Lecture 9
Self-Balancing Trees

Department of Computer Science
Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures

AVL Tree

AVL Tree: A balanced BST that maintains the
invariant: |LeftHeight - RightHeight | <=1 for all
nodes in the tree.
* Named after Adelson-Velsky and Landis
* Butalso A Very Lovable Tree!

An AVL Tree has height = log(n)

Measuring Balance

Measuring balance:

For each node, compare the heights of its two subtrees
Balanced when the difference in heights between subtrees is no greater than 1

10

Balanced

15

12

18

Balanced

Balanced

Is this a valid AVL tree?

s it...
- Binary
- BST

yes
yes

- Balanced? yes

10

12

11

13

14

Is this a valid AVL tree?

s it...
- Binary
- BST

- Balanced?

yes
yes

12

10

13

11

Time Complexity

v INVARIANT SR VAR — — — — — — — — — — .

public boolean containsKey(node, key) { public boolean insert(node, key) {
// find key // find where key would go
¥ // insert

}
v/ INVARIANT S
v INVARIANT

containsKey benefits from invariant: Insert benefits from invariant:
worst-case O(log n) time worst-case O(log n) time to find location for
key

How to maintain the invariant?
e Track heights of subtrees
e Detect any imbalance
e Restore balance

BST containsKey()

The AVL Invariant
‘ Rotations

Insertion

What happens if an insertion breaks the AVL invariant?
The AVL rebalances itself by rotations. AVL is a type of “Self-Balancing Tree”
* Avrotation alters the structure of a tree by rearranging subtrees.

* Goal is to decrease the height of the tree to maximum height of O(log n).
* Larger subtrees up, smaller subtrees down

» Does not affect the order of elements

* Time complexity O(1)

Insert 8 Rotation a

Fixing AVL Invariant: Left Rotation

We can fix the AVL invariant by performing rotations wherever an
imbalance was created
Left Rotation

e Find the node that is violating the invariant (here, @))
o Letit “fall” left to become a left child

Apply a left rotation whenever the newly inserted node is located under the
right child of the right child

Left Rotation: More Precisely q

Subtrees are okay! They just come along for the ride.

e Subtree 2 changes from left child of B to right child of A - but notice that its
relationship with nodes A and B doesn’t change in the new position! vooe (B)

SUBTREE A

10

Right Rotation

Right Rotation

e Mirror image of Left Rotation!

NODE
SUBTREE

1

Left or Right Rotation Examples

left-rotate right-rotate

Not Quite as Straightforward

What if there’s a “kink” in the tree where the insertion happened?

Can we apply a Left Rotation?

e No, violates the BST invariant!

13

Right/Left Rotation

Solution: Right/Left Rotation

e Two steps: First do a right rotation for the right two nodes. then do a left rotation for
the three nodes.

® Preserves BST invariant!

14

Right/Left Rotation: More Precisely

Again, subtrees are invited to come with

Now 2 and 3 both have to hop, but all BST ordering properties are still preserved
(Note that A, B and C denote some numerical value, not letters ‘A’, 'B’, 'C’)

SUBTRE

Noo

15

Left/Right Rotation

Left/Right Rotation
oMirror image of Right/Left Rotation!

NODE 0
SUBTREE

16

AVL Example: 8,9,10,12,11

Insert 9 Insert 10 Left Rotation .

° Right/Left
Insert 12 Insert 11 e a Rotation 0 »

(o) 65 ONO

17

AVL Example: 8,9,10,12,11

n\
O
X

AVL Example: 8,9,10,12,11

AVL Example: 8,9,10,12,11

N
©.

AVL Example: 8,9,10,12,11

AVL Example: 8,9,10,12,11

Two AVL Cases

Line Case Kink Case
Solve with 1 rotation Solve with 2 rotations
3 1 1 3
2 2 3 1
1
3 2 2

Right/Left Rotation Left/Right Rotation

How Long Does Rebalancing Take?

e Assume we store in each node the height of its subtree.
How do we find an unbalanced node?
Go back up the tree from where we inserted.

e How many rotations might we have to do?

Just a single or double rotation on the lowest unbalanced node.

A rotation will cause the subtree rooted where the rotation
happens to have the same height it had before insertion

O(log n) time to traverse to a leaf of the tree

O(log n) time to find the imbalanced node

O(1) constant time to do the rotation(s)

Overall complexity: O(log n) time for adding a node.

24

AVL insertion: Approach

Overall algorithm:

1.

2.

Insert the new node as in a BST (a new leaf)

For each node on the path from the root to the new leaf:

The insertion may (or may not) have changed the node’s height
Detect height imbalance and perform a rotation to restore balance

Facts that make this easier:

Imbalances can only occur along the path from the new leaf to the root

We only have to address the lowest unbalanced node

Applying a rotation (or double rotation), restores the height of the subtree before the insertion --
when everything was balanced!

