
 1

Instruction Operands Description and Action
ADC, ADCS {Rd,} Rn, Op2 Add with Carry, Rd ← Rn + Op2 + Carry, ADCS updates N,Z,C,V
ADD, ADDS {Rd,} Rn, Op2 Add, Rd ← Rn + Op2, ADDS updates N,Z,C,V
ADD, ADDS {Rd,} Rn, #imm12 Add Immediate, Rd ← Rn + imm12, ADDS updates N,Z,C,V
ADR Rd, label Load PC-relative Address, Rd ← <label>
AND, ANDS {Rd,} Rn, Op2 Logical AND, Rd ← Rn AND Op2, ANDS updates N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right, Rd ← Rm>>(Rs|n), ASRS updates N,Z,C
B label Branch, PC ← label
BFC Rd, #lsb, #width Bit Field Clear, Rd[(width+lsb–1):lsb] ← 0
BFI Rd, Rn, #lsb, #width Bit Field Insert, Rd[(width+lsb–1):lsb] ← Rn[(width-1):0]
BIC, BICS {Rd,} Rn, Op2 Bit Clear, Rd ← Rn AND NOT Op2, BICS updates N,Z,C
BKPT #imm Breakpoint, prefetch abort or enter debug state

BL label
Branch with Link,
LR ← address of next instruction, PC ← label

BLX Rm
Branch register with link,
LR ← address of next instruction, PC ← Rm[31:1]

BX Rm Branch register, PC ← Rm
CBNZ Rn, label Compare and Branch if Non-zero; PC ← label if Rn != 0
CBZ Rn, label Compare and Branch if Zero; PC ← label if Rn == 0
CLREX - Clear local processor exclusive tag
CLZ Rd, Rm Count Leading Zeroes, Rd ← number of leading zeroes in Rm
CMN Rn, Op2 Compare Negative, Update N,Z,C,V flags on Rn + Op2
CMP Rn, Op2 Compare, Update N,Z,C,V flags on Rn ̶ Op2
CPSID i Disable specified (i) interrupts, optional change mode
CPSIE i Enable specified (i) interrupts, optional change mode
DMB - Data Memory Barrier, ensure memory access order
DSB - Data Synchronization Barrier, ensure completion of access
EOR, EORS {Rd,} Rn, Op2 Exclusive OR, Rd ← Rn XOR Op2, EORS updates N,Z,C
ISB - Instruction Synchronization Barrier
IT - If-Then Condition Block

LDM Rn{!}, reglist
Load Multiple Registers increment after, <reglist> = mem[Rn], Rn
increments after each memory access

LDMDB, LDMEA Rn{!}, reglist
Load Multiple Registers Decrement Before, <reglist> = mem[Rn], Rn
decrements before each memory access

LDMFD, LDMIA Rn{!}, reglist <reglist> = mem[Rn], Rn increments after each memory access
LDR Rt, [Rn, #offset] Load Register with Word, Rt ← mem[Rn + offset]
LDRB, LDRBT Rt, [Rn, #offset] Load Register with Byte, Rt ← mem[Rn + offset]

LDRD Rt, Rt2, [Rn,#offset]
Load Register with two words,
Rt ← mem[Rn + offset], Rt2 ← mem[Rn + offset + 4]

LDREX Rt, [Rn, #offset] Load Register Exclusive, Rt ← mem[Rn + offset]
LDREXB Rt, [Rn] Load Register Exclusive with Byte, Rt ← mem[Rn]
LDREXH Rt, [Rn] Load Register Exclusive with Halfword, Rt ← mem[Rn]
LDRH, LDRHT Rt, [Rn, #offset] Load Register with Halfword, Rt ← mem[Rn + offset]
LDRSB, LDRSBT Rt, [Rn, #offset] Load Register with Signed Byte, Rt ← mem[Rn + offset]
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with Signed Halfword, Rt ← mem[Rn + offset]
LDRT Rt, [Rn, #offset] Load Register with Word, Rt ← mem[Rn + offset]
LSL, LSLS Rd, Rm, <Rs|#n> Logic Shift Left, Rd ← Rm << Rs|n, LSLS update N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logic Shift Right, Rd ← Rm >> Rs|n, LSRS update N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, Rd ← (Ra + (Rn*Rm))[31:0]
MLS Rd, Rn, Rm, Ra Multiply with Subtract, Rd ← (Ra – (Rn*Rm))[31:0]
MOV, MOVS Rd, Op2 Move, Rd ← Op2, MOVS updates N,Z,C
MOVT Rd, #imm16 Move Top, Rd[31:16] ← imm16, Rd[15:0] unaffected
MOVW, MOVWS Rd, #imm16 Move 16-bit Constant, Rd ← imm16, MOVWS updates N,Z,C
MRS Rd, spec_reg Move from Special Register, Rd ← spec_reg
MSR spec_reg, Rm Move to Special Register, spec_reg ← Rm, Updates N,Z,C,V
MUL, MULS {Rd,} Rn, Rm Multiply, Rd ← (Rn*Rm)[31:0], MULS updates N,Z
MVN, MVNS Rd, Op2 Move NOT, Rd ← 0xFFFFFFFF EOR Op2, MVNS updates N,Z,C
NOP - No Operation
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT, Rd ← Rn OR NOT Op2, ORNS updates N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR, Rd ← Rn OR Op2, ORRS updates N,Z,C
POP reglist Canonical form of LDM SP!, <reglist>
PUSH reglist Canonical form of STMDB SP!, <reglist>
RBIT Rd, Rn Reverse Bits, for (i = 0; i < 32; i++): Rd[i] = RN[31–i]

