
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M Microcontrollers in 

Assembly Language and C

Chapter 11

Interrupt

1
Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language 

and C, University of Maine https://web.eece.maine.edu/~zhu/book/ 

https://web.eece.maine.edu/~zhu/book/


Polling vs Interrupt

2

Polling Interrupt

Software periodically checks CPU takes action only if an event occurs

Waste lot of CPU cycles Does not waste CPU cycles

Triggered by software Triggered by hardware or software

Occurs periodically Can occur any time

 Interrupt-driven operations

 Allows CPU to perform other tasks until external/internal devices require service

 CPU stops the current code and starts to execute an ISR



Interrupts

3

 Motivations

 Inform a program of some external events timely

 Implement multi-tasking with priority support
// Polling
while (1) {
    read_button_input;
    if (pushed)
        exit;
}
turn_on_LED;

// Interrupt
interrupt_handler(){
 turn_on_LED;
 exit;
}

Suppose you are waiting for an important 

phone call.

Polling: 

You pick up the phone every three 

seconds to check whether you are 

getting a call.

Interrupt:

Do whatever you should do and pick up 

the phone when it rings. 



Example: Push a button to turn on a LED

4

 Check whether a button 
has been pressed?

 Polling

 Repeatedly read IDR and 
check whether bit 3 is set 
(i.e., busy wait)

 OK if CPU has nothing else 
to do

 Interrupt

 When hardware detects a 
rising or fall edge, hardware 
generates a service request 

 CPU responses to the 
service request and starts 
to execute the 
corresponding service 
subroutine

Pull down 

resistor

Input Pin 

PA.3

Input

Processor Chip

+3V

100Ω

Joy_up

Voltage on PA.3



Polling vs Interrupt

5

 Interrupt-driven operations

 Allows CPU to perform other 

tasks until external/internal 

devices require service

 CPU automatically stops the 

current code and starts to 

execute an ISR

main()

ISR()

Busy

device

Ready

time

CPU



How to support interrupt?

6

Edge 

Detector
ARM Cortex-M

Microcontroller Chip

Execution

Core

Interrupt 

Controller

Interrupt 

Request

Interrupt 

Request

1. Stop the current code

2. Service the interrupt request 

(i.e. turn on the LED)

3. Resume the previous code

Flash

ISR
ISR: Interrupt 

Service Handler



How to support interrupt?

7

Edge 

Detector
ARM Cortex-M

Microcontroller Chip

Execution

Core

Interrupt 

Controller

Interrupt 

Request

Interrupt 

Request

UART

Coordinates multiple interrupt sources

• Enable and disable a specific interrupt

• Which one service first (interrupt priority)

• How to locate the corresponding ISR?

• How to resume the code that has been suspended? 



How to support interrupt?

8

Edge 

Detector
ARM Cortex-M

Microcontroller Chip

Execution

Core

NVIC
Interrupt 

Request

Interrupt 

Request

UART

Nested Vectored 

Interrupt Controller

Coordinates multiple interrupt sources

• Enable and disable a specific interrupt

• Which one service first (interrupt priority)

• How to locate the corresponding ISR?

• How to resume the code that has been suspended? 



Interrupt

9



Interrupt Service Routine Vector Table

 Start address for the exception 

hander for each exception type is 

fixed and pre-defined

 Processor loads PC with this 

fixed, pre-defined address

 Exception Vector Table typically 

starts at memory address 

0x00000000 (or relocated 

depending on Vector Table Offset 

Register (VTOR))

 Program Counter pc = 

0x00000004 initially

Address Priority
Type of 

priority
Acronym Description

0x0000_0000 - - - Stack Pointer

0x0000_0004 -3 fixed Reset Reset Vector 

0x0000_0008 -2 fixed NMI_Handler

Non maskable interrupt. The RCC 

Clock Security System (CSS) is 

linked to the NMI vector.

