
1

Lecture 9

Self-Balancing Trees

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures

2

AVL Tree

AVL Tree: A balanced BST that maintains the
invariant: |LeftHeight – RightHeight | <= 1 for all
nodes in the tree.

• Named after Adelson-Velsky and Landis
• But also A Very Lovable Tree!

node

Left

Height

Right

Height

An AVL Tree has height ≈ log(n)

3

Measuring Balance

Measuring balance:
● For each node, compare the heights of its two subtrees
● Balanced when the difference in heights between subtrees is no greater than 1

10

15

12 18

8

7

7
8

7 9

Balanced

Unbalanced

Balanced

Balanced

4

Is this a valid AVL tree?
7

4 10

3 9 125

8 11 13

14

2 6

Is it…
- Binary
- BST
- Balanced?

yes
yes
yes

5

Is this a valid AVL tree?
6

2 8

1 7 124

9

10 13

11

3 5

Is it…
- Binary
- BST
- Balanced?

yes
yes
no

Height = 2Height = 0

6

Time Complexity

public boolean containsKey(node, key) {

// find key

}

INVARIANT

INVARIANT

public boolean insert(node, key) {

// find where key would go

// insert

}

INVARIANT

containsKey benefits from invariant:
worst-case O(log n) time

Insert benefits from invariant:
worst-case O(log n) time to find location for
key

How to maintain the invariant?
● Track heights of subtrees
● Detect any imbalance
● Restore balance

INVARIANT

7

BST containsKey()
The AVL Invariant
Rotations

8

Insertion

What happens if an insertion breaks the AVL invariant?
The AVL rebalances itself by rotations. AVL is a type of “Self-Balancing Tree”
• A rotation alters the structure of a tree by rearranging subtrees.
• Goal is to decrease the height of the tree to maximum height of O(log n).
• Larger subtrees up, smaller subtrees down
• Does not affect the order of elements
• Time complexity O(1)

1

5

1

5

8

Insert 8 5

81

Rotation

9

Fixing AVL Invariant: Left Rotation
We can fix the AVL invariant by performing rotations wherever an
imbalance was created

Left Rotation
● Find the node that is violating the invariant (here,)
● Let it “fall” left to become a left child

1

5

8

h:2

h:1

h:0 1

5

8

h:1

h:0h:0

1

Apply a left rotation whenever the newly inserted node is located under the
right child of the right child

1

5

8

h:2

h:1

h:0h:01

10

Left Rotation: More Precisely

Subtrees are okay! They just come along for the ride.
● Subtree 2 changes from left child of B to right child of A – but notice that its

relationship with nodes A and B doesn’t change in the new position!

A

1

2

3 4

B

C

A < 2 2 < B

A

1 2 3 4

B

C

A < 2 2 < B

A

2

NODE

SUBTREE

...

...

11

3

Right Rotation

Right Rotation
● Mirror image of Left Rotation!

A

1 2

4

B

C

B < 3 3 < A

A

1 2 3 4

B

C

A

2

NODE

SUBTREE

B < 3 3 < A

...

...

12

Left or Right Rotation Examples

13

Not Quite as Straightforward

What if there’s a “kink” in the tree where the insertion happened?

Can we apply a Left Rotation?
● No, violates the BST invariant!

1

5

3

h:2

h:1

h:0 1

5

3

h:1

h:0h:0

14

Right/Left Rotation

Solution: Right/Left Rotation
● Two steps: First do a right rotation for the right two nodes. then do a left rotation for

the three nodes.
● Preserves BST invariant!

1

5

3

h:2

h:1

h:0

1

3

5

h:1

h:0h:0

1

3

5

h:2

h:1

h:0

15

Right/Left Rotation: More Precisely

Again, subtrees are invited to come with
○Now 2 and 3 both have to hop, but all BST ordering properties are still preserved
○(Note that A, B and C denote some numerical value, not letters ‘A’, ’B’, ’C’)

A

1

2 3

4

B

C

A < 2 2 < C

A

1 2 3 4

C

B

A

2

NODE

SUBTREE

C < 3 3 < B A < 2 2 < C C < 3 3 < B

...

