Lab 1: Hello World

1. Objective

To become familiar with the basics: text editor, assembler, linker, and debugger. After finishing this
experiment, you should be able to do the following:

1. Use a text editor to create an assembly source code (.s).

2. Understand the general procedure to develop and debug an assembly program.

2. Background

In the following, we assume you have created aliases by adding these lines to end of ~/.bashrc (The last
line adds the current directory to PATH. If you just added these lines without rebooting, then run ‘source
~/.bashre’):

alias as32="arm-linux-gnueabihf-as’
alias 1d32="arm-linux-gnueabihf-1d’
alias gcc32="arm-linux-gnueabihf-gcc’
export PATH=".:$PATH"

To assemble a program (assuming the file name is lab1.s), one should type the command line:

$ as32 -olabl.o labl.s
where .s file is the source file and .o file is the output object file containing the machine code.

The linker creates an executable file (or a library) from one or more object files:
$1d32 -0 labl labl.o
To run the program:

$./ labl
The entry point of an assembly source program is usually referred to as32 “ start”. If necessary, we can
change the entry point to “main” (usually not needed):

$ 1d32 -e main -o labl labl . o
The GNU debugger gdb allows you to execute, trace, inspect, and change variables during program
execution. GNU ddd is a graphical front-end for the command-line gdb.

3. Lab Steps
Part 1: “Hello World” Program

In this section we run lab1pl.s, which calls the “printf” function from the C runtime library.

1. Create a file named lablpl.s by copying its content from the Appendix. You can use vi or some other
text editor.

2. Assemble and link the files with gcc32. (gcc links in the C runtime library libc, which contains the printf()
function. If you run as32 and 1d32, then libc is not linked. -g includes debug information.)

$ gce32 -g -o lablpl lablpl.s

3. Execute the program by typing lablpl. You should see the output “Hello World!”.

Next, we run lablp2.s, which implements the “printf” function from the C library in Assembly.

1. Create another file named lablp2.s by copying its content from the Appendix.

2. Assemble and link the files with as32 and 1d32 (do not use gcc32, since we do not want to link in the C
runtime library libc, which contains the printf function.)

$ as32 -g -0 lablp2.0 lablp2.s

$1d32 -g -o lab1p2 lablp2.0

3. Execute the program by typing lab1p2. You should see the same output “Hello World!”.

Part 2: Use the command-line tool gdb for debugging

In this section, we use gdb to debug the lablp2.s program. In C programming, you can print out the value
of each variable to make sure your program is functioning properly. In assembly, the registers take the
position of “variables”, and you can examine their values with a debugger. (For some reason, gdb hangs
when you debug a program directly within it. We need to start a gdbserver in one Raspberry PI terminal,
and perform remote debugging in another terminal.)

1. Install gdb-multiarch and gdbserver.

$ sudo apt update

$ sudo apt install gdb-multiarch

$ sudo apt install gdbserver

2. In one Raspberry PI terminal, start the server.

$ gdbserver :1234 ./lablp2
In another terminal, ssh to localhost to get another Raspberry PI terminal, and run the client.

$ ssh -p 2222 pi@localhost
$ gdb-multiarch ./lab1p2
3. In the client terminal (gdb) prompt, run:

(gdb) target remote localhost: 1234
Then repeatedly run the following three commands to step through each line and examine the register
values:
(gdb) stepi
(gdb) disassemble
(gdb) info registers
You should see output similar to the following screenshot:

mov #1

ldr [pc, #20]
mov , #14

mov

mov

SVC

mov

sVC

muleq

End of assembler dump.
(gdb) info registers

xfffefcod

3. After finishing running lab1p2, fill in the table below with register values (in hex) after each instruction
has executed. (After the last step, the program has finished, so register values no longer exist.)

After Executing r0 rl r2 r7
Instruction

mov r0, #1

Idr r1, =message

1dr r2, =length

mov 17, #4

mov 12, #3

swi 0

mov 17, #1

swi 0 - - - --

Table 1: Instruction trace table.

Lab deliverable 1

Include Table 1 above in your lab report.

K)DD; /home/pI/ECE3210/Lab1/lab1 Dexcallbu (%] K DDD: Registers <@excallbur (%]

.data

nessage $.ascii "Hello Horld!\n"
length = - nessage
Jtent

.global nain

nain:
@ write systen call

nov r0, #1
D 1dr rl, =nessage

1dr r2, =length

nov r7, ¥4

nov r2, #3

sui 0

@ exit systen call

Dunp of assenbler code for function maing
0x00010074 <+0>3 nov r0, #1
HD00010078 <+4>: 1dr rl, [pc, #201 ; 0x10094 <nain+32>
0x0001007¢ <+8>: nov r2, #13
0x00010080 <+12>: nov r7, ¥

{gdb) disable 4
{gdb) delete 3
{gdb) delete 4
{gdb) break lablp2,s:10

Note: breakpoint 2 also set at pc 0x10078,
Breakpoint 5 at 0x10078: file lablp2.s, line 10,
{gdb) delete 5

{gdb) run

Starting progran: /hone/pi/ECE3210/Labl/lablp2

Breakpoint 2, main () at lablp2.s:11

Figure 1: The DDD debugger.
Part 3: Use the graphical interface ddd for debugging (Optional)

In this section, we will use ddd to debug the lab1p2.s program. Enter the commands:

$ ssh -X pi@localhost -p 2222
$ ddd lab1p2

Under the “View” tab, open the “Machine Code Table”. Under the “Status” tab, click “Registers”. Now
your interface should look similar to Figure 1. You can set a breakpoint by clicking in the blank area (left
side as32 shown in Figure 1) next to each instruction. Once the breakpoint has been set, click the “Run”
button to start debugging and the “stepi” button to trace each instruction. The value of each register should
be displayed in the Registers status window on the right side. (As ddd is quite slow, and I personally find it
more convenient to use the command-line gdb.)

Lab deliverable 2

lablp2.s contains a small bug. After fixing the bug, change the program to print your name before Hello
World, e.g., “John Doe Hello World!”. Include the modified program in your lab report, and also upload it
as a separate .s file on Canvas for execution and grading.

5 Report

Please use the project report template and submit the report in PDF format. Describe your experiences in
completing the project, and make sure to include Lab deliverables 1 and 2. Submit a separate source file for
the modified lab1p2.s.

6 Appendix

lablpl.s

.data
message: .asciz "Hello World!\n"

text

.global main

main:

push {ip, Ir}

ldr r0, =message @ Load the starting address of the message
bl printf @ Call the printf function

mov r0, #0 @ Return 0.

pop {ip, pc}

lab1p2.s

.data

message: .asciz "Hello World!\n"

length = . - message @ Returns string length of message
text

.global main

main:

@ write syscall

mov 10, #1 @ For stdout

Idr r1, =message (@ buffer is loaded with message
ldr 12, =length @ count is the length of message

mov 17, #4 @ write is syscall 4
mov 12, #3
swi 0 @ interrupt

mov 17, #1 @ exit syscall
swi 0

