Instruction Operands Description and Action
ADC, ADCS {Rd,} Rn, Op2 Add with Carry, Rd < Rn + Op2 + Carry, ADCS updates N,Z,C,V
ADD, ADDS {Rd,} Rn, Op2 Add, Rd < Rn + Op2, ADDS updates N,Z,C,V
ADD, ADDS {Rd,} Rn, #imml12 Add Immediate, Rd < Rn + imml12, ADDS updates N,Z,C,V
ADR Rd, label Load PC-relative Address, Rd « <label>
AND, ANDS {Rd,} Rn, Op2 Logical AND, Rd < Rn AND Op2, ANDS updates N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right, Rd < Rm>>(Rs|n), ASRS updates N,Z,C
B label Branch, PC < label
BFC Rd, #lsb, #width Bit Field Clear, Rd[(width+lsb-1):1sb] < ©
BFI Rd, Rn, #lsb, #width Bit Field Insert, Rd[(width+lsb-1):1sb] < Rn[(width-1):0]
BIC, BICS {Rd,} Rn, Op2 Bit Clear, Rd « Rn AND NOT Op2, BICS updates N,Z,C
BKPT #imm Breakpoint, prefetch abort or enter debug state
Branch with Link,
BL label LR < address of next instruction, PC « label
BLX - Branch register with link,
LR <« address of next instruction, PC «— Rm[31:1]
BX Rm Branch register, PC < Rm
CBNZ Rn, label Compare and Branch if Non-zero; PC « label if Rn != 0
CBZ Rn, label Compare and Branch if Zero; PC « label if Rn ==
CLREX - Clear local processor exclusive tag
CLZ Rd, Rm Count Leading Zeroes, Rd <« number of leading zeroes in Rm
CMN Rn, Op2 Compare Negative, Update N,Z,C,V flags on Rn + Op2
CMP Rn, Op2 Compare, Update N,Z,C,V flags on Rn— Op2
CPSID i Disable specified (i) interrupts, optional change mode
CPSIE i Enable specified (i) interrupts, optional change mode
DMB - Data Memory Barrier, ensure memory access order
DSB - Data Synchronization Barrier, ensure completion of access
EOR, EORS {Rd,} Rn, Op2 Exclusive OR, Rd « Rn XOR Op2, EORS updates N,Z,C
ISB - Instruction Synchronization Barrier
IT - If-Then Condition Block
LDM Rn{1}, reglist Load Multiple Registers increment after, <reglist> = mem[Rn], Rn

increments after each memory access

LDMDB, LDMEA

Rn{!}, reglist

Load Multiple Registers Decrement Before, <reglist> = mem[Rn], Rn
decrements before each memory access

LDMFD, LDMIA

Rn{!}, reglist

<reglist> = mem[Rn], Rn increments after each memory access

LDR

Rt, [Rn, #offset]

Load Register with Word, Rt <« mem[Rn + offset]

LDRB, LDRBT

Rt, [Rn, #offset]

Load Register with Byte, Rt <« mem[Rn + offset]

Load Register with two words,

LDRD R, Rt2, [Rn,#offset] Rt <« mem[Rn + offset], Rt2 <« mem[Rn + offset + 4]
LDREX Rt, [Rn, #offset] Load Register Exclusive, Rt < mem[Rn + offset]
LDREXB Rt, [Rn] Load Register Exclusive with Byte, Rt « mem[Rn]
LDREXH Rt, [Rn] Load Register Exclusive with Halfword, Rt « mem[Rn]

LDRH, LDRHT

Rt, [Rn, #offset]

Load Register with Halfword, Rt <« mem[Rn + offset]

LDRSB, LDRSBT

Rt, [Rn, #offset]

Load Register with Signed Byte, Rt «— mem[Rn + offset]

LDRSH, LDRSHT

Rt, [Rn, #offset]

Load Register with Signed Halfword, Rt < mem[Rn + offset]

LDRT

Rt, [Rn, #offset]

Load Register with Word, Rt < mem[Rn + offset]

LSL, LSLS Rd, Rm, <Rs|#n> Logic Shift Left, Rd <« Rm << Rs|n, LSLS update N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logic Shift Right, Rd < Rm >> Rs|n, LSRS update N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, Rd <« (Ra + (Rn*Rm))[31:0]
MLS Rd, Rn, Rm, Ra Multiply with Subtract, Rd < (Ra - (Rn*Rm))[31:0]
MOV, MOVS Rd, Op2 Move, Rd < Op2, MOVS updates N,Z,C

MOVT Rd, #imml6 Move Top, Rd[31:16] « imm16, Rd[15:0] unaffected
MOVW, MOVWS Rd, #imml6 Move 16-bit Constant, Rd <« imml16, MOVWS updates N,Z,C

MRS

Rd, spec_reg

Move from Special Register, Rd <« spec_reg

MSR spec_reg, Rm Move to Special Register, spec_reg < Rm, Updates N,Z,C,V
MUL, MULS {Rd,} Rn, Rm Multiply, Rd <« (Rn*Rm)[31:0], MULS updates N,Z

MVN, MVNS Rd, Op2 Move NOT, Rd « OXFFFFFFFF EOR Op2, MVNS updates N,Z,C
NOP - No Operation

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT, Rd «— Rn OR NOT Op2, ORNS updates N,Z,C
ORR, ORRS {Rd,} Rn, 0p2 Logical OR, Rd < Rn OR Op2, ORRS updates N,Z,C

POP reglist Canonical form of LDM SP!, <reglist>

PUSH reglist Canonical form of STMDB SP!, <reglist>

RBIT Rd, Rn Reverse Bits, for (i = @; i < 32; i++): Rd[i] = RN[31-i]
REV Rd, Rn Reverse Byte Order in a Word, Rd[31:24]«<Rn[7:0],