0x0000_000C -1 fixed HardFault_Handler All class of fault

0x0000_0010 0 settable MemManage_Handler Memory management

0x0000_0014 1 settable BusFault_Handler Pre-fetch fault, memory access fault

0x0000_0018 2 settable UsageFault_Handler Undefined instruction or illegal state

0x0000_001C-

0x0000_002B - - - Reserved

0x0000_002C 3 settable
 
 SVC_Handler

System service call via SWI
 instruction

0x0000_0030 4 settable DebugMon_Handler Debug Monitor

0x0000_0034 - - - Reserved

0x0000_0038 5 settable PendSV_Handler Pendable request for system service

0x0000_003C 6 settable SysTick_Handler System tick timer

…

10



11

ISR Vector Table

Top_of_Stack

Reset_Handler

NMI_Handler

HardFault_Handler

MemManage_Handler

BusFault_Handler

UsageFault_Handler

Reserved

Reserved

Reserved

Reserved

SVC_Handler

DebugMon_Handler

PendSV_Handler

SysTick_Handler

WWDG_IRQHandler

PVD_IRQHandler 

TAMPER_STAMP_IRQHandler

RTC_WKUP_IRQHandler 

FLASH_IRQHandler 

RCC_IRQHandler  

EXTI0_IRQHandler 

EXTI1_IRQHandler 

EXTI2_IRQHandler 

EXTI3_IRQHandler 

EXTI4_IRQHandler 

DMA1_Channel1_IRQHandler 

DMA1_Channel2_IRQHandler 

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

0x00000020

0x00000024

0x00000028

0x0000002C

0x00000040

0x00000044

0x00000048

0x0000004C

0x00000050

0x00000054

0x00000058

0x0000005C

0x00000060

0x00000064

0x00000068

0x0000006C

0x00000070

0x00000074 DMA1_Channel3_IRQHandler 

……
void Reset_Handler () {

     ...

     main();

     ...

}

Value to initialize the Stack Pointer (SP)

Value to initialize the Program Counter (PC)

void EXTI0_Handler () {

     ...

}

void DMA1_Channel1_IRQHandler () {

     ...

}

void EXTI1_Handler () {

     ...

}

void SysTick_Handler () {

     ...

}

void SVC_Handler () {

     ...

}

…
…

…
…

…

0x00000030

0x00000034

0x00000038

0x0000003C

System 

Exceptions

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

-4

-3

-2

-1

Reserved

Interrupt

Number
Memory

Address
Memory Contents (32 bits)

For interrupt number n: (interrupt 

shown in the xPSR)

Common Microcontroller Software 

Interface Standard (CMSIS) Interrupt 

Number = 16 + n



Automatic Stacking & Unstacking

12

Interrupt Handler

Handler Mode Thread ModeThread Mode

Interrupt 

Signal

User ProgramUser Program

Stacking

Unstacking

Interrupt 

Exit

Time

Stacking: hardware automatically pushes eight register into the stack

             (xPSR,PC,LR,r12,r3,r2,r1,r0)

             (additional registers if Floating Point unit is active) 

Unstacking: hardware automatically pops these eight register off the stack



Automatic Stacking & Unstacking

13

SP + 0x20 xxxxxxxx

SP + 0x1C xPSR

SP + 0x18 PC (r15)

SP + 0x14 LR (r14)

SP + 0x10 r12

SP + 0x0C r3

SP + 0x08 r2

SP + 0x04 r1

SP r0

Old SP

New SP

Full descending stack

Stacking

New SP

Old SP

Unstacking



Stack Pointer: MSP vs PSP

14

• MSP: Main Stack Pointer (selected at reset)

• PSP:  Process Stack Pointer

• R13 (SP) refers to whichever SP is active, either MSP or PSP

For interrupts, which stack does 

auto stacking/unstacking use?

Depends on 

• processor mode: thread vs handler 

• setting in the control register



Control Register

15

31 - 3 2 1 0

Reserved FPCA SPSEL nPRIV

0:  FP inactive (default)

1:  FP active

0:  SP = MSP (default)

1:  SP = PSP if in Thread Mode

0:  Thread mode has privileged access (default)

1:  Thread mode has unprivileged access

By default, MSP is used.

SP Privileged

Handler Mode SP = MSP and SPSEL = 0 Privileged

Thread Mode Depending on SPSEL Depending on nPRIV

For simple applications, MSP is used.



Automatic Stacking & Unstacking

16

SP + 0x20 xxxxxxxx

SP + 0x1C xPSR

SP + 0x18 PC (r15)

SP + 0x14 LR (r14)

SP + 0x10 r12

SP + 0x0C r3

SP + 0x08 r2

SP + 0x04 r1

SP + 0x00 r0

• Stacking:  The processor 

automatically pushes these eight 

registers into the currently 

selected stack before ISR

• starts

• Unstacking:  The processor 

automatically pops these eight 

register out of the currently 

selected stack when an interrupt 

hander exits.

Old SP

New SP

Full 

Descending 

Stack



MSP vs PSP

17

Thread Mode

Start of 

main()
SPSEL = 0
MSP is used.

SPSEL = 1
PSP is used.

Handler Mode

SPSEL = 0
MSP is used.

1. Auto stacking by using currently 

selected selected stack

2. Start to execute ISR

1. Exit ISR

2. Auto unstacking by using 

currently selected stack

How does the processor 

know which stack was 

selected? Use LR to indicate



Compiler

● ● ● 

 BL foo
  ● ● ●

foo  PROC

     ● ● ●
        ● ● ●

     BX   LR

     ENDP

void foo(void) ;

int main(void{

   ● ● ● 

   foo();

    ● ● ● 

}

Recall: Link Register for calling functions

PC + 4
PC

void foo (void) {

     ● ● ●
        ● ● ●

     return;
}

LR = PC + 4
PC = foo



Which stack to use when an interrupt returns?