Therefore, we need at most one rebalancing operation

25

AVL insertion: Example

(1) Originally, whole tree
balanced, and this subtree
has height 2

(2) Insertion creates
imbalance(s), including
the subtree (8 is lowest
unbalanced node)

(10)
(8))
(1) () |

(3) Left rotation on 8 will
restore the subtree to height
2, whole tree balanced again!

26

AVL deletion

e Deletion involves a similar set of rotations that let you rebalance an AVL
tree after deleting an element
Omitted since it is beyond scope of this course

e Inthe worst case, takes O(log n) time to rebalance after a deletion
Finding the node to delete is also O(log n), so total complexity is O(log n)

27

AVL Trees

PROS CONS
e All operations on an AVL Tree
(search, insertion, deletion)
have worst-case complexity

O(log n) some overhead
o Because the treeis always o May not may not be important

balanced! depending on the application

e Additional space for the
height field
e Rebalancing does incur

28

Video Tutorials

e AVL Trees Simply Explained, Maaneth De Silva

https://www.youtube.com/watch?v=zP2xbKerlds

e 10.1 AVL Tree - Insertion and Rotations, Abdul Bari
https://www.youtube.com/watch?v=DM6_TnYIqE

e AVL tree insertion, InvesTime

https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcm
0Z0DnVnQK9Xja-Pi&index=5

Inserting 14,17, 11, 7, 53, 4,13, 12, 8, 60, 19, 16, 20

In the middle of video (11 min) there is a typo where the root is written as 11, but it
should be 14

29

https://www.youtube.com/watch?v=zP2xbKerIds
https://www.youtube.com/watch?v=jDM6_TnYIqE
https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=5
https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=5

‘ Red Black Trees

30

Red-Black Tree

Red-Black Tree: A balanced BST that maintains the invariant:
the longest path (root to farthest NIL) is no more than twice
the length of the shortest path (root to nearest NIL).
Right figure: Shortest path: all black nodes (=2); Longest path:
alternating red and black (=4)
This is NOT a legal AVL tree as it does not satisfy AVL invariant
at root |LeftHeight - RightHeight | <=1
(Path from root in RBT includes the NIL node, whereas height of
AVL tree does not.)

RBT uses color coding to maintain balance and reduce the
number of node re-arrangements needed via rotations. It has
four properties:

1. Node Color: A node is either red or black.

2. Root Property: The root and leaves (NIL) are black.

3. Red Property: If a node is red, then its children are black. (no two

adjacent red nodes)

4. Black Property: All paths from a node to its NIL descendants

contain the same number of black nodes.

nil

nil nil nil nil nil nil
Node insertion and deletion may result in violation of these

properties.
Use recoloring and rotations to maintain these properties.

Examples

e Tree on the left: Incorrect Red
Black Tree.

Two red nodes are adjacent to
each other.

One of the paths to a leaf node
has zero black nodes, whereas
the other two paths contain 1
black node each.

o6

Example of Red-black Tree

100

/

1no

A inorrect Red-black Tree

145

A correct Red-black Tree

32

Red-Black tree ensures balancing

e A linear chain of 3 nodes is not possible in a Red-Black tree

Following are NOT possible Following are possible
3-noded Red-Black Trees Red-Black Trees with 3 nodes

NIL NIL NIL NIL NIL

Violates Violates Violates
Property 4 Property 4 Property 3

33

Additional Properties

- A balanced BST that maintains
the invariant |LeftHeight - RightHeight | <=1
for all nodes in the tree.

nil

nil nil

nil

nil

nil

34

Insertion

e |nserting a new node in a Red-Black Tree involves a two-
step process: performing a standard binary search tree
(BST) insertion, followed by fixing any violations of Red-
Black properties.

e Insertion Steps

1. BST Insert; Insert the new node into BST and color it red.

2. Fix Violations:

If the parent of the new node is black, no properties are violated.

If the parent is red, the tree might violate the Red Property, requiring
fixes.

35

Insertion

Step 1. Insert Z and color it red
Step 2. Recolor and rotate nodes to fix violations

4 scenarios after inserting node Z

Case 0. Z = root grandparent —»
Color Z black

Case 1. Z.uncle = red
Recolor Z's parents and grandparent

Case 2. Z.uncle = black (triangle) uncle
Rotate Z.parent, turns into Case 3

Case 3. Z.uncle = black (line)
Rotate Z.grandparent & Recolor Z's parents and grandparent

parent

36

Case O. Z =root

e Color Z black

black
— e

Color Z

37

Case 1. Z.uncle = red

e Recolor Z's parent, uncle, and grandparent

recolor

b uncle >

38

Case 2. Z.uncle = black (triangle)

case 2 : Z.uncle = black (triangle)