Rd[23:16]«Rn[15:8], Rd[15:8]<Rn[23:16], Rd[7:0]<Rn[31:24]

Reverse Byte Order in a Halfword, Rd[15:8]«Rn[7:0],

REV16 Rd, Rn RA[7:0]<Rn[15:8], RA[31:24]<Rn[23:16], RA[23:16]<Rn[31:24]
REVSH Rd, Rn Reverse Byte order in Low Halfword and sign extend,
Rd[15:8]«Rn[7:0], Rd[7:0]<Rn[15:8], Rd[31:16]«Rn[7]*&FFFF

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right, Rd < ROR(Rm, Rs|n), RORS updates N,Z,C
RRX, RRXS Rd, Rm Rotate Right with Extend, Rd < RRX(Rm), RRXS updates N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract, Rd <« Op2- Rn, RSBS updates N,Z,C,V
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry, Rd < Rn-Op2-NOT(Carry), updates NZCV

. Signed Bit Field Extract, Rd[(width-1):0] = Rn[(width+lsb-1):1sb],
SBFX Rd, Rn, #lsb, #width Rd%Bl:width] - Replicate(Rn[\Elgdth+lsbzl]; 3)i1sb]
SDIV {Rd,} Rn, Rm Signed Divide, Rd < Rn/Rm
SEV - Send Event

. Signed Multiply with Accumulate,

SMLAL RdLo, RdHi, Rn, Rm Rdﬁi,RdLo «—psggned(RdHi,RdLo + Rn*Rm)
SMULL RdLo, RdHi, Rn, Rm Signed Multiply, RdHi,RdLo <« signed(Rn*Rm)
SSAT Rd, #n, Rm{,shift #s} Signed Saturate, Rd « SignedSat((Rm shift s), n). Update Q
STM Rn{!}, reglist Store Multiple Registers

STMDB, STMEA

Rn{!}, reglist

Store Multiple Registers Decrement Before

STMFD, STMIA

Rn{!}, reglist

Store Multiple Registers Increment After

STR

Rt, [Rn, #offset]

Rt

Store Register with Word, mem[Rn+offset]

STRB, STRBT

Rt, [Rn, #offset]

Store Register with Byte, mem[Rn+offset] Rt

Store Register with two Words,

STRD RE, Rt, [Rn,#offset] mem[Rn+offset] = Rt, mem[Rn+offset+4] = Rt2

Store Register Exclusive, If allowed, mem[Rn + offset] < Rt, clear
STREX Rd, Rt, [Rn,#offset] exclusive tag, Rd «— ©. Else Rd « 1.

Store Register Exclusive Byte, mem[Rn] « Rt[15:0] or mem[Rn] «
STREXB Rd, Rt, [Rn] Rt[7:0], clear exclusive tag, Rd < @. Else Rd < 1
STREXH Rd, Rt, [Rn] Store Register Exclusive Halfword, mem[Rn] « Rt[15:0] or mem[Rn]

«— Rt[7:0], clear exclusive tag, Rd <« 0. Else Rd <« 1

STRH, STRHT

Rt, [Rn, #offset]

Store Halfword, mem[Rn + offset] « Rt[15:0]

STRT

Rt, [Rn, #offset]

Store Register with Translation, mem[Rn + offset] = Rt

SUB, SUBS {Rd,} Rn, Op2 Subtraction, Rd < Rn— Op2, SUBS updates N,Z,C,V
SUB, SUBS {Rd,} Rn, #imml12 Subtraction, Rd <« Rn-imm12, SUBS updates N,Z,C,V
SVC #imm Supervisor Call
SXTB {Rd,} Rm {,ROR #n} Sign Extend Byte, Rd « SignExtend((Rm ROR (8*n))[7:0])
SXTH {Rd,} Rm {,ROR #n} Sign Extend Halfword, Rd « SignExtend((Rm ROR (8*n))[15:0])
TBB [Rn, Rm] Table Branch Byte, PC «— PC+ZeroExtend(Memory(Rn+Rm,1)<<1)
Table Branch Halfword,

TEBH [Rn, Rm, LSL #1] PC «— PC + ZeroExtend(Memory(Rn+Rm<<1, 2)<<1)
TEQ Rn, Op2 Test Equivalence, Update N,Z,C,V on Rn EOR Operand2
TST Rn, Op2 Test, Update N,Z,C,V on Rn AND Op2

. Unsigned Bit Field Extract, Rd[(width-1):0] = Rn[(width+1lsb-
UBFX Rd, Rn, #lsb, #width 1):1§b], Rd[31:width] = Replicgie(e))10 e
UDIV {Rd,} Rn, Rm Unsigned Divide, Rd <« Rn/Rm

. Unsigned Multiply with Accumulate,
UMLAL RdLo, RdHi, Rn, Rm RdHi?RdLo — ussggned(RdHi,RdLo + Rn*Rm)
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply, RdHi,RdLo « unsigned(Rn*Rm)
USAT Rd, #n, Rm{,shift #s} Unsigned Saturate, Rd<UnsignedSat((Rm shift s),n), Update Q
UXTB {Rd,} Rm {,ROR #n} Unsigned Extend Byte, Rd « ZeroExtend((Rm ROR (8*n))[7:0])
Unsigned Extend Halfword,

UXTH {Rd,} Rm {,ROR #n} Rd «§ ZeroExtend ((Rm ROR (8*n))[15:0])
WFE - Wait For Event
WFI - Wait for Interrupt

