200001F4
ENDP
addr = 0x0800001C R4 5 0x200001F0
SysTick Handler PROC R12 12 0x200001EC
EXPORT SysTick Handler R13(SP) MSP OX200001E8
ADD r3, #1 R14(LR) | ©x08001000 OXx200001E4
ADD r4, #1 R15(PC) | 0x08000044 Ox200001E0
BXAr ©x200001DC
ENDP
XPSR | 9x21000000 0x200001D8
0x200001D4
The Main program MSP | 9x20000200
resti e ©x200001D0
PSP | 9x00000000 Ox200001CF

-_‘ []
Explanations
» The value of R3 updated in ISR is lost because during the interrupt unstacking (return from interrupt),
the processor restores R3 (and other registers) from the stack — overwriting whatever changes were
made to R3 inside ISR.
» |.Before the interrupt (in main)
» The main program is executing at R3 = 0 (set by MOV r3, #0)
» 2.Interrupt occurs (SysTick Handler)
» The processor automatically pushes (stacks) certain registers onto the stack: xPSR,PC,LR,R12,R3,R2,R1,R0
» 3.Inside ISR
» R3 =3+1 =4,R4 =4+| =5 — but these are local to the ISR
» 4.Returning from interrupt (unstacking)

» When BX Ir executes with LR = OxFFFFFFF9, the CPU knows:“Return to Thread mode using MSP.” It then
automatically pops (unstacks) the previously saved registers. This restores the pre-interrupt state:R3 « (the
saved value from the stack, which was 3 before the interrupt); R4 remains 5 (not part of automatic
stacking/unstacking); PC «— 0x08000044 (returns to main); xPSR restored.

Step Action Effect on R3

Before interrupt R3 = 3 in main —

Interrupt entry R3 = 3 stacked Saved on MSP
I 1.),.Y... .- . S 1. R3 =4 (ncremented) | Temporary ...
> 34 ISR returns R3 restored from stack | R3 = 3 again

D Review]

Nested Subroutines: Solution #1

foo saves and restores its LR for returning to its caller, before calling bar.

Caller Program Subroutine foo Subroutine bar
foo PROC bar PROC
MOV r4, #100 PUSH {r4, LR} .
.o .o BX LR
BL foo MOV r4, #10 ENDP
ADD r4, r4, #1 BL bar

POP {r4, LR}
BX LR
ENDP

D Review]

Nested Subroutines: Solution #2

POP {r4,PC} is equivalent to POP {r4, LR} followed by BX LR.

Caller Program Subroutine foo Subroutine bar
foo PROC bar PROC
MOV r4, #100 PUSH {r4, LR} e
.o .o BX LR
BL foo MOV r4, #10 ENDP
ADD r4, rd, #1 BL bar

POP {r4, PC}

An example where an ISR calls a
subroutine, similar to the nested
subroutines example

Interrupt: Stacking & Unsyy:Xe {1\

__main PROC
addr = 9x08000044

MOV r3,#0

ENDP
addr = 9x0800001C

SysTick Handler PROC

EXPORT SysTick Handler

ADD r4, #1 0x0800001C

BL sine

BX 1r

ENDP

0x08000020
0x08000024

LR = OxFFFFFFF9 to
indicate MSP is used.

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

OXFFFFFFF9

0x0800001C

0x21000000

0Xx200001EQ

0Xx00000000

XXXXXXXX

0x21000000

0x08000044

0Xx20000200

0x08001000

3

2

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Unstacking

__main PROC
addr = 9x08000044

MOV r3,#0

ENDP
addr = 9x0800001C

SysTick Handler PROC

EXPORT SysTick Handler

ADD r4, #1 0x0800001C

BL sine

BX 1r

ENDP

LR = OxFFFFFFF9 to
indicate MSP is used.

