Lab 0. QEMU Simulator and Raspberry Pl Setup

We setup a simulation environment with QEMU to run Raspberry PI code on your PC. The following
instructions are for Windows 11.

Step 1. Set up QEMU and KVM

Follow the instructions in this video to set up QEMU and KVM (skip the last step of installing Ubuntu
Linux)

QEMU Installation Guide for Windows PC [with KVM]
https://www.youtube.com/watch?v=dPg8P5DYZNg

First, from Search box, start “Turn Windows features on or off”, and enable these three options: HyperV,
Windows Subsystem for Linux, Virtual Machine Platform.

From Windows Powershell, run:

wsl --install
wsl --set-default-version 2

From WSL, run:

sudo apt update && sudo apt upgrade -y
sudo apt install gemu-kvm libvirt-daemon-system libvirt-clients bridge-utils -y
sudo usermod -aG kvm $USER

From Windows Powershell, run:
wsl --shutdown

Skip the rest of the steps for installing Ubuntu, since we will run Raspberry PI OS instead.
When starting WSL, always choose “run as administrator”.
For Mac users: please refer to the following links:

o Install QEMU on OSX https://gist.github.com/Jatapiaro/6a7c¢769a07911adc629e1604729d4c7a

e How To Install And Use QEMU Virtual Machine On macOS With HVF Acceleration - Command
Line Tutorial https://www.youtube.com/watch?v=EZ56AdVO2Mc

e How to install Linux on Mac step by step https://macpaw.com/how-to/install-linux-on-mac

If you run into difficulties on Windows or Mac, I can give you a Raspberry PI board. Note that SSH to
Linux machines in the lab does not work, since you need root privileges to install QEMU on the machine.

Step 2. Install Raspberry Pl on QEMU

This step is based on this page for installing Raspberry PI on QEMU:

Emulating a Raspberry Pi in QEMU

https://www.youtube.com/watch?v=dPg8P5DYZNg
https://gist.github.com/Jatapiaro/6a7c769a07911adc629e1604729d4c7a
https://www.youtube.com/watch?v=EZ56AdVO2Mc
https://macpaw.com/how-to/install-linux-on-mac

https://interrupt.memfault.com/blog/emulating-raspberry-pi-in-gemu

However, we need more storage in the emulated Raspberry PI, so please follow the updated instructions
below.

1. Get the Raspberry Pi Image (same as original)

sudo apt-get install -y gemu-system-aarch64

cd ~

wget https://downloads.raspberrypi.org/raspios_armé64/images/raspios_arm64-2023-05-03/2023-05-03-
raspios-bullseye-arm64.img.xz

xz -d 2023-05-03-raspios-bullseye-arm64.img.xz

2. Inspect and Mount the Boot Partition (same as original)

fdisk -1 ./2023-05-03-raspios-bullseye-arm64.img
Note the boot partition offset (should be 8192 * 512 =4194304)
sudo mkdir /mnt/image

sudo mount -0 loop,offset=4194304 ./2023-05-03-raspios-bullseye-arm64.img /mnt/image/

Extract kernel and device tree as before:

cp /mnt/image/bcm?2710-rpi-3-b-plus.dtb ~

cp /mnt/image/kernel8.img ~

3. Resize the Image to 32 GB (or desired size)

Instead of resizing to the next power of two, pick a larger number directly. For example, 32 GB:

gemu-img resize ./2023-05-03-raspios-bullseye-arm64.img 32G

You can change 32G to 16G, 64G, etc.

4. Enable SSH (same as original)

Create hashed password and add userconf + ssh. In the echo command, replace <your hash here> with
what you got from running “openssl passwd -6, and save to userconf.txt instead of userconf. (Copy this
command into a text file and edit it.)

openssl passwd -6

type your password twice; copy the hash
echo 'pi:<your_hash here>' | sudo tee /mnt/image/userconf

sudo touch /mnt/image/ssh

Unmount:

https://interrupt.memfault.com/blog/emulating-raspberry-pi-in-qemu

sudo umount /mnt/image

5. Launch QEMU with Expanded Disk

gemu-system-aarch64 \

-machine raspi3b -cpu cortex-a72 -nographic \

-dtb bcm?2710-rpi-3-b-plus.dtb \

-m 1G -smp 4\

-kernel kernel8.img \

-sd 2023-05-03-raspios-bullseye-arm64.img \

-append "rw earlyprintk loglevel=8 console=ttyAMA0,115200 dwc_otg.lpm_enable=0
root=/dev/mmcblkOp2 rootdelay=1" \

-device usb-net,netdev=net0 -netdev user,id=net0,hostfwd=tcp::5010-:22

You can log into the PI within the current window, or you can SSH in from another WSL window:

ssh -p 5010 pi@localhost

You can save the above commands in a text file for starting up the simulator in the future.

