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Lecture Goals

 Describe the value of trees and their data structure
 Explain the need to visit data in different orderings
 Perform pre-order, in-order, post-order and level-order traversals
 Define a Binary Search Tree
 Perform search, insert, delete in a Binary Search Tree
 Explain the running time performance to find an item in a BST

2



Different Trees in Computer Science
Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Family Trees Decision Trees

Floor
Clean?

Sweep  
Floor
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House 
cleanNo

Yes
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Windows
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Expression Trees
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/

45

Evaluate: 45 / (3 + 6)
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users/

minnes/

etc/

/

porter/
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Why trees?

Dynamic Data Structure

alvarado/

Structure conveys 
information

parent

children

children 
of children

 Root is most important (Heap)

 Organized by character 
frequency (Huffman Tree)

 Organized by node ordering 
(Search Trees)

 Etc…   

Different Organizations 
→ Different Trees 
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Defining Trees

Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Family Trees

parent

child

leaf

root What defines a tree? 
 Single root
 Each node can have only one parent 

(except for root)
 No cycles in a tree

A B C D E

Which are trees? 

✓

✓ ✓ ✗ ✗

only has one parent

has no parent node

nodes without children

root

3 children (all leaves)

root root

leaf
two 
parents

Cycle: two different paths 
between a pair of nodes

two roots

two 
parents

4



Binary Trees

Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Generic Tree

Any Parent can have 
any number of children

Tywin

Tyrion Cersei

Joffrey Tommen

Binary Tree Any node can have 
at most two children

Like Linked Lists, Trees 
have a "Linked Structure"

How do we construct a tree?

Each node needs: 
1. A value 
2. A parent 
3. A left child 
4. A right child

A tree just needs a root node root

How would a general 
tree node differ?

A general tree 
would just have a 

list for children

like the head and tail for linked list

nodes are connected by references
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Tree Node

 Each node represents a key/value pair. 

public class Node<K, V> {
    K key;
    V value;
    Node<K, V> left;
    Node<K, V> right;
}

 For simplicity, we focus on keys and omit the values in the 
discussions
 Keys determine where the nodes go

1

aqua

A node with key 1 
and value “aqua”



Definitions

 Root node: the single node with no parent at the top of the tree. 
Leaf node: a node with no children

 Subtree: a node and all it descendants
 Height of a tree: defined as the number of edges in the longest 

path from the root node to a leaf node.
 A tree with only a root node has height of 0.
 The trees below all have height of 2.
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Full Binary Tree
 A full binary tree with height h has total number of leaves 2h, 

and total number of nodes: n = 2h+1−1
 In a full binary tree, each level is completely filled. The number 

of nodes at each level l is 2l. Therefore, the total number of 
nodes is the sum of nodes at all levels from 0 to h, which is a 
geometric series: n=1+2+4+…+2h=2h+1-1

 This means that for a full binary tree, the total number of nodes 
grows exponentially with the height of the tree
 h=0: n=21−1=1
 h=1: n=22−1=3
 h=2: n=23−1=7
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2 8

1

4

2 8

0

-2 0.5

h=0 h=1 h=2
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Height of a Binary Tree

 For a binary tree with n nodes, the height h is bounded by: 
⌈log₂(n+1)⌉ - 1 ≤ h ≤ n - 1
 The lower bound represents a perfectly balanced tree, and the upper 

bound represents a degenerate tree (essentially a linked list).
 The minimum height of a binary tree with n nodes is ⌈log₂(n+1)⌉ - 1, 

which occurs in the most balanced configuration, where ⌈⌉ is the ceiling 
operator, e.g., ⌈1.0⌉=1, ⌈1.3⌉=2.

 The maximum height of a binary tree with n nodes is n-1, which occurs 
in the case of a skewed tree (a linear chain or linked list).
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Tree Traversal - Motivation

start

finish

Imagine this is a hedge maze

Mazes benefit from "Depth First Traversals" 

What's my next step?

