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Lecture 9

Self-Balancing Trees

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures 
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AVL Tree

AVL Tree: A balanced BST that maintains the 
invariant: |LeftHeight – RightHeight | <= 1 for all 
nodes in the tree. 

• Named after Adelson-Velsky and Landis
• But also A Very Lovable Tree!
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An AVL Tree has height ≈ log(n)
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Measuring Balance

Measuring balance:
● For each node, compare the heights of its two subtrees
● Balanced when the difference in heights between subtrees is no greater than 1
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Is this a valid AVL tree?
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Is this a valid AVL tree?
6

2 8

1 7 124

9

10 13

11

3 5

Is it…
- Binary
- BST
- Balanced?

yes
yes
no

Height = 2Height = 0



6

Time Complexity

public boolean containsKey(node, key) {

// find key

}

INVARIANT

INVARIANT

public boolean insert(node, key) {

// find where key would go

// insert

}

INVARIANT

containsKey benefits from invariant: 
worst-case O(log n) time

Insert benefits from invariant:
worst-case O(log n) time to find location for 
key

How to maintain the invariant?
● Track heights of subtrees
● Detect any imbalance
● Restore balance

INVARIANT
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BST containsKey()
The AVL Invariant
Rotations
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Insertion

What happens if an insertion breaks the AVL invariant?
The AVL rebalances itself by rotations. AVL is a type of “Self-Balancing Tree”
• A rotation alters the structure of a tree by rearranging subtrees. 
• Goal is to decrease the height of the tree to maximum height of O(log n).
• Larger subtrees up, smaller subtrees down
• Does not affect the order of elements
• Time complexity O(1)
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Fixing AVL Invariant: Left Rotation
We can fix the AVL invariant by performing rotations wherever an 
imbalance was created

Left Rotation
● Find the node that is violating the invariant (here,      )
● Let it “fall” left to become a left child
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Apply a left rotation whenever the newly inserted node is located under the 
right child of the right child
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Left Rotation: More Precisely

Subtrees are okay! They just come along for the ride.
● Subtree 2 changes from left child of B to right child of A – but notice that its 

relationship with nodes A and B doesn’t change in the new position!
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3

Right Rotation

Right Rotation
● Mirror image of Left Rotation!
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Left or Right Rotation Examples
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Not Quite as Straightforward

What if there’s a “kink” in the tree where the insertion happened?

Can we apply a Left Rotation?
● No, violates the BST invariant!
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Right/Left Rotation

Solution: Right/Left Rotation
● Two steps: First do a right rotation for the right two nodes. then do a left rotation for 

the three nodes.
● Preserves BST invariant!
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Right/Left Rotation: More Precisely

Again, subtrees are invited to come with
○Now 2 and 3 both have to hop, but all BST ordering properties are still preserved
○(Note that A, B and C denote some numerical value, not letters ‘A’, ’B’, ’C’)
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Left/Right Rotation

Left/Right Rotation
○Mirror image of Right/Left Rotation! 
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11

8

9

10

11

12



23

Two AVL Cases
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Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations
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How Long Does Rebalancing Take?

● Assume we store in each node the height of its subtree.
○ How do we find an unbalanced node?
○ Go back up the tree from where we inserted.

● How many rotations might we have to do?
○ Just a single or double rotation on the lowest unbalanced node. 
○ A rotation will cause the subtree rooted where the rotation 

happens to have the same height it had before insertion

○ O(log n) time to traverse to a leaf of the tree
○ O(log n) time to find the imbalanced node
○ O(1) constant time to do the rotation(s)
○ Overall complexity: O(log n ) time for adding a node.
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AVL insertion: Approach

Overall algorithm:
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf:

○ The insertion may (or may not) have changed the node’s height
○ Detect height imbalance and perform a rotation to restore balance

Facts that make this easier:
● Imbalances can only occur along the path from the new leaf to the root
● We only have to address the lowest unbalanced node
● Applying a rotation (or double rotation), restores the height of the subtree before the insertion --

when everything was balanced!
● Therefore, we need at most one rebalancing operation
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AVL insertion: Example
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has height 2

(2) Insertion creates 
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2, whole tree balanced again!

2

7 11



27

AVL deletion

● Deletion involves a similar set of rotations that let you rebalance an AVL 
tree after deleting an element
○ Omitted since it is beyond scope of this course

● In the worst case, takes O(log n) time to rebalance after a deletion
○ Finding the node to delete is also O(log n), so total complexity is O(log n)
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AVL Trees

● All operations on an AVL Tree 
(search, insertion, deletion）
have worst-case complexity 
O(log n)

○ Because the tree is always 
balanced!