Case 2. Z.uncle = black (triangle)

e Rotate Z.parent

® Turns into Case 3

Z "\ rotate

Z.pareqt>

40

Case 3 Z.uncle = black (line)

case 3 : Z.uncle = black (line)

Case 3 Z.uncle = black (line)

e Rotate Z.grandparent

rotate
Z.grandy§1rent

42

Case 3 Z.uncle = black

Mode that just got inserted
ar hecame red via a recoloring
lwwer in the tree

Mode that just got inserted
ar became red via a recalaring
lmwier in the tree

T1

T2 T3 T4

T4 iz emphy
or has a
black root

=

T1

... -

EThis 5 a RIGHT-ROTATION, :
: the left rotation is just a mirror :
{image :

T4 iz empty
or has a
black root

... =

This iz a LEFT-RIGHT-ROTATION,
¢ the right-left rotation is just a mirror
i image

... -

43

Example 1

Insert

Insert 1

. ©

Insert 5

Case 0: Z = root —> color black

X

nil

N

uncle

Case 3: Z.uncle = black (line) ->
rotate Z.grandparent & recolor

44

Case 2.
Z.uncle =
black
right rotate
on 15

—

45

Example 2 Con't

Case 2.
Z.uncle =
black

left rotate
on 8 &

recolor[

2 red

46

Another Example

3:1.%9 ,—])é 18 J q]Q\'

QLK _ 2 yotaho™
LR

u_}) ptah®
e

Red Black Tree — Insertion
https://www.youtube.com/watch?v=9ublKipLpRU

47

https://www.youtube.com/watch?v=9ubIKipLpRU

Time Complexity

e 1. Insert: O(log(n))

maximum height of red-black trees
e 2. Colorred: O(1)

e 3. Fix violations :
Constant # of:
a. Recolor : O(1)
b. Rotation: O(1)

e Overall time complexity: O(log(n))

48

AVL vs Red Black Trees

Red Black Tree:

- A balanced BST that maintains the (more relaxed) invariant: the

longest path (root to farthest NIL) is no more than twice the length
of the shortest path (root to nearest NIL).

- More efficient insertion and deletion operations because the
balancing requirement is less strict than AVL Tree.

AVL Tree:

- A balanced BST that maintains the (more strict) invariant:
|LeftHeight - RightHeight | <= 1 for all nodes in the tree.

- More efficient look up operation because of the strict balance
requirement.

49

Video Tutorials

Red-Black Trees // Michael Sambol
https://www.youtube.com/playlist?list=PL9xmBV_5Y0ZNgDI8qfOZgzbgahCUmU

Ein
Lecture slides based in this video series

Red Black Tree - Insertion, InvesTime

https://www.youtube.com/watch?v=9ublKipLpRU&list=PLoW1nQhPBiz_h5wcm
0Z0DnVnQK9Xja-Pi&index=4"

5.17 Red Black Tree Insertion | Insertion Algorithm | Data Structure

Tutorials, Jenny's Lectures CS IT

https://www.youtube.com/watch?v=gAO02XWRTBdw&list=PLdo5W4Nhv31bbK]
zrsKftMpo_grxulLl8LU&index=65

Introduction to Red-Black Tree
https://www.geeksforgeeks.org/introduction-to-red-black-tree/

50

https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/watch?v=9ubIKipLpRU&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=4
https://www.youtube.com/watch?v=9ubIKipLpRU&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=4
https://www.youtube.com/watch?v=qA02XWRTBdw&list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuLl8LU&index=65
https://www.youtube.com/watch?v=qA02XWRTBdw&list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuLl8LU&index=65
https://www.geeksforgeeks.org/introduction-to-red-black-tree/

51

Trie: An Introduction

e Tries view its keys as:
a sequence of characters
some (hopefully many!) sequences share common
prefixes

e Each level of the tree represents an index in the string

Children at that level represent possible
characters at that index

e This abstract trie stores the set of strings:
awls, a, sad, same, sap, Ssam

e How to deal with a and awls?
Mark which nodes complete a string (shown in purple)

52

Searching in Tries

Two ways to fail a contains() check:

1. If we fall off the tree
2. If the final node isn’t purple (not a key)

Input String Fall Off? / Is Key? m

contains (“sam”) hit/ purple
contains (“sa”) hit / white
contains (Ya”) hit / purple

contains (“saqg”) fell off/n/a

True
False
True

False

53

Keys as “a sequence of characters”

e Most dictionaries treat their keys as an "atomic blob™: you
can't disassemble the key into smaller components
e Tries take the opposite view: keys are a sequence of

characters
Strings are made of Characters

e Tries are defined by 3 types:
An “alphabet”: the domain of the characters
A “key”: a sequence of “characters” from the alphabet