0x08000020
0x08000024

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

OxFFFFFFF9

0x08000020

0x21000000

0Xx200001EQ

0Xx00000000

XXXXXXXX

0x21000000

0x08000044

0Xx20000200

0x08001000

3

2

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Unstacking

__main PROC
addr = 9x08000044

MOV r3,#0

ENDP
addr = 9x0800001C
SysTick Handler PROC
EXPORT SysTick Handler
ADD r4, #1 0x0800001C

&= 000020

0x08000024

BL sine
BX 1lr
ENDP

BL sine
Updates LR

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

0x08000024

OXx080000F0

0x21000000

0Xx200001EQ

0Xx00000000

Assume sine() is located at 0x08000024.

XXXXXXXX

0x21000000

0x08000044

0Xx20000200

0x08001000

3

2

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Unstacking

__main PROC
addr = 9x08000044

MOV r3,#0

ENDP
addr = 9x0800001C

SysTick Handler PROC

EXPORT SysTick Handler

ADD r4, #1 0x0800001C

BL sine

BX 1r

ENDP

BL sine
Updates LR

0x08000020

&mm: 000024

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

0x08000024

OXx080000F0

0x21000000

0Xx200001EQ

0Xx00000000

XXXXXXXX

0x21000000

0Xx00000002

0Xx20000200

0x08001000

3

2

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Interrupt: Stacking & Un

__main PROC
addr = 9x08000044

MOV r3,#0

ENDP
addr = 9x0800001C

SysTick Handler PROC

EXPORT SysTick Handler

ADD r4, #1 0x0800001C

BL sine

BX 1r

ENDP

0x08000020

&mm: 000024

BL sine
Updates LR

R4
R12
R13(SP)
R14(LR)
R15(PC)

XPSR
MSP

PSP

MSP

0x08000024

OX080000F0

0x21000000

0Xx200001EQ

0Xx00000000

UNSTACKING

won’t occur!

XPSR

PC

SP
LR

R3
R2
R1

XXXXXXXX

0x21000000

0Xx00000002

0Xx20000200

0x08001000

3

2

0X20000200
0x200001FC
OXx200001F8
0Xx200001F4
0Xx200001F0
0Xx200001EC
OXx200001E8
OXx200001E4
OX200001EQ
0x200001DC
0x200001D8
0x200001D4
0x200001D0
0x200001CF

Fixing the Bug

» LR has two different usages for
function calls and for interrupts.

» After calling function sine(), LR

points to the return address
0x08000024; the previous value of

OxFFFFFFF9 is overwritten and lost.

» Fix the bug:

» Method |: PUSH{Ir}/POP{Ir} in the
function to save and restore the
original LR value of OxFFFFFFF9

» Method 2: PUSH({Ir}/POP{PC}

POP {PC} is equivalent to POP {Ir}
followed by BX Ir

__main PROC
MOV r3,#0
ENDP

SysTick Handler PROC
EXPORT SysTick Handler
PUSH {lr}

ADD r4, #1
BL sine
POP {lr}
BX 1r
ENDP

__main PROC
MOV r3,#0
ENDP

SysTick Handler PROC
EXPORT SysTick Handler

PUSH {1lr}
ADD r4, #1

BL sine

POP {PC}
ENDP

2

nable an Interrupt

[1 (1 [T [P] [1[] []

Peripheral

Two steps:
Program the peripheral
control register to allow
it to generate interrupts
Program NVIC to allow
it to accept interrupts

Interrupt
Request

ARM Cortex-M

Execution
Core

HERE RN

2

nable an Interrupt

(1 [[[[[] []

it to generate interrupts
2. Program NVIC to allow
B it to accept interrupts

Interrupt
Request

Peripheral

Two steps:

Program the peripheral
control register to allow

How?

ARM Cortex-M

Execution
Core

HERE RN

Interrupt Number in PSR

» Application PSR (APSR), Interrupt PSR (IPSR), Execution PSR (EPSR)

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

APSR [N|Z|C|V|Q Reserved GE Reserved
PSR Reserved ISR number _
EPSR IC/IT| T Reserved ICINT

Combine them together into one register (PSR = APSR | IPSR | EPSR (“|” stands for bitwise
OR))

PSR N|Z|C|V|Q|ICIT|T| Reserved GE Reserved |ICUT W

8-bit interrupt number in PSR
Range: @ - 255

Interrupt Number in CMSIS vs in PSR

» Cortex-M supports up to 256 interrupts.