● Additional space for the 
height field

● Rebalancing does incur 
some overhead
○ May not may not be important 

depending on the application

PROS CONS
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Video Tutorials

● AVL Trees Simply Explained, Maaneth De Silva
○ https://www.youtube.com/watch?v=zP2xbKerIds

● 10.1 AVL Tree - Insertion and Rotations, Abdul Bari
○ https://www.youtube.com/watch?v=jDM6_TnYIqE

● AVL tree insertion, InvesTime
○ https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcm

oZODnVnQK9Xja-Pi&index=5
○ Inserting 14, 17, 11, 7, 53, 4, 13, 12, 8, 60, 19, 16, 20
○ In the middle of video (11 min) there is a typo where the root is written as 11, but it 

should be 14

https://www.youtube.com/watch?v=zP2xbKerIds
https://www.youtube.com/watch?v=jDM6_TnYIqE
https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=5
https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=5
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Red Black Trees
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Red-Black Tree
● Red-Black Tree: A balanced BST that maintains the invariant: 

the longest path (root to farthest NIL) is no more than twice 
the length of the shortest path (root to nearest NIL).
○ Right figure: Shortest path: all black nodes (=2); Longest path: 

alternating red and black (=4)
○ This is NOT a legal AVL tree as it does not satisfy AVL invariant 

at root |LeftHeight – RightHeight | <= 1 
○ (Path from root in RBT includes the NIL node, whereas height of 

AVL tree does not.)

● RBT uses color coding to maintain balance and reduce the 
number of node re-arrangements needed via rotations. It has 
four properties:
○ 1. Node Color: A node is either red or black.
○ 2. Root Property: The root and leaves (NIL) are black.
○ 3. Red Property: If a node is red, then its children are black. (no two 

adjacent red nodes)
○ 4. Black Property: All paths from a node to its NIL descendants 

contain the same number of black nodes.

● Node insertion and deletion may result in violation of these 
properties. 
○ Use recoloring and rotations to maintain these properties.
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Examples

● Tree on the left: Incorrect Red 
Black Tree.
○ Two red nodes are adjacent to 

each other. 
○ One of the paths to a leaf node 

has zero black nodes, whereas 
the other two paths contain 1 
black node each.
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Red-Black tree ensures balancing

● A linear chain of 3 nodes is not possible in a Red-Black tree
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Additional Properties

● AVL Tree: A balanced BST that maintains 
the invariant |LeftHeight – RightHeight | <= 1 
for all nodes in the tree. 
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Insertion

● Inserting a new node in a Red-Black Tree involves a two-
step process: performing a standard binary search tree 
(BST) insertion, followed by fixing any violations of Red-
Black properties.

● Insertion Steps
1. BST Insert: Insert the new node into BST and color it red.
2. Fix Violations:

2. If the parent of the new node is black, no properties are violated.
3. If the parent is red, the tree might violate the Red Property, requiring 

fixes.



36

● Step 1. Insert Z and color it red

● Step 2. Recolor and rotate nodes to fix violations

● 4 scenarios after inserting node Z

● Case 0. Z = root
○ Color Z black

● Case 1. Z.uncle = red
○ Recolor Z’s parents and grandparent

● Case 2. Z.uncle = black (triangle)
○ Rotate Z.parent, turns into Case 3

● Case 3. Z.uncle = black (line)
○ Rotate Z.grandparent & Recolor Z’s parents and grandparent

Insertion
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Case 0. Z = root

● Color Z black

Color Z

black
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Case 1. Z.uncle = red

● Recolor Z’s parent, uncle, and grandparent

recolor
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Case 2. Z.uncle = black (triangle)
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Case 2. Z.uncle = black (triangle)

● Rotate Z.parent

● Turns into Case 3

rotate 

Z.parent
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Case 3 Z.uncle = black (line)
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Case 3 Z.uncle = black (line)

● Rotate Z.grandparent

rotate 

Z.grandparent

recolor
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Case 3 Z.uncle = black
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Example 1

insert 15 insert 5

insert 1



45

Case 1. 

Z.uncle = 

red

recolor

insert 10

Case 2. 

Z.uncle = 

black

right rotate 

on 15

Z

Z.uncle

Z.uncle

Z

Example 2

Z

Z.uncle
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Example 2 Con’t

Z

Z.uncle

Case 2. 

Z.uncle = 

black

left rotate 

on 8 & 

recolor
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Another Example

Red Black Tree – Insertion

https://www.youtube.com/watch?v=9ubIKipLpRU

https://www.youtube.com/watch?v=9ubIKipLpRU
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Time Complexity

● 1. Insert : O(log(n))
○ maximum height of red-black trees

● 2. Color red : O(1)

● 3. Fix violations :
○ Constant # of:
○ a. Recolor : O(1)
○ b. Rotation: O(1)

● Overall time complexity: O(log(n))
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AVL vs Red Black Trees

Red Black Tree:
- A balanced BST that maintains the (more relaxed) invariant: the 

longest path (root to farthest NIL) is no more than twice the length 
of the shortest path (root to nearest NIL).

- More efficient insertion and deletion operations because the 
balancing requirement is less strict than AVL Tree.

AVL Tree:

- A balanced BST that maintains the (more strict) invariant: 
|LeftHeight – RightHeight | <= 1 for all nodes in the tree. 