6. Expand the Filesystem Inside the Emulated Pi

Once inside the Pi:

sudo raspi-config

e (o to Advanced Options — Expand Filesystem
e Reboot

Alternatively (manual method, usually not needed):

sudo fdisk /dev/mmcblk0

delete partition 2 and recreate it to extend to the full disk
sudo reboot

sudo resize2fs /dev/mmcblkOp2

7. Verify the New Size

df -h

You should now see nearly 32 GB available in the root folder /.
This modified workflow only changes Step 3 (resize) + Step 6 (expand FS), everything else is identical

to the original blog’s process.

8. Verify the New Size

df -h

Step 3. Enable 32-bit ARMv7 assembly on Raspberry Pi 3/4

Follow the next steps for running 32-bit ARMv7 assembly/programs on a Raspberry Pi 3/4 running
Raspberry Pi OS 64-bit:

1. Verify Hardware and OS Architecture

Check the CPU and OS:

uname -m # should show aarch64

Iscpu | grep -i model

Raspberry Pi 3 and 4 (ARMv8-A) can run ARMv7 binaries if the kernel supports AArch32.

2. Enable 32-bit (armhf) Support in Raspberry Pi OS 64-bit

By default, the 64-bit OS is "multi-arch capable." You need the 32-bit runtime:
sudo dpkg --add-architecture armhf

sudo apt update

sudo apt install libc6:armhf libstdc++6:armhf

If you need to run more complex ARMv7 programs (usually not needed):

sudo apt install gcc-arm-linux-gnueabihf g++-arm-linux-gnueabihf binutils-arm-linux-gnueabihf

3. Generating ARMv7 Binary

Save your ARMv7 assembly program, e.g., hello.s, by using a text editor (c.f., Linux text editors,

the vi Editor Tutorial), and copying the following commands into it. The program is from this page

https://embeddedjourneys.com/blog/hello-world-arm-assembly-raspberry-pi/. (Note: this program does

not work in CPUlator, since CPUlator does not implement Linux system calls via SWI 0.)

global _start

_start:
MOV RO, #1
LDR R1, =msg
MOV R2, #12
MOV R7, #4
SWI 0

MOV R7, #1
SWI 0

https://www.geeksforgeeks.org/linux-text-editors/
https://www.tutorialspoint.com/unix/unix-vi-editor.htm
https://embeddedjourneys.com/blog/hello-world-arm-assembly-raspberry-pi/

msg:
.asciz "Hello, ARM!\n"

then assemble and link with the 32-bit toolchain:

arm-linux-gnueabihf-as -0 hello.o hello.s

arm-linux-gnueabihf-1d -o hello hello.o

You’ll notice the output binary is ELF32 for ARM, which will run in AArch32 compatibility mode. You

can create command aliases to reduce typing, c.f. How to Create Aliases (Shortcuts) for Common

Commands in Linux. For example, if you are running bash shell, edit .bashrc

vi ~/.bashrc

and add these lines:

alias as32="arm-linux-gnueabihf-as’
alias 1d32="arm-linux-gnueabihf-1d’
alias gcc32="arm-linux-gnueabihf-gcc’

Check with:
file hello
./hello: ELF 32-bit LSB executable, ARM, EABIS version 1 (SYSV), statically linked, not stripped

4. Run the ARMv7 Program Directly

Now run it:

/hello

The Pi’s 64-bit kernel automatically switches into AArch32 user-mode for execution.

5. Debug/Inspect (Optional)

You can disassemble or inspect with:

arm-linux-gnueabihf-objdump -d hello

Step 4. Lab Report

Write a short report that records your experience in going through these steps. What problems you

encountered and how did you resolve them.

https://www.tecmint.com/create-alias-in-linux/
https://www.tecmint.com/create-alias-in-linux/