...

16

Left/Right Rotation

Left/Right Rotation
○Mirror image of Right/Left Rotation!

A

1

2 3

4
B

C

B < 2 2 < C

A

1 2 3 4

C

B

A

2

NODE

SUBTREE

C < 3 3 < A B < 2 2 < C C < 3 3 < A

...

...

17

AVL Example: 8,9,10,12,11

8

Insert 9
8

9

10

8

9

Insert 10 Left Rotation

8

9

10

8

9

10

12

8

11

9

10

12

8

9

10

11

12

Right/Left
RotationInsert 11Insert 12

18

AVL Example: 8,9,10,12,11

8

9

10

19

AVL Example: 8,9,10,12,11

8

11

9

10

12

20

AVL Example: 8,9,10,12,11

8

11

9

10

12

21

AVL Example: 8,9,10,12,11

8

9

10

11

12

22

AVL Example: 8,9,10,12,11

8

9

10

11

12

23

Two AVL Cases

1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right Rotate Left

3

1

2

Right Kink Resolution
Right/Left Rotation

Left Kink Resolution
Left/Right Rotation

24

How Long Does Rebalancing Take?

● Assume we store in each node the height of its subtree.
○ How do we find an unbalanced node?
○ Go back up the tree from where we inserted.

● How many rotations might we have to do?
○ Just a single or double rotation on the lowest unbalanced node.
○ A rotation will cause the subtree rooted where the rotation

happens to have the same height it had before insertion

○ O(log n) time to traverse to a leaf of the tree
○ O(log n) time to find the imbalanced node
○ O(1) constant time to do the rotation(s)
○ Overall complexity: O(log n) time for adding a node.

25

AVL insertion: Approach

Overall algorithm:
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf:

○ The insertion may (or may not) have changed the node’s height
○ Detect height imbalance and perform a rotation to restore balance

Facts that make this easier:
● Imbalances can only occur along the path from the new leaf to the root
● We only have to address the lowest unbalanced node
● Applying a rotation (or double rotation), restores the height of the subtree before the insertion --

when everything was balanced!
● Therefore, we need at most one rebalancing operation

26

AVL insertion: Example

6

8

10

9 12

11

7

...

...

(1) Originally, whole tree
balanced, and this subtree
has height 2

(2) Insertion creates
imbalance(s), including
the subtree (8 is lowest
unbalanced node)

2

6

10

12

9

8

...

...

(3) Left rotation on 8 will
restore the subtree to height
2, whole tree balanced again!

2

7 11

27

AVL deletion

● Deletion involves a similar set of rotations that let you rebalance an AVL
tree after deleting an element
○ Omitted since it is beyond scope of this course

● In the worst case, takes O(log n) time to rebalance after a deletion
○ Finding the node to delete is also O(log n), so total complexity is O(log n)

28

AVL Trees

● All operations on an AVL Tree
(search, insertion, deletion）
have worst-case complexity
O(log n)

○ Because the tree is always
balanced!

● Additional space for the
height field

● Rebalancing does incur
some overhead
○ May not may not be important

depending on the application

PROS CONS

29

Video Tutorials

● AVL Trees Simply Explained, Maaneth De Silva
○ https://www.youtube.com/watch?v=zP2xbKerIds

● 10.1 AVL Tree - Insertion and Rotations, Abdul Bari
○ https://www.youtube.com/watch?v=jDM6_TnYIqE

● AVL tree insertion, InvesTime
○ https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcm

oZODnVnQK9Xja-Pi&index=5
○ Inserting 14, 17, 11, 7, 53, 4, 13, 12, 8, 60, 19, 16, 20
○ In the middle of video (11 min) there is a typo where the root is written as 11, but it

should be 14

https://www.youtube.com/watch?v=zP2xbKerIds
https://www.youtube.com/watch?v=jDM6_TnYIqE
https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=5
https://www.youtube.com/watch?v=vQptSYake4E&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=5

30

Red Black Trees

31

Red-Black Tree
● Red-Black Tree: A balanced BST that maintains the invariant:

the longest path (root to farthest NIL) is no more than twice
the length of the shortest path (root to nearest NIL).
○ Right figure: Shortest path: all black nodes (=2); Longest path:

alternating red and black (=4)
○ This is NOT a legal AVL tree as it does not satisfy AVL invariant

at root |LeftHeight – RightHeight | <= 1
○ (Path from root in RBT includes the NIL node, whereas height of

AVL tree does not.)