» Interrupt numbers -16 to -1 denote system exceptions, as defined by ARM CMSIS (Cortex Microcontroller
Software Interface Standard);

» Interrupt numbers 0-239 denote peripheral interrupts, as defined by chip manufacturers

» Interrupt Number in PSR = 16 + Interrupt Number for CMSIS

System Peripheral interrupt
Exceptions Interrupts number
-16 -1 © 239

Interrupt Numbers defined by ARM CMSIS or chip manufacturers

System Peripheral
Exceptions Interrupts

0 1516 255
Interrupt Numbers in PSR

Interrupt Number

Interrupt number for CMSIS functions

NVIC DisableIRQ (IRQn); // Disable interrupt
NVIC EnableIRQ (IRQn); // Enable interrupt
NVIC ClearingPending (IRQn); // clear pending status

NVIC SetPriority (IRQn, priority); // set priority level

Interrupt number is stored in the last Byte of Program Status Register (PSR)

31 30 29 28 27 26 256 24 23 22 219 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

NlZ|C|V|Q] I8 T Reserved GE[310] IT[5:0 Interrupt Number

‘ |—> IT[7:0]: If-Then bits
Thumb state flag P GE[3:0]: Greater or equal flags(only available on CortexM4 and M7)

P Stick saturation flag for SSAT and USAT

P Overflow flag

P Carry/Borrow flag

P Zero flag

P> Negative or less than flag

Interrupt Numbers in ARM CMSIS library

/******

NonMaskableInt_IRQn
HardFault_IRQn
MemoryManagement_IRQn
BusFault_IRQn
UsageFault_IRQn
SVCall_IRQn
DebugMonitor_IRQn
PendSV_IRQn
SysTick_IRQn

/******
WWDG_IRQn
PVD_PVM_IRQn
TAMP_STAMP_IRQn
RTC_WKUP_IRQn
FLASH_IRQn
RCC_IRQn
EXTIO_IRQn

Peripheral Interrupt Numbers

-14, /*
-13, /*
-12, /*
-11, /*
-10, /*
-5, /*
-4, /*
-2, /*
-1, /*
o, /*
1, /*
2, /*
3, /*
4, /*
5, /*
6 /*

-

Cortex-mM4 System Exceptions **/

2 Cortex-M4 Non Maskable Interrupt */
3 Cortex-M4 Hard Fault Interrupt */
4 Cortex-M4 Memory Management Interrupt */
5 Cortex-M4 Bus Fault Interrupt

System
6 Cortex-M4 Usage Fault Interrupt

11 Cortex-M4 SV Call Interrupt

Exceptions
Defined by ARM

12 Cortex-M4 Debug Monitor Interrupt

14 Cortex-M4 Pend SV Interrupt */
15 Cortex-M4 System Tick Interrupt */
***/
Window WatchDog Interrupt */
PVD/PVM1,2,3,4 through EXTI Line detection Interrupts */

Tamper and TimeStamp interrupts through the EXTI line */
RTC Wakeup interrupt through the EXTI line */
FLASH global Interrupt
RCC global Interrupt
EXTI Line@® Interrupt

Peripheral Interrupts

Defined by chip vendor

stm321476xx.h

NVIC Registers

» ISER (Interrupt Set-Enable Register)
» Used to enable interrupts or to determine which interrupts are currently enabled

» ICER (Interrupt Clear-Enable Register)

» Used to disable interrupts or to determine which interrupts are currently disabled

» ISPR (Interrupt Set-Pending Register)

» Used to force interrupts into the pending state, or to determine which interrupts are
currently pending

» ICPR (Interrupt Clear-Pending Register)

» Used to clear pending interrupts, or to determine which interrupts are currently
pending

» Interrupt Priority Registers
» Used to set interrupt priority (importance)

2

nable/Disable Interrupts

» Enable a system interrupt
» Some are always enabled (cannot be disabled)
» No centralized registers for enabling/disabling
» Each are control by its corresponding components, such as SysTick module

» Enable a peripheral interrupt
» Centralized register arrays for enabling/disabling
» ISER registers for enabling
» ICER registers for disabling
» They are separate write-only registers that control the same enable flip-flops inside the NVIC:
» Writing | to a bit in ISER[x] — sets the enable bit (enables interrupt)
» Writing | to a bit in ICER[x] — clears the enable bit (disables interrupt)
» Writing 0 to a bit in ISER[X] or ICER[x] has no effect, so we never do it.
>

Separating enable bits and disable bits in two separate sets of registers, ICER and ISER,
__________ provides great_convenience and flexibility for. programmers. ...