19

 When an interrupt (ISR) occurs on an ARM Cortex-M core:
 The CPU automatically saves (stacks) part of the current context — registers R0-R3, R12, LR, PC, 

and xPSR — to the stack.

 It then loads the ISR’s address into PC, and sets LR to a special EXC_RETURN value — not a 
normal function return address.

 Link Register (LR) now has two usages:
 For subroutine calls: LR holds the return address (the instruction after BL).

 For interrupts: LR holds EXC_RETURN value indicating how to restore context when exiting the 
interrupt. The CPU recognizes this special pattern (bits [31:28] = 0xF) and performs an exception 
return sequence rather than a regular branch. It returns to the original PC before the interrupt 
occurred.
 Thread mode: Normal program execution;  Handler mode: ISR execution. 

 If an interrupt occurs while already in Handler mode (nested interrupt), LR is set to a different EXC_RETURN 
value (0xFFFFFFF1) to indicate that the CPU should return to Handler mode when that ISR completes.

EXC_RETURN value Meaning

0xFFFFFFF1 Return to Handler mode, using MSP (for nested interrupts)

0xFFFFFFF9 Return to Thread mode, using MSP

0xFFFFFFFD Return to Thread mode, using PSP



Stacking & Unstacking

20

Interrupt Handler

Handler Mode Thread ModeThread Mode

Interrupt 

Signal

User ProgramUser Program

Stacking

onto MSP

Unstacking

from MSP

Interrupt 

Exit

Time

Assume SPSEL = 0 and no FP is used ⟹  User program uses MSP.

MSP MSP MSP

LR = 0xFFFFFFF9LR = Some Value LR is recovered to old value

xPSR,PC,LR,R12,
R3,R2,R1,R0



Stacking & Unstacking

21

ISR

Handler Mode Thread ModeThread Mode

Interrupt 

Signal

User ProgramUser Program

Stacking 

onto PSP

Unstacking

from PSP

Interrupt 

Exit

Time

PSP MSP PSP

LR = 0xFFFFFFFD

Assume SPSEL = 1 and no FP is used ⟹  User program uses PSP.

LR = Some Value LR is recovered to old value

xPSR,PC,LR,R12,
R3,R2,R1,R0



22

An example to illustrate 

stacking and unstacking

(assuming MSP is used by the 

main program)



Interrupt: Stacking & Unstacking

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r4, #1

  BL  sine

  BX  lr

  ENDP

  

0x200001E0

0x200001DC

0x200001EC

0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x200001FC

0x200001F8

0x200001F4

0x200001F0

0x200001E8

0x200001D0

23

0R0

1R1

2R2

3R3

MSP

0x08001000

0x08000044R15(PC)

0x21000000xPSR

0x20000200MSP

0x00000000PSP

4R4

0x200001CF

addr = 0x08000044

addr = 0x0800001C

Memory

R13(SP)

R14(LR)

12R12

0x0800001C

0x08000020

0x08000024



Interrupt: Stacking & Unstacking

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

0x200001E0

0x200001DC

0x200001EC

0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x200001FC

0x200001F8

0x200001F4

0x200001F0

0x200001E8

0x200001D0

24

0R0

1R1

2R2

3R3

MSPR13(SP)

0x08001000R14(LR)

0x08000044R15(PC)

0x21000000xPSR

0x20000200MSP

0x00000000PSP

4R4

0x200001CF

addr = 0x08000044

addr = 0x0800001C

Memory

12R12



Interrupt: Stacking & Unstacking

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

0x200001E0

0x200001DC

0x200001EC

0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x200001FC

0x200001F8

0x200001F4

0x200001F0

0x200001E8

0x200001D0

25

0R0

1R1

2R2

3R3

MSP

0x08001000

0x08000044R15(PC)

0x21000000xPSR

0x20000200MSP

0x00000000PSP

4R4

0x200001CF

addr = 0x08000044

addr = 0x0800001C

Memory

Suppose SysTick interrupt 

occurs when PC = 0x08000044

R13(SP)

R14(LR)

12R12



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000

0x08000044

0x200001FC

0x200001F8

0x08001000 0x200001F4

0x200001F012

2 0x200001E8

0x200001D0

26

0R0

1R1

2R2

3R3

MSP

0xFFFFFFF9

0x0800001CR15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

4R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

LR

R12

R3

R2

R1

R0

STACKING

R13(SP)

R14(LR)

12R12



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000 0x200001FC

0x200001F8

0x200001F4

0x200001F0

2 0x200001E8

0x200001D0

27

0R0

1R1

2R2

3R3

0x0800001CR15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

4R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

R3

R2

R1

R0

STACKING

LR = 0xFFFFFFF9 to 

indicate MSP is used.