● RBT uses color coding to maintain balance and reduce the
number of node re-arrangements needed via rotations. It has
four properties:
○ 1. Node Color: A node is either red or black.
○ 2. Root Property: The root and leaves (NIL) are black.
○ 3. Red Property: If a node is red, then its children are black. (no two

adjacent red nodes)
○ 4. Black Property: All paths from a node to its NIL descendants

contain the same number of black nodes.

● Node insertion and deletion may result in violation of these
properties.
○ Use recoloring and rotations to maintain these properties.

32

Examples

● Tree on the left: Incorrect Red
Black Tree.
○ Two red nodes are adjacent to

each other.
○ One of the paths to a leaf node

has zero black nodes, whereas
the other two paths contain 1
black node each.

33

Red-Black tree ensures balancing

● A linear chain of 3 nodes is not possible in a Red-Black tree

34

Additional Properties

● AVL Tree: A balanced BST that maintains
the invariant |LeftHeight – RightHeight | <= 1
for all nodes in the tree.

35

Insertion

● Inserting a new node in a Red-Black Tree involves a two-
step process: performing a standard binary search tree
(BST) insertion, followed by fixing any violations of Red-
Black properties.

● Insertion Steps
1. BST Insert: Insert the new node into BST and color it red.
2. Fix Violations:

2. If the parent of the new node is black, no properties are violated.
3. If the parent is red, the tree might violate the Red Property, requiring

fixes.

36

● Step 1. Insert Z and color it red

● Step 2. Recolor and rotate nodes to fix violations

● 4 scenarios after inserting node Z

● Case 0. Z = root
○ Color Z black

● Case 1. Z.uncle = red
○ Recolor Z’s parents and grandparent

● Case 2. Z.uncle = black (triangle)
○ Rotate Z.parent, turns into Case 3

● Case 3. Z.uncle = black (line)
○ Rotate Z.grandparent & Recolor Z’s parents and grandparent

Insertion

37

Case 0. Z = root

● Color Z black

Color Z

black

38

Case 1. Z.uncle = red

● Recolor Z’s parent, uncle, and grandparent

recolor

39

Case 2. Z.uncle = black (triangle)

40

Case 2. Z.uncle = black (triangle)

● Rotate Z.parent

● Turns into Case 3

rotate

Z.parent

41

Case 3 Z.uncle = black (line)

42

Case 3 Z.uncle = black (line)

● Rotate Z.grandparent

rotate

Z.grandparent

recolor

43

Case 3 Z.uncle = black

44

Example 1

insert 15 insert 5

insert 1

45

Case 1.

Z.uncle =

red

recolor

insert 10

Case 2.

Z.uncle =

black

right rotate

on 15

Z

Z.uncle

Z.uncle

Z

Example 2

Z

Z.uncle

46

Example 2 Con’t

Z

Z.uncle

Case 2.

Z.uncle =

black

left rotate

on 8 &

recolor

47

Another Example

Red Black Tree – Insertion

https://www.youtube.com/watch?v=9ubIKipLpRU

https://www.youtube.com/watch?v=9ubIKipLpRU

48

Time Complexity

● 1. Insert : O(log(n))
○ maximum height of red-black trees

● 2. Color red : O(1)

● 3. Fix violations :
○ Constant # of:
○ a. Recolor : O(1)
○ b. Rotation: O(1)

● Overall time complexity: O(log(n))

49

AVL vs Red Black Trees

Red Black Tree:
- A balanced BST that maintains the (more relaxed) invariant: the

longest path (root to farthest NIL) is no more than twice the length
of the shortest path (root to nearest NIL).