T

nable/Disable Peripheral Interrupts

» For all peripheral interrupts: IRQn > ©
» Method | (Interrupt number for CMSIS):

» These functions are defined in the ARM Cortex core header file
NVIC_DisableIRQ (IRQn);
NVIC_EnableIRQ (IRQn);

Method 2 (Interrupt number for PSR):

We enable (disable) a peripheral interrupt by setting the corresponding bit of the ISER
(ICER) register. To enable a given IRQn, we divide it by 32 to find out in which ISER register
the target enable bit is located, since each ISER register has 32 bits and can enable 32
interrupts. The bit offset within the target ISER register is determined by the result of IRQn
mod 32.
» Enable:

NVIC->ISER[IRQn / 32] |= 1 << (IRQn % 32);

Better solution (IRQn / 32 = IRQn >> 5, IRQn % 32 = IRQn & Ox1F):

NVIC->ISER[IRQn >> 5] |= 1 << (IRQn & Ox1F);
» Disable:

NVIC->ICER[IRQn >> 5] |= 1 << (IRQn & Ox1F);

v Vv

2

nabling Peripheral Interrupts

Interrupt Set Enable Register 0 (ISERO0)

3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Enable Bit|0|0|0|0|0(0|0(0|0|0O|0
|nterrupt Number 31 30 20 28 27 26 25 24

®
@
(WY
®
®
®
()
()
(<Y
(V)
@
(WY
®
@
®
®
®
()
@
®
(<Y

N
w
N
N
[N}
—
N
o
—
(1=}
-
[+ -]
-
3
—
=)
—
3.}
-
rs
—
w
-
N
-
>
-
o
©
-]
~
[}
o
IS
w
N
—
=}

S 2222225083 5532222222 8808222335323
¥ 5833502Jz0@@033333533333 3300203
< o U T o o 0 0 0 0o 0O x~ A
I I I T I I I c |
N OO o AW N - -UO'J
_|
>
<
vl

Interrupt Set Enable Register 1 (ISER1) Address of ISER1 = Address of ISERO + 4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13|12|11 10 9 8 7 6 5 4 3 2 1 0
Enable Bit|l0o/0|0|0|0|0|0|0/0|0|0|0|0/O0(0/O0|0O|O0|O0|1|0/0|0|0|0|O0O(O/O0|0|0|0
Interrupt Number 44143 42 41 40 39 38 37 36 35 34 33 32
HER EREEREEEEERE
ﬂmlzlgg%%%ﬁzlmlml_\
3o 33 720
=77
TIM7_IRQn = 44 S
NVIC->ISER[1] |= 1 << 12; // Enable Timer 7 interrupt

Disabling Peripheral Interrupts

Interrupt Clear Enable Register 0 (ICERO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear Enable Bit|0|0|0|0|0|0|O0|0|O0|D|0|O0|O0|O|O|O|O0|D|O|O|O|O|O|D|O|O|OD|O|O|O|0O|0O
|nterrupt Number 31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o d d4d4d4d4d %0 mQ@o o c c » 0 0000 0o mmmMmmmMmMmmMmMm>X ™ xn d 1T s

0O X w »w O xX X X X X CHq r <
CfE5S5S3350388839555555523232333833253 52
| -~ o © T I = 42 4L 4 4L 4L 4 4 E ®» N S o [|w)
m [- I [R R R R T = m ®)

< S} T =T O O 0 o 0O o O x A

I T I T I I =T c 1

~N OO g AW N = -U(£

>

=

T

Interrupt Clear Enable Register 1 (ICER1) Address of ICER1 = Address of ISERO + 4