R13(SP)

R14(LR)

MSP

0xFFFFFFF9

12R12

LR

R12

0x08000044

0x08001000

12



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000 0x200001FC

0x200001F8

0x200001F4

0x200001F0

2 0x200001E8

0x200001D0

28

0R0

1R1

2R2

4R3

0x0800001CR15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

4R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

LR

R12

R3

R2

R1

R0

R13(SP)

R14(LR)

MSP

0xFFFFFFF9

12R12

0x08000044

0x08001000

12



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000 0x200001FC

0x200001F8

0x200001F4

0x200001F0

2 0x200001E8

0x200001D0

29

0R0

1R1

2R2

4R3

0x08000020R15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

5R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

R3

R2

R1

R0

R13(SP)

R14(LR)

MSP

0xFFFFFFF9

12R12

LR

R12

0x08000044

0x08001000

12



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000 0x200001FC

0x200001F8

0x200001F4

0x200001F0

2 0x200001E8

0x200001D0

30

0R0

1R1

2R2

4R3

0x08000024R15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

5R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

R3

R2

R1

R0

LR = 0xFFFFFFF9 to 

indicate MSP is used.

R13(SP)

R14(LR)

MSP

0xFFFFFFF9

12R12

LR

R12

0x08000044

0x08001000

12



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000 0x200001FC

0x200001F8

0x200001F4

0x200001F0

2 0x200001E8

0x200001D0

31

0R0

1R1

2R2

4R3

0x08000024R15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

5R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

R3

R2

R1

R0

LR = 0xFFFFFFF9 to 

indicate MSP is used.

UNSTACKING

R13(SP)

R14(LR)

MSP

0xFFFFFFF9

12R12

LR

R12

0x08000044

0x08001000

12



Interrupt: Stacking & Unstacking

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

0x200001E0

0x200001DC

0x200001EC

0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x200001FC

0x200001F8

0x200001F4

0x200001F0

0x200001E8

0x200001D0

32

0R0

1R1

2R2

3R3

MSP

0x08001000

0x08000044R15(PC)

0x21000000xPSR

0x20000200MSP

0x00000000PSP

5R4

0x200001CF

addr = 0x08000044

addr = 0x0800001C

Memory

Note the new value 

of R3 is lost!!!

UNSTACKING

R13(SP)

R14(LR)

12R12



Interrupt: Stacking & Unstacking

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r3, #1

  ADD r4, #1

  BX  lr

  ENDP

  

0x200001E0

0x200001DC

0x200001EC

0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x200001FC

0x200001F8

0x200001F4

0x200001F0

0x200001E8

0x200001D0

33

0R0

1R1

2R2

3R3

MSP

0x08001000

0x08000044R15(PC)

0x21000000xPSR

0x20000200MSP

0x00000000PSP

5R4

0x200001CF

addr = 0x08000044

addr = 0x0800001C

Memory

The Main program 

resumes!!!

R13(SP)

R14(LR)

12R12



Explanations

34

 The value of R3 updated in ISR is lost because during the interrupt unstacking (return from interrupt), 
the processor restores R3 (and other registers) from the stack — overwriting whatever changes were 
made to R3 inside ISR.

 1. Before the interrupt (in main)
 The main program is executing at R3 = 0 (set by MOV r3, #0) 

 2. Interrupt occurs (SysTick_Handler) 
 The processor automatically pushes (stacks) certain registers onto the stack: xPSR,PC,LR,R12,R3,R2,R1,R0

 3. Inside ISR
 R3 = 3+1 = 4, R4 = 4+1 = 5 — but these are local to the ISR

 4. Returning from interrupt (unstacking)
 When BX lr executes with LR = 0xFFFFFFF9, the CPU knows: “Return to Thread mode using MSP.” It then 

automatically pops (unstacks) the previously saved registers. This restores the pre-interrupt state:R3 ← (the 
saved value from the stack, which was 3 before the interrupt); R4 remains 5 (not part of automatic 
stacking/unstacking); PC ← 0x08000044 (returns to main); xPSR restored.

Step Action Effect on R3

Before interrupt R3 = 3 in main —

Interrupt entry R3 = 3 stacked Saved on MSP

ISR executes R3 = 4 (incremented) Temporary

ISR returns R3 restored from stack R3 = 3 again



Nested Subroutines: Solution #1

35

Caller Program Subroutine foo Subroutine bar

   MOV r4, #100
   ...
   BL  foo
   ...
   ADD r4, r4, #1

foo PROC
    PUSH  {r4, LR} 
    ...
    MOV   r4, #10  
    ...
    BL    bar
    ...
    POP   {r4, LR}     
    BX    LR
ENDP

bar PROC
    ...
    BX    LR
ENDP

foo saves and restores its LR for returning to its caller, before calling bar. 