- More efficient insertion and deletion operations because the
balancing requirement is less strict than AVL Tree.

AVL Tree:

- A balanced BST that maintains the (more strict) invariant:
|LeftHeight – RightHeight | <= 1 for all nodes in the tree.

- More efficient look up operation because of the strict balance
requirement.

50

Video Tutorials

● Red-Black Trees // Michael Sambol
○ https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmU

Ein
○ Lecture slides based in this video series

● Red Black Tree – Insertion, InvesTime
○ https://www.youtube.com/watch?v=9ubIKipLpRU&list=PLoW1nQhPBiz_h5wcm

oZODnVnQK9Xja-Pi&index=4 ‘

● 5.17 Red Black Tree Insertion | Insertion Algorithm | Data Structure
Tutorials, Jenny's Lectures CS IT
○ https://www.youtube.com/watch?v=qA02XWRTBdw&list=PLdo5W4Nhv31bbKJ

zrsKfMpo_grxuLl8LU&index=65

● Introduction to Red-Black Tree
○ https://www.geeksforgeeks.org/introduction-to-red-black-tree/

https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/watch?v=9ubIKipLpRU&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=4
https://www.youtube.com/watch?v=9ubIKipLpRU&list=PLoW1nQhPBiz_h5wcmoZODnVnQK9Xja-Pi&index=4
https://www.youtube.com/watch?v=qA02XWRTBdw&list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuLl8LU&index=65
https://www.youtube.com/watch?v=qA02XWRTBdw&list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuLl8LU&index=65
https://www.geeksforgeeks.org/introduction-to-red-black-tree/

51

Tries

52

CSE332, Spring 2021L02: Dictionary ADT, Tries

Trie: An Introduction
● Tries view its keys as:

○ a sequence of characters
○ some (hopefully many!) sequences share common

prefixes
● Each level of the tree represents an index in the string

○ Children at that level represent possible
○ characters at that index

● This abstract trie stores the set of strings:
○ awls, a, sad, same, sap, sam

● How to deal with a and awls?
○ Mark which nodes complete a string (shown in purple)

a

md p

e

w

l

s

sa

53

CSE332, Spring 2021L02: Dictionary ADT, Tries

Searching in Tries

Input String Fall Off? / Is Key? Result

contains(“sam”) hit / purple True

contains(“sa”) hit / white False

contains(“a”) hit / purple True

contains(“saq”) fell off / n/a False

Two ways to fail a contains() check:

1. If we fall off the tree
2. If the final node isn’t purple (not a key)

a

md p

e

w

l

s

sa

54

CSE332, Spring 2021L02: Dictionary ADT, Tries

Keys as “a sequence of characters”

● Most dictionaries treat their keys as an “atomic blob”: you
can’t disassemble the key into smaller components

● Tries take the opposite view: keys are a sequence of
characters
○ Strings are made of Characters

● Tries are defined by 3 types:
○ An “alphabet”: the domain of the characters
○ A “key”: a sequence of “characters” from the alphabet
○ A “value”: the usual Dictionary value

55

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Implementation

public class TrieSet {

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private Map<char, Node> next;

private Node(char c, boolean b) {

ch = c;

isKey = b;

next = new HashMap();

}

}

}

a

md p

e

w

l

s

sa

56

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Node Implementation
private static class Node {

private char ch;

private boolean isKey;

private Map<char, Node> next;

...

}

ch a

isKey true

next

y

Node

Map

ch y

isKey false

next

Node

a …

y

57

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Implementation

public class TrieSet {

private Node root;

private static class Node {

private char ch;

private boolean isKey; private

Map<char, Node> next;

private Node(char c, boolean b) {

ch = c;

isKey = b;

next = new HashMap();

}

}

}

s

a

d

a

w

l

a s

a

d

w

l

...

...
...

...

...

...

... ...