3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 j12)11 10 9 8 7 6 5 4

Clear Enable Bit|0|0|0|0|0|0/0|0|0|0(O0|0|O0|O0|O|O|O0|O(O|1|0|0 0|0|0|0

w
N
-
o

®
@
®
®
()
®

Interrupt Number 44|43 42 41 40 39 38 37 36 35 34 33 32
dld cmmc ccvwYs s e
® 4 X & ® ® U T
NEEE R T B
o510 483 T < T
= 3 °
X
S
TIM7 _IRQn = 44
NVIC->ICER[1] |[= 1 << 12; // Diable Timer 7 interrupt

Explanations

» To enable interrupt “Timer 7" with interrupt number 44:
» ISERO controls interrupts O to 31;ISERI| controls interrupts 32 to 63.
» To enable interrupt 44, we set bit 12 (44-32) of ISERI| to | by executing NVIC-
>ISER[I] [= | << I2.
» To disable interrupt “Timer 7 with interrupt number 44:

» To disable interrupt 44, we set bit 12 (44-32) of ICER| to | by executing
NVIC->ICER[I] [= | << I2.

Interrupt Priority

» Inverse Relationship:

» Lower priority value means higher urgency.
Priority of Interrupt A =5,
Priority of Interrupt B = 2,
B has a higher priority/urgency than A.

» Fixed priority for Reset, HardFault,and NMI.

Exception | IRQn [Priority

Reset N/A -3 (the highest)
Non-maskable Interrupt (NMI) -14 -2 (2™ highest)
Hard Fault -13 -1

» Adjustable for all the other interrupts

Interrupt Priority

» Interrupt priority is configured by Interrupt Priority Register (IP)

» Each priority consists of two fields, including preempt priority number and sub-
priority number.

» The preempt priority number defines the priority for preemption.

» The sub-priority number determines the order when multiple interrupts are pending with the same preempt
priority number.

Priority Byte

7 6 5 4 321 06

\ A A J
Y Y Y

Preemption Sub-priority Not
Priority Number Implemented

default setting

Interrupt Priority Levels

Configure interrupt priority for IRQ number 7 to be level 6 (01100000 in binary, or
96 in decimal):

NVIC SetPriority(7, 6);

core_cm4.h or core_cm3.h

©/1/1/06,0|0,0)0 typedef struct {

7 6 13014 I // Interrupt Priority Register
— A > / volatile uint8_t IP[240];
Preemption Sub-priority Not . e e

Priority Number Implemented

} NVIC_Type;

IP = Ox60 = 96

It is equivalent to (Priority value is shifted left by 4 bits, and the result is stored in
the corresponding interrupt priority byte):

NVIC->IP[7] = (6 << 4) & oxff;

Preemption and Sub-priority
Configuration

» NVIC SetPriorityGrouping(n)
» Perform unlock, and update AIRCR register

of bits in # of bits in sub-
preemption priority priority

(%) (%) 4
1 1 3
2 (default) 2 2
3 3 1
4 4 (%)
Priority Byte

el 7 6 5 4 3216
"o \ N A J

Y Y Y

Preemption Sub-priority Not

Priority Number Implemented

Masking Priority

» We have discussed enabling/disabling individual interrupts by setting NVIC
registers.ARM also provides mechanisms to enable/disable a group of
interrupts.

» 3 Interrupt Mask Registers:

PRIMASK

A 1-bit register. When this is set, it allows Reset, NMI and
Hard Fault; all other interrupts and exceptions are disabled
(masked); default is 0 (no masking)

FAULTMASK

A 1-bit register. When this is set, it allows only Reset and
NMI; all other interrupts and exceptions (including Hard Fault)
are disabled; default is 0 (no masking)

BASEPRI

A register of up to 9 bits. It defines the masking priority level.
When this is set, it disables all interrupts of the same or
lower importance (same or larger priority values)

Exception-masking registers (PRIMASK, FAULTMASK and
BASEPRI)

» PRIMASK: Used to disable all exceptions except Non-maskable interrupt (NMIl) and hard fault.
» Write | to PRIMASK to disable all interrupts except NMI

MOV RO, #1
MSR PRIMASK, R@

» Write 0 to PRIMASK to enable all interrupts

MOV RO, #0
MSR PRIMASK, R@

» FAULTMASK: Like PRIMASK but change the current priority level to -1, so that even hard fault
handler is blocked

» BASEPRI: Disable interrupts only with priority lower than a certain level

» Example, disable all exceptions with priority level larger than 0x60 (MSR moves the value in RO into the
BASEPRI special register.)