 

Review



Nested Subroutines: Solution #2

36

Caller Program Subroutine foo Subroutine bar

   MOV r4, #100
   ...
   BL  foo
   ...
   ADD r4, r4, #1

foo PROC
    PUSH  {r4, LR} 
    ...
    MOV   r4, #10  
    ...
    BL    bar
    ...
    POP   {r4, PC}     
    BX    LR
ENDP

bar PROC
    ...
    BX    LR
ENDP

POP   {r4, PC} is equivalent to POP {r4, LR} followed by BX LR. 

Review



37

An example where an ISR calls a 

subroutine, similar to the nested 

subroutines example



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000

0x08000044

0x200001FC

0x200001F8

0x20000200 0x200001F4

0x200001F00x08001000

2 0x200001E8

0x200001D0

38

0R0

1R1

2R2

3R3

MSP

0xFFFFFFF9

0x0800001CR15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

4R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r4, #1

  BL  sine

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

SP

LR

R3

R2

R1

R0

STACKING

LR = 0xFFFFFFF9 to 

indicate MSP is used.

R13(SP)

R14(LR)

12R12

0x0800001C

0x08000020

0x08000024



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000

0x08000044

0x200001FC

0x200001F8

0x20000200 0x200001F4

0x200001F00x08001000

2 0x200001E8

0x200001D0

39

0R0

1R1

2R2

3R3

MSP

0xFFFFFFF9

0x08000020R15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

5R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r4, #1

  BL  sine

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

SP

LR

R3

R2

R1

R0

LR = 0xFFFFFFF9 to 

indicate MSP is used.

R13(SP)

R14(LR)

12R12

0x0800001C

0x08000020

0x08000024



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000

0x08000044

0x200001FC

0x200001F8

0x20000200 0x200001F4

0x200001F00x08001000

2 0x200001E8

0x200001D0

40

0R0

1R1

2R2

3R3

MSP

0x08000024

0x080000F0R15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

4R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r4, #1

  BL  sine

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

SP

LR

R3

R2

R1

R0

BL sine 

Updates LR

R13(SP)

R14(LR)

12R12

0x0800001C

0x08000020

0x08000024

Assume sine() is located at 0x08000024.



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000

0x00000002

0x200001FC

0x200001F8

0x20000200 0x200001F4

0x200001F00x08001000

2 0x200001E8

0x200001D0

41

0R0

1R1

2R2

3R3

MSP

0x08000024

0x080000F0R15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

4R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r4, #1

  BL  sine

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

SP

LR

R3

R2

R1

R0

BL sine 

Updates LR

R13(SP)

R14(LR)

12R12

0x0800001C

0x08000020

0x08000024



Interrupt: Stacking & Unstacking

0 0x200001E0

0x200001DC

0x200001EC3

1 0x200001E4

0x200001D8

0x200001D4

xxxxxxxx 0x20000200

0x21000000

0x00000002

0x200001FC

0x200001F8

0x20000200 0x200001F4

0x200001F00x08001000

2 0x200001E8

0x200001D0

42

0R0

1R1

2R2

3R3

MSP

0x08000024

0x080000F0R15(PC)

0x21000000xPSR

0x200001E0MSP

0x00000000PSP

4R4

0x200001CF

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  ADD r4, #1

  BL  sine

  BX  lr

  ENDP

  

addr = 0x08000044

addr = 0x0800001C

Memory

xPSR

PC

SP

LR

R3

R2

R1

R0

UNSTACKING 

won’t occur!

BL sine 

Updates LR

R13(SP)

R14(LR)

12R12

0x0800001C

0x08000020

0x08000024



Fixing the Bug

43

 LR has two different usages for 
function calls and for interrupts.

 After calling function sine(), LR 
points to the return address 
0x08000024; the previous value of 
0xFFFFFFF9 is overwritten and lost.

 Fix the bug:

 Method 1: PUSH{lr}/POP{lr} in the 
function to save and restore the 
original LR value of 0xFFFFFFF9

 Method 2: PUSH{lr}/POP{PC} 

 POP {PC} is equivalent to POP {lr} 
followed by BX lr

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  PUSH {lr} 

  ADD r4, #1

  BL  sine

  POP {lr} 

  BX  lr

  ENDP

  

__main PROC

  …

  MOV r3,#0

  …

  ENDP

SysTick_Handler PROC

  EXPORT SysTick_Handler

  PUSH {lr} 

  ADD r4, #1

  BL  sine

  POP {PC} 

  ENDP

  

Method 1 Method 2



Enable an Interrupt

44

Peripheral ARM Cortex-M

Execution

Core

NVIC

Interrupt 

Request

Interrupt 

Request

Nested Vectored 

Interrupt Controller

Two steps:

1. Program the peripheral 

control register to allow 

it to generate interrupts

2. Program NVIC to allow 

it to accept interrupts 



Enable an Interrupt

45

Peripheral ARM Cortex-M

Execution

Core

NVIC

Interrupt 

Request

Interrupt 

Request

Nested Vectored 

Interrupt Controller

Two steps:

1. Program the peripheral 

control register to allow 

it to generate interrupts

2. Program NVIC to allow 

it to accept interrupts 

How?