Maze Traversal A
E

F

B

C D

you

Social Network 

How closely are you connected with D?

Suppose you have a list of your friends and 
each of your friends have lists

What's my next step?

This problem benefits from "Breadth First Traversals" 

Bottom line: Order we visit 
matters and we'll make 
choices based on our needs

Warning: These first examples are really graphs. We'll visit graphs in 
detail in the next course. Here they are used as motivating examples

Strategy: go until 
hit a dead end, 
then retrace 
steps and try 
again

Strategy: look at all of your friends 
first, and then branch out.
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BFS vs. DFS
 Breadth-First Search (BFS) and Depth-First Search (DFS) are two 

fundamental algorithms used for traversing or searching graphs and trees
 BFS traversal explores all the neighboring nodes at the present depth prior to 

moving on to the nodes at the next depth level.
 DFS uses backtracking. The deepest node is visited and then backtracks to its parent 

node if no sibling of that node exists

Breadth First Search (BFS) Animations 
https://www.youtube.com/watch?v=QUfEOCOEKkc 
Depth First Search (DFS) Animations
https://www.youtube.com/watch?v=3_NMDJkmvLo 11

https://www.youtube.com/watch?v=QUfEOCOEKkc
https://www.youtube.com/watch?v=3_NMDJkmvLo


Traversal Order for Binary Trees

 Breadth First Traversal with BFS
 Level Order Traversal

 Depth First Traversals with DFS
 Pre-order Traversal (Root-Left-Right)
 In-order Traversal (Left-Root-Right)
 Post-order Traversal (Left-Right-Root)
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Graph Traversal with BFS: Level-order
Traversal (Contd.)

A

E FD G

B C
Challenging: When we finish B, 
how do we go to C next?

Idea: Keep a list and keep adding 
to it and removing from start.

Visit:
A B C D E F G

Visit: A B C D E F G

List: A B C D E F G

We used this list like a "Queue"

 Add to the end
 Remove from the front
 First-In, First-Out (FIFO) 

look at the first element 13



Tree traversals with DFS: pre-order, in-order, 
post-order

function inOrderTraversal(node) {
  if (node !== null) {
    inOrderTraversal(node.left);
    visitNode(node);
    inOrderTraversal(node.right);
  }
}

function preOrderTraversal(node) {
  if (node !== null) {
    visitNode(node);
    preOrderTraversal(node.left);
    preOrderTraversal(node.right);
  }
}

function postOrderTraversal(node) {
  if (node !== null) {
    postOrderTraversal(node.left);
    postOrderTraversal(node.right);
    visitNode(node);
  }
}

cbdaefabcdef cdbfea
Preorder Traversal in Binary Tree Animations 
https://www.youtube.com/watch?v=gLx7Px7IE
zg 

Inorder Traversal in Binary Tree Animations
https://www.youtube.com/watch?v=ne5o
OmYdWGw 

Postorder Traversal in Binary Tree Animations
https://www.youtube.com/watch?v=a8kmbu
Nm8Uo 14

https://www.youtube.com/watch?v=gLx7Px7IEzg
https://www.youtube.com/watch?v=gLx7Px7IEzg
https://www.youtube.com/watch?v=ne5oOmYdWGw
https://www.youtube.com/watch?v=ne5oOmYdWGw
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Summary of Tree Traversals with DFS

 Pre-order traversal:
1) Visit the node itself.
2) Traverse the left subtree.
3) Traverse the right subtree.
 Begins at the root, ends at the right-most node.

 In-order traversal:
1) Traverse the left subtree.
2) Visit the node itself.
3) Traverse the right subtree.
 Begins at the left-most node, ends at the rightmost node.