58

CSE332, Spring 2021L02: Dictionary ADT, Tries

Trie-Specific Operations

● Prefix matching
○ Keys are sequences that can have prefixes

● Longest prefix
○ longestPrefixOf("sample")

○ Want: {"sam"}
● Prefix match

○ findPrefix("sa")

○ Want: {"sad", "sam", "same", "sap"} a

md p

e

w

l

s

sa

59

CSE332, Spring 2021

59

L02: Dictionary ADT, Tries

Summary

● A trie data structure implements the Dictionary and Set
● Tries store sequential keys

○ … which enables very efficient prefix operations like findPrefix
● Tries have many different implementations

○ Could store HashMap/TreeMap/any-dictionary within nodes

60

Full-Length Lectures

● [CSE 373 WI24] Lecture 09: AVL Trees
○ https://www.youtube.com/watch?v=TPMH35DqGI0&list=PLEcoVsAaONjd5n69K84sS

mAuvTrTQT_Nl&index=8

● [CSE 373 WI24] Lecture 10: Self Balancing Trees
○ https://www.youtube.com/watch?v=kTml61C1e3U&list=PLEcoVsAaONjd5n69K84sSm

AuvTrTQT_Nl&index=9

https://www.youtube.com/watch?v=TPMH35DqGI0&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=8
https://www.youtube.com/watch?v=TPMH35DqGI0&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=8
https://www.youtube.com/watch?v=kTml61C1e3U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=9
https://www.youtube.com/watch?v=kTml61C1e3U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=9

	Slide 1
	Slide 2: AVL Tree
	Slide 3: Measuring Balance
	Slide 4: Is this a valid AVL tree?
	Slide 5: Is this a valid AVL tree?
	Slide 6: Time Complexity
	Slide 7
	Slide 8: Insertion
	Slide 9: Fixing AVL Invariant: Left Rotation
	Slide 10: Left Rotation: More Precisely
	Slide 11: Right Rotation
	Slide 12: Left or Right Rotation Examples
	Slide 13: Not Quite as Straightforward
	Slide 14: Right/Left Rotation
	Slide 15: Right/Left Rotation: More Precisely
	Slide 16: Left/Right Rotation
	Slide 17: AVL Example: 8,9,10,12,11
	Slide 18: AVL Example: 8,9,10,12,11
	Slide 19: AVL Example: 8,9,10,12,11
	Slide 20: AVL Example: 8,9,10,12,11
	Slide 21: AVL Example: 8,9,10,12,11
	Slide 22: AVL Example: 8,9,10,12,11
	Slide 23: Two AVL Cases
	Slide 24: How Long Does Rebalancing Take?
	Slide 25: AVL insertion: Approach
	Slide 26: AVL insertion: Example
	Slide 27: AVL deletion
	Slide 28: AVL Trees
	Slide 29: Video Tutorials
	Slide 30: Red Black Trees
	Slide 31: Red-Black Tree
	Slide 32: Examples
	Slide 33: Red-Black tree ensures balancing
	Slide 34: Additional Properties
	Slide 35: Insertion
	Slide 36: Insertion
	Slide 37: Case 0. Z = root
	Slide 38: Case 1. Z.uncle = red
	Slide 39: Case 2. Z.uncle = black (triangle)
	Slide 40: Case 2. Z.uncle = black (triangle)
	Slide 41: Case 3 Z.uncle = black (line)
	Slide 42: Case 3 Z.uncle = black (line)
	Slide 43: Case 3 Z.uncle = black
	Slide 44: Example 1
	Slide 45
	Slide 46: Example 2 Con’t
	Slide 47: Another Example
	Slide 48: Time Complexity
	Slide 49: AVL vs Red Black Trees
	Slide 50: Video Tutorials
	Slide 51: Tries
	Slide 52: Trie: An Introduction
	Slide 53: Searching in Tries
	Slide 54: Keys as “a sequence of characters”
	Slide 55: Simple Trie Implementation
	Slide 56: Simple Trie Node Implementation
	Slide 57: Simple Trie Implementation
	Slide 58: Trie-Specific Operations
	Slide 59: Summary
	Slide 60: Full-Length Lectures