Interrupt Number in PSR

46

 Application PSR (APSR),  Interrupt PSR (IPSR),  Execution PSR (EPSR)

N Z C V

ISR number

Reserved

Reserved

ICI/IT ReservedT

Reserved ISR number

APSR

IPSR

EPSR

PSR

Q

ICI/IT TN Z C V Q

ICI/IT

ICI/IT

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27

Combine them together into one register (PSR = APSR | IPSR | EPSR (“|” stands for bitwise 

OR))

GEReserved

GEReserved

8-bit interrupt number in PSR
Range:  0 - 255



Interrupt Number in CMSIS vs in PSR

47

 Cortex-M supports up to 256 interrupts. 

 Interrupt numbers -16 to -1 denote system exceptions, as defined by ARM CMSIS (Cortex Microcontroller 

Software Interface Standard); 

 Interrupt numbers 0-239 denote peripheral interrupts, as defined by chip manufacturers

 Interrupt Number in PSR = 16 + Interrupt Number for CMSIS

0

Peripheral 

Interrupts

System 

Exceptions

255

Interrupt Numbers in PSR

15

0

interrupt 

number

Peripheral 

Interrupts

System 

Exceptions

239-1-16

Interrupt Numbers defined by ARM CMSIS or chip manufacturers 

16



Interrupt Number

48

Interrupt number is stored in the last Byte of Program Status Register (PSR)

NVIC_DisableIRQ (IRQn);            // Disable interrupt
NVIC_EnableIRQ (IRQn);             // Enable interrupt 
NVIC_ClearingPending (IRQn);       // clear pending status 
NVIC_SetPriority (IRQn, priority); // set priority level

Interrupt number for CMSIS functions

N Z C V Q IT[7:6] T GE[3:0] IT[5:0] Interrupt Number

Stick saturation flag for SSAT and USAT

Carry/Borrow flag

Negative or less than flag

Overflow flag

Zero flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Thumb state flag

IT[7:0]: If-Then bits

Reserved

GE[3:0]: Greater or equal flags (only available on Cortex-M4 and M7)



Interrupt Numbers in ARM CMSIS library

49

/******  Cortex-M4 System Exceptions ********************************************************/

  NonMaskableInt_IRQn    = -14,    /* 2 Cortex-M4 Non Maskable Interrupt                    */

  HardFault_IRQn         = -13,    /* 3 Cortex-M4 Hard Fault Interrupt                      */

  MemoryManagement_IRQn  = -12,    /* 4 Cortex-M4 Memory Management Interrupt               */

  BusFault_IRQn          = -11,    /* 5 Cortex-M4 Bus Fault Interrupt                       */

  UsageFault_IRQn        = -10,    /* 6 Cortex-M4 Usage Fault Interrupt                     */

  SVCall_IRQn            = -5,     /* 11 Cortex-M4 SV Call Interrupt                        */

  DebugMonitor_IRQn      = -4,     /* 12 Cortex-M4 Debug Monitor Interrupt                  */

  PendSV_IRQn            = -2,     /* 14 Cortex-M4 Pend SV Interrupt                        */

  SysTick_IRQn           = -1,     /* 15 Cortex-M4 System Tick Interrupt                    */

/******  Peripheral Interrupt Numbers *******************************************************/

  WWDG_IRQn              = 0,      /* Window WatchDog Interrupt                             */

  PVD_PVM_IRQn           = 1,      /* PVD/PVM1,2,3,4 through EXTI Line detection Interrupts */

  TAMP_STAMP_IRQn        = 2,      /* Tamper and TimeStamp interrupts through the EXTI line */

  RTC_WKUP_IRQn          = 3,      /* RTC Wakeup interrupt through the EXTI line            */

  FLASH_IRQn             = 4,      /* FLASH global Interrupt                                */

  RCC_IRQn               = 5,      /* RCC global Interrupt                                  */

  EXTI0_IRQn             = 6,      /* EXTI Line0 Interrupt                                  */

  ...