 Post-order traversal:
1) Traverse the left subtree.
2) Traverse the right subtree.
3) Visit the node itself.
 Begins with the left-most node, ends with the root.
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Geeks for Geeks Tutorials

 https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/
 https://www.geeksforgeeks.org/preorder-traversal-of-binary-tree/
 https://www.geeksforgeeks.org/inorder-traversal-of-binary-tree/
 https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/ 
 Running Example
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Pre-order traversal of nodes is 1 -> 2 -> 
4 -> 5 -> 3 -> 6
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In-order traversal of nodes is 4 -> 2 -> 5 -> 1 
-> 3 -> 6.
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Post-order traversal of nodes is 4 -> 5 -> 2 -
> 6 -> 3 -> 1
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Motivation for Binary Search Tree

Agra Beijing Chicago Essen Lagos Montreal Quito

toFind Chicago
Sorted arrays are good for search, 

but bad for insertion/removal

Binary Search - O(logn) search:
get rid of half each time

Agra

Beijing

Chicago

Essen

Lagos

Montreal

Quito

root So now we can do the same kind of fast 
searching we did within an array, but we 
can also get the benefit of a fast insert 
and a fast removal that a tree provides.
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Binary Search Tree (BST)

9

3 10

1 5 30

9

3 10

1 5 30

< 9 > 9
9

3 10

1 5 30

< 9 > 9

< 3 & < 9 > 3 & < 9 > 9 & > 10

 A BST is an ordered, or sorted, binary 
tree, with the following invariants:

 For every node with key k:
 The left subtree has only keys smaller than 

k
 The right subtree has only keys greater 

than k
 This invariant applies recursively 

throughout tree

Binary Search Tree Animations | Data Structure | Visual How
https://www.youtube.com/watch?v=ymGjUOiR8Jg 21
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Searching for a Key: Binary Tree vs. Binary 
Search Tree

public boolean containsKeyBT(node, 
key) {
   if (node == null) {
      return false;
   } else if (node.key == key) {
      return true;
   } else {
      return     

containsKeyBT(node.left)||        
containsKeyBT(node.right);

   }
}

public boolean containsKeyBST(node, key) {
   if (node == null) {
      return false;
   } else if (node.key == key) {
      return true;
   } else {
      if (key <= node.key) {
         return containsKeyBST(node.left);
      } else {
         return containsKeyBST(node.right);
      }
   }
}

* explores left, if not found then explores right
* explores either left or right at each level

Best Case:
- finds value at overallRoot (random value)

Worst Case:
- doesn’t find value, has to check every node

Best Case:
- finds value at overallRoot (middle value)

Worst Case:
- doesn’t find value, has to check one path

22



Searching a BST

E

C LA Q

B M

Same fundamental idea as 
binary search of an array

toFind C

Compare: E and C

Compare: B and C

Compare: C and C

Found it!

toFind P

Compare: E and P

Compare: M and P

Compare: Q and P

Not Found!

Node is null

You could solve this with recursion.

You could also solve it with iteration by 
keeping track of your current node.

How to implement this?
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Searching a BST Iteratively
public class BinaryTree<E> {
 TreeNode<E> root;
 public boolean search(E toSearch) {
  TreeNode<E> curr = root;

  while (curr != null) {
  if (toSearch < curr.getValue())
   curr = curr.getLeftChild();

    else if (toSearch > curr.getValue())
     curr = curr.getRightChild();
    else
     return true;
  }

 return false;
}

}

E

C LA Q

B M

root t.search(’L’)

Traverse down tree until:
a) end is reached
b) element is found

curr

Do NOT change root pointer!

