Lecture 8-binary search tree and trie

 1. What defines a tree data structure? a) Multiple roots b) Cycles allowed c) Single root and no cycles d) Unlimited parents per node Answer: c) 	
 2. In a binary tree, how many children can each node have? a) Any number b) At most 1 c) At most 2 d) Exactly 2 Answer: c) 	
 3. Which traversal method visits the root node first? a) In-order b) Pre-order c) Post-order d) Level-order Answer: b) 	
 4. Which traversal method visits the root node last? a) In-order b) Pre-order c) Post-order d) Level-order Answer: c) 	
5. What is the time complexity of searching in a balanced binary search tree? a) O(1) b) O(log n) c) O(n) d) O(n^2) Answer: b)	
6. In a binary tree, which traversal visits nodes level by level from left to right?a) In-orderb) Pre-orderc) Post-order	

d) Level-order Answer: d)
 7. Which data structure is used for implementing level-order traversal? a) Stack b) Queue c) Linked List d) Array Answer: b)
 8. Which traversal method would print a binary search tree's values in ascending order? a) Pre-order b) In-order c) Post-order d) Level-order Answer: b)
9. What is the worst-case time complexity for searching in an unbalanced binary search tree a) O(1) b) O(log n) c) O(n) d) O(n^2) Answer: c)
 10. What is the defining property of a Binary Search Tree? a) All nodes must have exactly two children b) Left subtree contains nodes ≤ parent, right subtree contains nodes ≥ parent c) The height difference between left/right subtrees cannot exceed 1 d) Post-order traversal gives sorted data Answer: b)
11. Which traversal of a BST always produces nodes in ascending order? a) Pre-order b) Post-order c) Level-order d) In-order Answer: d)
12. A full binary tree with height 3 has how many nodes? a) 7 b) 15 c) 31 d) 8 Answer: b) 15 [Formula: n=2^(h+1)-1 for h=3]

13. Which formula calculates the minimum height of a BST with n nodes? a) $\lceil \log_2(n+1) \rceil - 1$ b) n - 1 c) $\lceil n/2 \rceil$ d) $2^h - 1$ Answer: a)
14. The maximum height of a binary tree with 10 nodes is: a) 3 b) 9 c) 10 d) 4 Answer: b) 9
15. The minimum height of a binary tree with 10 nodes is: a) 3 b) 9 c) 10 d) 4
Answer: a) Method 1: For a binary tree with n nodes, the height h is bounded by: $\lceil \log_2(n+1) - 1 \le h \le n - 1$. Plug in n=10, $\lceil \log_2(11) \rceil - 1 = 3$. But this may require a calculator. Method 2: For a binary tree with height of 3, the maximum number of nodes is $2^4-1=15$. For a binary tree with height of 2, the maximum number of nodes is $2^3-1=7$. Since $2^3-1=7 < 10 < 2^4-1=15$, hence the minimum height of a binary tree with 10 nodes.
16. When deleting a node with two children in a BST, you must: a) Replace it with its in-order predecessor/successor b) Remove both subtrees c) Randomly choose a child to promote d) Swap it with the root node Answer: a)
17. Inserting 3 elements in increasing order creates a BST with height: a) 2 b) 3 c) 4 d) 1 Answer: a) 2
18. The worst-case time complexity for searching in an unbalanced BST is: a) O(1) b) O(log n) c) O(n) d) O(n log n) Answer: c)
19. BSTs are preferred over hash tables when:a) Fast insertion is criticalb) Returning a list of elements in sorted orderc) Memory usage must be minimized

d) Handling collisions is a priority Answer: b)

- 20. The main advantage of a balanced BST over an unbalanced BST is:
 - a) Reduced memory usage
 - b) Guaranteed O(log n) operations
 - c) Faster in-order traversal
 - d) Simpler deletion logic

Answer: b)