System 

Exceptions

Defined by ARM

Peripheral Interrupts 

Defined by chip vendor

stm32l476xx.h



NVIC Registers

50

 ISER (Interrupt Set-Enable Register)

 Used to enable interrupts or to determine which interrupts are currently enabled

 ICER (Interrupt Clear-Enable Register)

 Used to disable interrupts or to determine which interrupts are currently disabled

 ISPR (Interrupt Set-Pending Register)

 Used to force interrupts into the pending state, or to determine which interrupts are 
currently pending

 ICPR (Interrupt Clear-Pending Register)

 Used to clear pending interrupts, or to determine which interrupts are currently 
pending

 Interrupt Priority Registers

 Used to set interrupt priority (importance)



Enable/Disable Interrupts

51

 Enable a system interrupt

 Some are always enabled (cannot be disabled)

 No centralized registers for enabling/disabling

 Each are control by its corresponding components, such as SysTick module

 Enable a peripheral interrupt

 Centralized register arrays for enabling/disabling

 ISER registers for enabling 

 ICER registers for disabling

 They are separate write-only registers that control the same enable flip-flops inside the NVIC:

 Writing 1 to a bit in ISER[x] → sets the enable bit (enables interrupt)

 Writing 1 to a bit in ICER[x] → clears the enable bit (disables interrupt)

 Writing 0 to a bit in ISER[x] or ICER[x] has no effect, so we never do it.

 Separating enable bits and disable bits in two separate sets of registers, ICER and ISER, 
provides great convenience and flexibility for programmers.



Enable/Disable Peripheral Interrupts

52

 For all peripheral interrupts: IRQn ≥ 0
 Method 1 (Interrupt number for CMSIS):

 These functions are defined in the ARM Cortex core header file
 NVIC_DisableIRQ (IRQn);     
 NVIC_EnableIRQ (IRQn); 

 Method 2 (Interrupt number for PSR):

 We enable (disable) a peripheral interrupt by setting the corresponding bit of the ISER 
(ICER) register.  To enable a given IRQn, we divide it by 32 to find out in which ISER register 
the target enable bit is located, since each ISER register has 32 bits and can enable 32 
interrupts.  The bit offset within the target ISER register is determined by the result of IRQn 
mod 32. 
 Enable:

 NVIC->ISER[IRQn / 32] |= 1 << (IRQn % 32); 
 Better solution (IRQn / 32 = IRQn >> 5, IRQn % 32 = IRQn & 0x1F):

 NVIC->ISER[IRQn >> 5] |= 1 << (IRQn & 0x1F); 

 Disable:
 NVIC->ICER[IRQn >> 5] |= 1 << (IRQn & 0x1F); 



Enabling Peripheral Interrupts

53

NVIC->ISER[1] |= 1 << 12;     // Enable Timer 7 interrupt

TIM7_IRQn = 44 



Disabling Peripheral Interrupts

54

NVIC->ICER[1] |= 1 << 12;     // Diable Timer 7 interrupt

TIM7_IRQn = 44 



Explanations

55

 To enable interrupt “Timer 7” with interrupt number 44:

 ISER0 controls interrupts 0 to 31; ISER1 controls interrupts 32 to 63.  

 To enable interrupt 44, we set bit 12 (44-32) of ISER1 to 1 by executing NVIC-

>ISER[1] |= 1 << 12. 

 To disable interrupt “Timer 7” with interrupt number 44:

 To disable interrupt 44,  we set bit 12 (44-32) of ICER1 to 1 by executing 

NVIC->ICER[1] |= 1 << 12. 



Interrupt Priority

56

 Inverse Relationship:

 Lower priority value means higher urgency.

 Priority of Interrupt A = 5, 

 Priority of Interrupt B = 2,

 B has a higher priority/urgency than A.

 Fixed priority for Reset, HardFault, and NMI.

 Adjustable for all the other interrupts

Exception IRQn Priority

Reset N/A -3 (the highest)

Non-maskable Interrupt (NMI) -14 -2 (2nd highest)

Hard Fault -13 -1



Interrupt Priority

 Interrupt priority is configured by Interrupt Priority Register (IP) 

 Each priority consists of two fields, including preempt priority number and sub-

priority number. 

 The preempt priority number defines the priority for preemption. 

 The sub-priority number determines the order when multiple interrupts are pending with the same preempt 

priority number.

57

default setting



Interrupt Priority Levels

Configure interrupt priority for IRQ number 7 to be level 6 (01100000 in binary, or 
96 in decimal):
NVIC_SetPriority(7, 6);

58

0 1 1 0 0 0 0 0

NVIC->IP[7] = (6 << 4) & 0xff;

typedef struct {
  ...
  // Interrupt Priority Register
  volatile uint8_t IP[240]; 
  ...
} NVIC_Type;

core_cm4.h or core_cm3.h

IP = 0x60 = 96

It is equivalent to (Priority value is shifted left by 4 bits, and the result is stored in 

the corresponding interrupt priority byte):



Preemption and Sub-priority 

Configuration

59

 NVIC_SetPriorityGrouping(n)
 Perform unlock, and update AIRCR register 

n
# of bits in 

preemption priority

# of bits in sub-

priority

0 0 4

1 1 3

2 (default) 2 2

3 3 1

4 4 0

Default 

n = 2



Masking Priority

60

 We have discussed enabling/disabling individual interrupts by setting NVIC 

registers. ARM also provides mechanisms to enable/disable a group of 

interrupts.