- More efficient look up operation because of the strict balance 
requirement.
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Video Tutorials

● Red-Black Trees // Michael Sambol
○ https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmU

Ein
○ Lecture slides based in this video series

● Red Black Tree – Insertion, InvesTime
○ https://www.youtube.com/watch?v=9ubIKipLpRU&list=PLoW1nQhPBiz_h5wcm

oZODnVnQK9Xja-Pi&index=4 ‘

● 5.17 Red Black Tree Insertion | Insertion Algorithm | Data Structure 
Tutorials, Jenny's Lectures CS IT
○ https://www.youtube.com/watch?v=qA02XWRTBdw&list=PLdo5W4Nhv31bbKJ

zrsKfMpo_grxuLl8LU&index=65

● Introduction to Red-Black Tree
○ https://www.geeksforgeeks.org/introduction-to-red-black-tree/

https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/watch?v=9ubIKipLpRU&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=4
https://www.youtube.com/watch?v=9ubIKipLpRU&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=4
https://www.youtube.com/watch?v=qA02XWRTBdw&list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuLl8LU&index=65
https://www.youtube.com/watch?v=qA02XWRTBdw&list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuLl8LU&index=65
https://www.geeksforgeeks.org/introduction-to-red-black-tree/


51

Tries
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CSE332, Spring 2021L02: Dictionary ADT, Tries

Trie: An Introduction
● Tries view its keys as:

○ a sequence of characters
○ some (hopefully many!) sequences share common 

prefixes
● Each level of the tree represents an index in the string

○ Children at that level represent possible
○ characters at that index

● This abstract trie stores the set of strings:
○ awls, a, sad, same, sap, sam

● How to deal with a and awls?
○ Mark which nodes complete a string (shown in purple)

a

md p

e

w

l

s

sa
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CSE332, Spring 2021L02: Dictionary ADT, Tries

Searching in Tries

Input String Fall Off? / Is Key? Result

contains(“sam”) hit / purple True

contains(“sa”) hit / white False

contains(“a”) hit / purple True

contains(“saq”) fell off / n/a False

Two ways to fail a contains() check:

1. If we fall off the tree
2. If the final node isn’t purple (not a key)

a

md p

e

w

l

s

sa
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CSE332, Spring 2021L02: Dictionary ADT, Tries

Keys as “a sequence of characters”

● Most dictionaries treat their keys as an “atomic blob”: you  
can’t disassemble the key into smaller components

● Tries take the opposite view: keys are a sequence of 
characters
○ Strings are made of Characters

● Tries are defined by 3 types:
○ An “alphabet”: the domain of the characters
○ A “key”: a sequence of “characters” from the alphabet
○ A “value”: the usual Dictionary value
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CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Implementation

public class TrieSet {

private Node root;

private static class Node {  

private char ch;

private boolean isKey;  

private Map<char, Node> next;

private Node(char c, boolean b) {

ch = c;  

isKey = b;

next = new HashMap();

}

}

}

a

md p

e

w

l

s

sa
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CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Node Implementation
private static class Node {  

private char ch;

private boolean isKey;

private Map<char, Node> next;

...

}

ch a

isKey true

next

y

Node

Map

ch y

isKey false

next

Node

a …

y
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CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Implementation

public class TrieSet {

private Node root;

private static class Node {  

private char ch;

private boolean isKey;  private 

Map<char, Node> next;

private Node(char c, boolean b) {

ch = c;  

isKey = b;

next = new HashMap();

}

}

}

s

a

d

a

w

l

a s

a

d

w

l
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...
...

...

...

...

... ...
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CSE332, Spring 2021L02: Dictionary ADT, Tries

Trie-Specific Operations

● Prefix matching
○ Keys are sequences that can have prefixes

● Longest prefix
○ longestPrefixOf("sample")

○ Want: {"sam"}
● Prefix match

○ findPrefix("sa")

○ Want: {"sad", "sam", "same", "sap"} a

md p

e

w

l

s

sa
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CSE332, Spring 2021

59

L02: Dictionary ADT, Tries

Summary

● A trie data structure implements the Dictionary and Set
● Tries store sequential keys

○ … which enables very efficient prefix operations like findPrefix
● Tries have many different implementations

○ Could store HashMap/TreeMap/any-dictionary within nodes
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Full-Length Lectures

● [CSE 373 WI24] Lecture 09: AVL Trees
○ https://www.youtube.com/watch?v=TPMH35DqGI0&list=PLEcoVsAaONjd5n69K84sS

mAuvTrTQT_Nl&index=8

● [CSE 373 WI24] Lecture 10: Self Balancing Trees
○ https://www.youtube.com/watch?v=kTml61C1e3U&list=PLEcoVsAaONjd5n69K84sSm

AuvTrTQT_Nl&index=9

https://www.youtube.com/watch?v=TPMH35DqGI0&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=8
https://www.youtube.com/watch?v=TPMH35DqGI0&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=8
https://www.youtube.com/watch?v=kTml61C1e3U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=9
https://www.youtube.com/watch?v=kTml61C1e3U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=9
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