A “value”: the usual Dictionary value

54

Simple Trie Implementation

public class TrieSet {
private Node root;

private static class Node {
private char ch;
private boolean 1isKey;
private Map<char, Node> next;
private Node (char ¢, boolean b) {

ch = c;
isKey = Db;
next = new HashMap () ;

55

Simple Trie Node Implementation

Node private static class Node {
ch a private char ch;
isKey true private boolean 1isKey;
private Map<char, Node> next;
next
}
Map
Y “\\l\\\\-__*h Node

ch y

isKey false

next [_ >

56

Simple Trie Implementation

public class TrieSet {
private Node root;

private static class Node {

private char ch;

private boolean isKey; private

Map<char, Node> next;

private Node (char ¢, boolean b) {
ch = c;
1sKey = b;
next = new HashMap /() ;

57

Trie-Specitic Operations

e Prefix matching
Keys are sequences that can have prefixes
e Longest prefix
longestPrefixOf ("sample™)
Want: {"sam" }
e Prefix match
findPrefix("sa")
Want: {"sad", "sam", "same", "sap"}

58

Summary

e A trie data structure implements the Dictionary and Set
e Tries store sequential keys
.. which enables very efficient prefix operations like findPrefix

e Tries have many different implementations
Could store HashMap/TreeMap/any-dictionary within nodes

Full-Length Lectures

e [CSE 373 WI24] Lecture 09: AVL Trees
https://www.youtube.com/watch?v=TPMH35DqGIO&list=PLEcoVsAaONjd5n69K84sS

MAuUVTrTOT_NI&index=8

e [CSE 373 WI24] Lecture 10: Self Balancing Trees

https://www.youtube.com/watch?v=kTmI|61C1e3U &list=PLEcoVsAaON|d5n69K84sSm
AuvTrTOT_NI&index=9

60

https://www.youtube.com/watch?v=TPMH35DqGI0&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=8
https://www.youtube.com/watch?v=TPMH35DqGI0&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=8
https://www.youtube.com/watch?v=kTml61C1e3U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=9
https://www.youtube.com/watch?v=kTml61C1e3U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=9

	Slide 1
	Slide 2: AVL Tree
	Slide 3: Measuring Balance
	Slide 4: Is this a valid AVL tree?
	Slide 5: Is this a valid AVL tree?
	Slide 6: Time Complexity
	Slide 7
	Slide 8: Insertion
	Slide 9: Fixing AVL Invariant: Left Rotation
	Slide 10: Left Rotation: More Precisely
	Slide 11: Right Rotation
	Slide 12: Left or Right Rotation Examples
	Slide 13: Not Quite as Straightforward
	Slide 14: Right/Left Rotation
	Slide 15: Right/Left Rotation: More Precisely
	Slide 16: Left/Right Rotation
	Slide 17: AVL Example: 8,9,10,12,11
	Slide 18: AVL Example: 8,9,10,12,11
	Slide 19: AVL Example: 8,9,10,12,11
	Slide 20: AVL Example: 8,9,10,12,11
	Slide 21: AVL Example: 8,9,10,12,11
	Slide 22: AVL Example: 8,9,10,12,11
	Slide 23: Two AVL Cases
	Slide 24: How Long Does Rebalancing Take?
	Slide 25: AVL insertion: Approach
	Slide 26: AVL insertion: Example
	Slide 27: AVL deletion
	Slide 28: AVL Trees
	Slide 29: Video Tutorials
	Slide 30: Red Black Trees
	Slide 31: Red-Black Tree
	Slide 32: Examples
	Slide 33: Red-Black tree ensures balancing
	Slide 34: Additional Properties
	Slide 35: Insertion
	Slide 36: Insertion
	Slide 37: Case 0. Z = root
	Slide 38: Case 1. Z.uncle = red
	Slide 39: Case 2. Z.uncle = black (triangle)
	Slide 40: Case 2. Z.uncle = black (triangle)
	Slide 41: Case 3 Z.uncle = black (line)
	Slide 42: Case 3 Z.uncle = black (line)
	Slide 43: Case 3 Z.uncle = black
	Slide 44: Example 1
	Slide 45
	Slide 46: Example 2 Con’t
	Slide 47: Another Example
	Slide 48: Time Complexity
	Slide 49: AVL vs Red Black Trees
	Slide 50: Video Tutorials
	Slide 51: Tries
	Slide 52: Trie: An Introduction
	Slide 53: Searching in Tries
	Slide 54: Keys as “a sequence of characters”
	Slide 55: Simple Trie Implementation
	Slide 56: Simple Trie Node Implementation
	Slide 57: Simple Trie Implementation
	Slide 58: Trie-Specific Operations
	Slide 59: Summary
	Slide 60: Full-Length Lectures