 3 Interrupt Mask Registers:

Register Name Description

PRIMASK A 1-bit register. When this is set, it allows Reset, NMI and 

Hard Fault; all other interrupts and exceptions are disabled 

(masked); default is 0 (no masking)

FAULTMASK A 1-bit register. When this is set, it allows only Reset and 

NMI; all other interrupts and exceptions (including Hard Fault) 

are disabled; default is 0 (no masking)

BASEPRI A register of up to 9 bits. It defines the masking priority level. 

When this is set, it disables all interrupts of the same or 

lower importance (same or larger priority values)



Exception-masking registers (PRIMASK, FAULTMASK and 

BASEPRI)

 PRIMASK: Used to disable all exceptions except Non-maskable interrupt (NMI) and hard fault.
 Write 1 to PRIMASK to disable all interrupts except NMI

 Write 0 to PRIMASK to enable all interrupts

 FAULTMASK: Like PRIMASK but change the current priority level to -1, so that even hard fault 
handler is blocked 

 BASEPRI: Disable interrupts only with priority lower than a certain level

 Example, disable all exceptions with priority level larger than 0x60 (MSR moves the value in R0 into the 
BASEPRI special register.)

  

61

MOV R0, #1
MSR PRIMASK, R0

MOV R0, #0
MSR PRIMASK, R0

MOV R0, #0x60
MSR BASEPRI, R0



References

62

 Lecture 9: Interrupts

 https://www.youtube.com/watch?v=uFBNf7F3l60&list=PLRJhV4hUhIymmp5CCeIFPyxb

knsdcXCc8&index=9

https://www.youtube.com/watch?v=uFBNf7F3l60&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=9
https://www.youtube.com/watch?v=uFBNf7F3l60&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=9
https://www.youtube.com/watch?v=uFBNf7F3l60&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=9

	Slide 1: Z. Gu
	Slide 2: Polling vs Interrupt
	Slide 3: Interrupts
	Slide 4: Example: Push a button to turn on a LED
	Slide 5: Polling vs Interrupt
	Slide 6: How to support interrupt?
	Slide 7: How to support interrupt?
	Slide 8: How to support interrupt?
	Slide 9: Interrupt
	Slide 10: Interrupt Service Routine Vector Table
	Slide 11: ISR Vector Table
	Slide 12: Automatic Stacking & Unstacking
	Slide 13: Automatic Stacking & Unstacking
	Slide 14: Stack Pointer: MSP vs PSP
	Slide 15: Control Register
	Slide 16: Automatic Stacking & Unstacking
	Slide 17: MSP vs PSP
	Slide 18: Recall: Link Register for calling functions
	Slide 19: Which stack to use when an interrupt returns?
	Slide 20: Stacking & Unstacking
	Slide 21: Stacking & Unstacking
	Slide 22
	Slide 23: Interrupt: Stacking & Unstacking
	Slide 24: Interrupt: Stacking & Unstacking
	Slide 25: Interrupt: Stacking & Unstacking
	Slide 26: Interrupt: Stacking & Unstacking
	Slide 27: Interrupt: Stacking & Unstacking
	Slide 28: Interrupt: Stacking & Unstacking
	Slide 29: Interrupt: Stacking & Unstacking
	Slide 30: Interrupt: Stacking & Unstacking
	Slide 31: Interrupt: Stacking & Unstacking
	Slide 32: Interrupt: Stacking & Unstacking
	Slide 33: Interrupt: Stacking & Unstacking
	Slide 34: Explanations
	Slide 35: Nested Subroutines: Solution #1
	Slide 36: Nested Subroutines: Solution #2
	Slide 37
	Slide 38: Interrupt: Stacking & Unstacking
	Slide 39: Interrupt: Stacking & Unstacking
	Slide 40: Interrupt: Stacking & Unstacking
	Slide 41: Interrupt: Stacking & Unstacking
	Slide 42: Interrupt: Stacking & Unstacking
	Slide 43: Fixing the Bug
	Slide 44: Enable an Interrupt
	Slide 45: Enable an Interrupt
	Slide 46: Interrupt Number in PSR
	Slide 47: Interrupt Number in CMSIS vs in PSR
	Slide 48: Interrupt Number
	Slide 49: Interrupt Numbers in ARM CMSIS library
	Slide 50: NVIC Registers
	Slide 51: Enable/Disable Interrupts
	Slide 52: Enable/Disable Peripheral Interrupts
	Slide 53: Enabling Peripheral Interrupts
	Slide 54: Disabling Peripheral Interrupts
	Slide 55: Explanations
	Slide 56: Interrupt Priority
	Slide 57: Interrupt Priority
	Slide 58: Interrupt Priority Levels
	Slide 59: Preemption and Sub-priority  Configuration
	Slide 60: Masking Priority
	Slide 61: Exception-masking registers (PRIMASK, FAULTMASK and BASEPRI)
	Slide 62: References