<E extends Comparable<? super E>> {

 while (curr != null) {
   int comp = toSearch.compareTo(curr.getValue());

   if (comp < 0)
   curr = curr.getLeftChild();

      else if (comp > 0)
      curr = curr.getRightChild();
      else // comp = 0
      return true;
  }

We need to do 
this over and over 

if not found

Are we done? if calling object is greater than parameter,
compareTo returns a value > 0 

if calling object is less than parameter, 
compareTo returns a value < 0 

if calling object is equal to parameter, 
compareTo returns 0

Doesn’t work
with objects

It means that either the 
class E itself or one of its super 
classes implements Comparable
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public class BinaryTree<E extends Comparable<? super E>> {
  TreeNode<E> root;

 private boolean search(TreeNode<E> p, E toSearch) {
  if (p == null)
    return false;
   int comp = toSearch.compareTo(p.getValue());
  if (comp == 0)
    return true;
   else if (comp < 0)
    return search(p.left, toSearch);
   else // comp > 0
    return search(p.right, toSearch);
 }
 public boolean search(E toSearch) {
  return search(root, toSearch);
 }
}

Searching a BST Recursively

E

C LA Q

B M

root p

Tree is empty

Found it!

look left

look right

t.search(’L’)

Root of the tree we look at
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Run BST search 
algo, traverse down 
tree until end is 
reached, then insert 
it into that position.

20

30

5 25

10

20

30

5 25

10

7

Insert 7

20

30

5 25

10

✓7 27

8

20

30

5 25

10

✓7 27

Insert 8

Insert 27

Insertion into a BST
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20

30

5 25

10

7

15

12

Delete 7

20

30

5 25

10

15

12

20

30

5 25

10

7

15

12

Delete 5

20

30

7 25

10

15

12

If leaf node: 
delete it directly

If only one child:
 hoist child

Deletion from a BST
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20

30

5 25

10

7

15

12

Delete 10

20

30

5 25

12

15

20

30

5 25

10

7

15

12

Delete 10

20

30

5 25

7

15

12

1) Find smallest 
value in right subtree 
(12). Replace deleted 
element with it, then 
delete right subtree 
duplicate.

Deletion from a BST

7

2) Find largest value 
in left subtree (7). 
Replace deleted 
element with it, then 
delete left subtree 
duplicate.

Two alternatives 
when a deleted node 
has two children.
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Binary Search Tree Shape

The following are all valid BSTs resulting from adding elements: 1, 2, 
4, and 8 in some order. 
The order in which we put elements into a BST impacts the shape, 
and the shape of a BST has a huge impact on the performance of 
operations. 

2

4

8

1

A

2

8

4

1

B
1

2

4

8

C

1

4

2 8

D
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Binary Search Tree Shape (Contd.)

2

4

8

1

A ✓
Root comes first 

Insert nodes as leaves
Inserting a node means making it a child of an existing node

8 needs to be inserted AFTER 4 

2

2 4 1 8

2 1 4 8

2 4 8 1

✓

4 needs to be inserted AFTER 8 

2

2 8 1 4

2 1 8 4

2 8 4 1

2

8

4

1

B

Root comes first 
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Binary Search Tree Shape (Contd.)

✓

1

1 2

1 2 4

1 2 4 8

1

1 4

1 4 2 8

1 4 8 2

1

2

4

8

C

1

4

2 8

D ✓

Needs to be inserted AFTER 1 

Both 2 and 8 needs to be 
inserted AFTER 4 

Root comes first 

Root comes first 

Needs to be inserted AFTER 2 

Needs to be inserted AFTER 4 

Needs to be inserted AFTER 4 
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Traversal of a BST: Example I

 When we perform in-order traversal on a binary search tree, 
we get the ascending order array. 

