Lab 2: GCD Algorithm

1. Objective

Write assembly programs to implement the GCD algorithm.
2. Background
Read the article below that discusses the Euclidean algorithm and Binary GCD (Stein’s algorithm).

Euclidean algorithm for computing the greatest common divisor:
https://cp-algorithms.com/algebra/Euclidean-algorithm.html

Video tutorials:

Recursive Euclidean: GCD - Euclidean Algorithm (Method 2):
https://www.youtube.com/watch?v=svBx8u5bMEg

Non-recursive Euclidean GCD - Euclidean Algorithm (Method 1):
https://www.youtube.com/watch?v=yHwneN6zJmU

We use a pair of data a = 48 and b = 18 for illustration. All three variants compute gcd(48,18) = 6, but
Euclidean (recursive or non-recursive) uses division/modulo each step, while binary GCD uses only shifts,
subtraction, and comparisons, which can be faster on hardware where division is expensive.

Recursive Euclidean

/I Recursive GCD
int gcd (int a, int b) {
if (b==0)
return a;
else
return ged (b, a % b);

Start with gcd (48,18). Since 18 # 0, recurse to gcd(18,48 mod 18) = gcd(18,12).
Next gcd(18,12) = gcd (12,18 mod 12) = gcd(12,6).

Next gcd(12,6) = gcd (6,12 mod 6) = gcd(6,0).

Base case returns 6, so gcd(48,18) = 6.

Iterative (non-recursive) Euclidean

/I Iterative GCD
int gcd (int a, int b) {
while (b) {
a%=b;
swap(a, b);

return a;

}

https://cp-algorithms.com/algebra/Euclidean-algorithm.html
https://www.youtube.com/watch?v=svBx8u5bMEg
https://www.youtube.com/watch?v=yHwneN6zJmU

Start with a=48, b=18. Replace (a, b) with (b, a mod b) until b=0.
48 mod 18 =12 = (a, b) = (18, 12).

18 mod 12=6 = (a, b) = (12, 6).

12 mod 6 =0 = (a, b) = (6, 0).

Stop; gcd = 6.

Binary GCD (Stein’s algorithm)

// Binary GCD (Stein's algorithm)
// Computes ged(a, b) using only shifts, subtraction, and comparisons.
int ged(int a, int b) {
/1 If either is zero, GCD is the bitwise OR (the other operand).
// This works because if a==0, a|b ==Db; if b==0, a]b == a.
if (la]| 'b)
return a | b; // handles (0, x) and (x, 0) in O(1)

// shift = number of common powers of two dividing both a and b.
// ctz(x) = count trailing zeros in binary; ctz(a|b) gives min(ctz(a), ctz(b)).
unsigned shift = builtin_ctz(a | b); // factor 2”shift out and restore at the end

// Make a odd by removing all factors of two.
a>>= _builtin_ctz(a); // divide a by 2"ctz(a)

// Main loop: maintain a odd; reduce b until it becomes zero.
do {
// Remove all factors of two from b to make it odd as well.
b>>= __builtin_ctz(b); // divide b by 2”ctz(b)

// Ensure a <= b to keep subtraction non-negative.
if (a>b)
swap(a, b); /nowa<=b

// Replace (a, b) with (a, b - a); ged is invariant under subtracting equals for odd a, b.
b -=a; // b becomes even (difference of two odds), next iteration will strip the 2s
} while (b); // stop when b hits 0; then a holds gcd without the common 2”shift factor

// Restore the common power-of-two factor that was factored out initially.
return a << shift; // multiply gcd by 2”shift to get final result

e Start (a,b) = (48,18). If either is zero, return the other; not the case. Compute common power-of-
two factor: a|b = 48|18 = 50 has ctz(50) = 1, so extract one factor of 2 at the end; set shift = 1.
(48 in binary is 110000, and 18 is 010010; bitwise OR 48|18 gives 110010, which is decimal 50 with
one trailing zero.)

e Remove factors of two individually: a = 48 has ctz(48) =4 —a < 48 > 4 =3; b = 18 has
ctz(18) =1 —->b < 18> 1=09.

e Now both odd. Repeat:

o Ensure a < b; currently (a,b) = (3,9).Setb « b —a =9 — 3 = 6, which is even.

o Normalize b by removing factors of two: ctz(6) =1 —b « 6 > 1 = 3.
o Now (a,b) =(3,3).Sincea < b,setbh<b—-—a=3-3=0.
e Loop ends at b = 0. Result before restoring powers of two is a = 3. Restore the common factor:
return a < shift = 3 « 1 = 6, hence gcd(48,18) = 6.

How to implement ctz()

ctz() stands for “count trailing zeros”. It returns the number of consecutive 0-bits at the least-significant end
of an integer’s binary representation. For example, ctz(48) = 4 because 48 = 0b0011 0000 ends with four
zeros, and ctz(18) = 1 because 18 = 0b10010 ends with one zero. In the binary GCD (Stein’s) algorithm,
ctz(x) gives the largest power of 2 dividing x, so dividing by 2”ctz(x) quickly removes all factors of two.)

ARMV7 does not have a native CTZ instruction, but you can implement it with bit-reverse + CLZ “count
leading zeros.”.

ctz(x) = clz(rbit(x)) (handle the case of x=0 separately.)

For nonzero x, ctz(x) = clz(rbit(x)) because reversing the bits turns trailing zeros into leading zeros. Using
x =0b0010 1100 (44), rbit over 8 bits yields 0b0011 0100, which has 2 leading zeros, so ctz(x) = 2.

This trick only works for non-zero input x, since many implementations of ctz/clz consider input x = 0 as
undefined behavior for performance reasons. So please define ctz(0)=32 explicitly before calling ctz(x) for
x!=0.

3. Lab Steps

Start with the Assembly program below that implements the Recursive Euclidean algorithm.

Computing the Euclidean Algorithm in raw ARM Assembly
https://www.youtube.com/watch?v=665rzOSSx WA
https://github.com/LaurieWired/Assembly-Algorithms/tree/main/GCD

You task is to implement (1) the Iterative (non-recursive) Euclidean algorithm; (2) the Binary GCD
algorithm.

There are two assembly programs in the repository: fillable_ged.s is a template: everything (data, /O, main)
is present but gcd is a placeholder that returns -1. ged.s implements the Euclidean algorithm (recursive):
base case checks b == 0 and otherwise computes a % b then calls ged(b, a % b). The rest of the file (data,
print num_to_file, main) is essentially the same as the template. You can either modify ged.s, or start from
fillable gcd.s and use ged.s as a reference.

Compile and run (assuming your source file is named gcd.s):

arm-linux-gnueabihf-as -0 gcd.o ged.s

arm-linux-gnueabihf-gcc -0 ged ged.

The GCD is written to nums.txt file. Now you can simply display the file by “less nums.txt”, or by
run_gcd.sh.

https://www.youtube.com/watch?v=665rzOSSxWA
https://github.com/LaurieWired/Assembly-Algorithms/tree/main/GCD

4. Report

Submit two separate source files for parts (1) and (2), with the input pair (48, 18). For each part, generate
an executable file and run it, and include the screenshots in the PDF file (either the content of nums.txt, or
run_gcd.sh). Copy and paste your implemented code into the report, and provide a detailed explanation of
the code as comments (if not line-by-line at least every few lines). Use the project report template and submit
the report in PDF format.

Grading fabric:
Correct implementation and screenshot of part (1): 2 pts; explanation of part (1): 2 pts
Correct implementation and screenshot of part (2): 4 pts: explanation of part (2): 2 pts