MOV RO, #0x60
MSR BASEPRI, RO

References

» Lecture 9: Interrupts

» https://www.youtube.com/watch?v=uFBN{f/F3160&list=PLR|hV4hUhlymmp5CCelFPyxb
knsdcXCc8&index=9

https://www.youtube.com/watch?v=uFBNf7F3l60&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=9
https://www.youtube.com/watch?v=uFBNf7F3l60&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=9
https://www.youtube.com/watch?v=uFBNf7F3l60&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=9

	Slide 1: Z. Gu
	Slide 2: Polling vs Interrupt
	Slide 3: Interrupts
	Slide 4: Example: Push a button to turn on a LED
	Slide 5: Polling vs Interrupt
	Slide 6: How to support interrupt?
	Slide 7: How to support interrupt?
	Slide 8: How to support interrupt?
	Slide 9: Interrupt
	Slide 10: Interrupt Service Routine Vector Table
	Slide 11: ISR Vector Table
	Slide 12: Automatic Stacking & Unstacking
	Slide 13: Automatic Stacking & Unstacking
	Slide 14: Stack Pointer: MSP vs PSP
	Slide 15: Control Register
	Slide 16: Automatic Stacking & Unstacking
	Slide 17: MSP vs PSP
	Slide 18: Recall: Link Register for calling functions
	Slide 19: Which stack to use when an interrupt returns?
	Slide 20: Stacking & Unstacking
	Slide 21: Stacking & Unstacking
	Slide 22
	Slide 23: Interrupt: Stacking & Unstacking
	Slide 24: Interrupt: Stacking & Unstacking
	Slide 25: Interrupt: Stacking & Unstacking
	Slide 26: Interrupt: Stacking & Unstacking
	Slide 27: Interrupt: Stacking & Unstacking
	Slide 28: Interrupt: Stacking & Unstacking
	Slide 29: Interrupt: Stacking & Unstacking
	Slide 30: Interrupt: Stacking & Unstacking
	Slide 31: Interrupt: Stacking & Unstacking
	Slide 32: Interrupt: Stacking & Unstacking
	Slide 33: Interrupt: Stacking & Unstacking
	Slide 34: Explanations
	Slide 35: Nested Subroutines: Solution #1
	Slide 36: Nested Subroutines: Solution #2
	Slide 37
	Slide 38: Interrupt: Stacking & Unstacking
	Slide 39: Interrupt: Stacking & Unstacking
	Slide 40: Interrupt: Stacking & Unstacking
	Slide 41: Interrupt: Stacking & Unstacking
	Slide 42: Interrupt: Stacking & Unstacking
	Slide 43: Fixing the Bug
	Slide 44: Enable an Interrupt
	Slide 45: Enable an Interrupt
	Slide 46: Interrupt Number in PSR
	Slide 47: Interrupt Number in CMSIS vs in PSR
	Slide 48: Interrupt Number
	Slide 49: Interrupt Numbers in ARM CMSIS library
	Slide 50: NVIC Registers
	Slide 51: Enable/Disable Interrupts
	Slide 52: Enable/Disable Peripheral Interrupts
	Slide 53: Enabling Peripheral Interrupts
	Slide 54: Disabling Peripheral Interrupts
	Slide 55: Explanations
	Slide 56: Interrupt Priority
	Slide 57: Interrupt Priority
	Slide 58: Interrupt Priority Levels
	Slide 59: Preemption and Sub-priority Configuration
	Slide 60: Masking Priority
	Slide 61: Exception-masking registers (PRIMASK, FAULTMASK and BASEPRI)
	Slide 62: References