 Pre-order traversal:
 Traversal sequence: 30, 10, 25, 18, 23, 

27, 70, 60, 80
 In-order traversal:
 Traversal Sequence: 10, 18, 23, 25, 27, 

30, 60, 70, 80
 Post-order traversal:
 Traversal sequence: 23, 18, 27, 25, 10, 

60, 80, 70, 30

30

25 60 80

10 70

23

2718
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Traversal of a BST: Example II

 Pre-order traversal:
 Begins at the root (7), ends at the right-

most node (10)
 Traversal sequence: 7, 1, 0, 3, 2, 5, 4, 6, 9, 

8, 10
 In-order traversal:
 Begins at the left-most node (0), ends at 

the rightmost node (10)
 Traversal Sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10
 Post-order traversal:
 Begins with the left-most node (0), ends 

at the root (7)
 Traversal sequence: 0, 2, 4, 6, 5, 3, 1, 8, 

10, 9, 7

7

3 80 10

1 9

4 6

52
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In-Order Traversal of a BST
 In-order traversal of a BST visits the nodes in ascending order 

of their values, i.e., from smallest to largest. 
 BST Property: In a BST, for any given node:

 Values in the left subtree are less than the value of the node.
 Values in the right subtree are greater than the value of the node.

 In-order Traversal:
1) Traverse the left subtree.
2) Visit the node itself.
3) Traverse the right subtree.

 Resulting Order: By first visiting all nodes in the left subtree (which are 
smaller), then the root, and finally all nodes in the right subtree (which 
are larger), in-order traversal naturally outputs the nodes in non-
decreasing order.

 This property makes in-order traversal particularly useful for 
retrieving data from a BST in sorted order.
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am

Performance Analysis of BST
{ am, at, ate, ear, eat, east }

eat

east

ear

ate

at

am

eat

east

ear

ate

at

Storing a dictionary as a BST

am eat

east

ear

ate

at

containsKey(root, east)

Structure of a BST depends 
on the order of insertion

How does the performance scale with input size n?

Best case: O(1)

Compared with 3 
out of 7 words

Compared with all 
7 words

Performance also depends on 
the actual structure of the BST

4 3

6

public boolean containsKey(node, key) {
   if (node == null) {
      return false;
   } else if (node.key == key) {
      return true;
   } else {
      if (key <= node.key) {
         return containsKey(node.left);
      } else {
         return containsKey(node.right);
      }
   }
} 35



AVL Tree

node

am eat

east

ear

ate

at

height ≈ log(n) 

Best
case

Average
case

Worst
case

Linked List O(1) O(n) O(n)

BST O(1) O(log n) O(n)

AVL Tree O(1) O(log n) O(log n)

containsKey(root, key)

Inserting elements into BST in 
order results in a linked list!

Left
Height

Right
Height

AVL Tree: A balanced BST that maintains the invariant: |LeftHeight – 
RightHeight | <= 1 for all nodes in the tree. It minimizes the BST 
height. (discussed in next lecture.)
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BST vs. Hash Table

 Time Complexity
 Average case:

 Hash Tables generally offer O(1) average time complexity for insertion, deletion, 
and search operations.

 BSTs provide O(log n) time complexity for these operations, assuming the tree is 
balanced.

 Worst case
 Hash Tables can degrade to O(n) performance in cases of poor hash function 

design or many collisions.
 BSTs maintain O(log n) performance even in the worst-case for self-balancing 

BST.
 Ordered Operations

 BSTs excel at operations requiring ordered data
 In-order traversal yields sorted elements. 
 Efficient range searches (e.g., finding all keys within a range)

 Hash Tables do not inherently maintain order, making these operations more 
difficult.
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Video Tutorials

 Tree Traversal Algos // Michael Sambol
 https://www.youtube.com/playlist?list=PL9xmBV_5YoZO1JC2RgEi04nLy

6D-rKk6b 
 Binary Search Tree : Overview

 https://www.youtube.com/watch?v=6I3evyt9ApA 
 Binary Search Tree : Insert Overview

 https://www.youtube.com/watch?v=KkEnuK-2Ymc 
 Binary Search Tree: Deletion Overview

 https://www.youtube.com/watch?v=DkOswl0k7s4
 Binary Search Tree Removal

 https://www.youtube.com/watch?v=8K7EO7s_iFE 
 Binary Search Trees (BST) Explained in Animated Demo

 https://www.youtube.com/watch?v=mtvbVLK5xDQ
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