REV Rd, Rn
Reverse Byte Order in a Word, Rd[31:24]←Rn[7:0],
Rd[23:16]←Rn[15:8], Rd[15:8]←Rn[23:16], Rd[7:0]←Rn[31:24]

 2

REV16 Rd, Rn
Reverse Byte Order in a Halfword, Rd[15:8]←Rn[7:0],
Rd[7:0]←Rn[15:8], Rd[31:24]←Rn[23:16], Rd[23:16]←Rn[31:24]

REVSH Rd, Rn
Reverse Byte order in Low Halfword and sign extend,
Rd[15:8]←Rn[7:0], Rd[7:0]←Rn[15:8], Rd[31:16]←Rn[7]*&FFFF

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right, Rd ← ROR(Rm, Rs|n), RORS updates N,Z,C
RRX, RRXS Rd, Rm Rotate Right with Extend, Rd ← RRX(Rm), RRXS updates N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract, Rd ← Op2 ̶ Rn, RSBS updates N,Z,C,V
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry, Rd ← Rn–Op2–NOT(Carry), updates NZCV

SBFX Rd, Rn, #lsb, #width
Signed Bit Field Extract, Rd[(width–1):0] = Rn[(width+lsb–1):lsb],
Rd[31:width] = Replicate(Rn[width+lsb–1])

SDIV {Rd,} Rn, Rm Signed Divide, Rd ← Rn/Rm
SEV - Send Event

SMLAL RdLo, RdHi, Rn, Rm
Signed Multiply with Accumulate,
RdHi,RdLo ← signed(RdHi,RdLo + Rn*Rm)

SMULL RdLo, RdHi, Rn, Rm Signed Multiply, RdHi,RdLo ← signed(Rn*Rm)
SSAT Rd, #n, Rm{,shift #s} Signed Saturate, Rd ← SignedSat((Rm shift s), n). Update Q
STM Rn{!}, reglist Store Multiple Registers
STMDB, STMEA Rn{!}, reglist Store Multiple Registers Decrement Before
STMFD, STMIA Rn{!}, reglist Store Multiple Registers Increment After
STR Rt, [Rn, #offset] Store Register with Word, mem[Rn+offset] = Rt
STRB, STRBT Rt, [Rn, #offset] Store Register with Byte, mem[Rn+offset] = Rt

STRD Rt, Rt, [Rn,#offset]
Store Register with two Words,
mem[Rn+offset] = Rt, mem[Rn+offset+4] = Rt2

STREX Rd, Rt, [Rn,#offset]
Store Register Exclusive, If allowed, mem[Rn + offset] ← Rt, clear
exclusive tag, Rd ← 0. Else Rd ← 1.

STREXB Rd, Rt, [Rn]
Store Register Exclusive Byte, mem[Rn] ← Rt[15:0] or mem[Rn] ←
Rt[7:0], clear exclusive tag, Rd ← 0. Else Rd ← 1

STREXH Rd, Rt, [Rn]
Store Register Exclusive Halfword, mem[Rn] ← Rt[15:0] or mem[Rn]
← Rt[7:0], clear exclusive tag, Rd ← 0. Else Rd ← 1

STRH, STRHT Rt, [Rn, #offset] Store Halfword, mem[Rn + offset] ← Rt[15:0]
STRT Rt, [Rn, #offset] Store Register with Translation, mem[Rn + offset] = Rt
SUB, SUBS {Rd,} Rn, Op2 Subtraction, Rd ← Rn ̶ Op2, SUBS updates N,Z,C,V
SUB, SUBS {Rd,} Rn, #imm12 Subtraction, Rd ← Rn-imm12, SUBS updates N,Z,C,V
SVC #imm Supervisor Call
SXTB {Rd,} Rm {,ROR #n} Sign Extend Byte, Rd ← SignExtend((Rm ROR (8*n))[7:0])
SXTH {Rd,} Rm {,ROR #n} Sign Extend Halfword, Rd ← SignExtend((Rm ROR (8*n))[15:0])
TBB [Rn, Rm] Table Branch Byte, PC ← PC+ZeroExtend(Memory(Rn+Rm,1)<<1)

TBH [Rn, Rm, LSL #1]
Table Branch Halfword,
PC ← PC + ZeroExtend(Memory(Rn+Rm<<1, 2)<<1)

TEQ Rn, Op2 Test Equivalence, Update N,Z,C,V on Rn EOR Operand2
TST Rn, Op2 Test, Update N,Z,C,V on Rn AND Op2

UBFX Rd, Rn, #lsb, #width
Unsigned Bit Field Extract, Rd[(width–1):0] = Rn[(width+lsb–
1):lsb], Rd[31:width] = Replicate(0)

UDIV {Rd,} Rn, Rm Unsigned Divide, Rd ← Rn/Rm

UMLAL RdLo, RdHi, Rn, Rm
Unsigned Multiply with Accumulate,
RdHi,RdLo ← unsigned(RdHi,RdLo + Rn*Rm)

UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply, RdHi,RdLo ← unsigned(Rn*Rm)
USAT Rd, #n, Rm{,shift #s} Unsigned Saturate, Rd←UnsignedSat((Rm shift s),n), Update Q
UXTB {Rd,} Rm {,ROR #n} Unsigned Extend Byte, Rd ← ZeroExtend((Rm ROR (8*n))[7:0])

UXTH {Rd,} Rm {,ROR #n}
Unsigned Extend Halfword,
Rd ← ZeroExtend((Rm ROR (8*n))[15:0])

WFE - Wait For Event
WFI - Wait for Interrupt

