
Lecture 8
Binary Search Tree

Department of Computer Science
Hofstra University

Lecture Goals

 Describe the value of trees and their data structure
 Explain the need to visit data in different orderings
 Perform pre-order, in-order, post-order and level-order traversals
 Define a Binary Search Tree
 Perform search, insert, delete in a Binary Search Tree
 Explain the running time performance to find an item in a BST

2

Different Trees in Computer Science
Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Family Trees Decision Trees

Floor
Clean?

Sweep
Floor

Relax

House
cleanNo

Yes

Wash
Windows

No

Yes

Expression Trees

+

3 6

/

45

Evaluate: 45 / (3 + 6)

File System

users/

minnes/

etc/

/

porter/

/user/porter

Why trees?

Dynamic Data Structure

alvarado/

Structure conveys
information

parent

children

children
of children

 Root is most important (Heap)

 Organized by character
frequency (Huffman Tree)

 Organized by node ordering
(Search Trees)

 Etc…

Different Organizations
→ Different Trees

3

Defining Trees

Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Family Trees

parent

child

leaf

root What defines a tree?
 Single root
 Each node can have only one parent

(except for root)
 No cycles in a tree

A B C D E

Which are trees?

✓

✓ ✓ ✗ ✗

only has one parent

has no parent node

nodes without children

root

3 children (all leaves)

root root

leaf
two
parents

Cycle: two different paths
between a pair of nodes

two roots

two
parents

4

Binary Trees

Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Generic Tree

Any Parent can have
any number of children

Tywin

Tyrion Cersei

Joffrey Tommen

Binary Tree Any node can have
at most two children

Like Linked Lists, Trees
have a "Linked Structure"

How do we construct a tree?

Each node needs:
1. A value
2. A parent
3. A left child
4. A right child

A tree just needs a root node root

How would a general
tree node differ?

A general tree
would just have a

list for children

like the head and tail for linked list

nodes are connected by references
5

Tree Node

 Each node represents a key/value pair.

public class Node<K, V> {
 K key;
 V value;
 Node<K, V> left;
 Node<K, V> right;
}

 For simplicity, we focus on keys and omit the values in the
discussions
 Keys determine where the nodes go

1

aqua

A node with key 1
and value “aqua”

Definitions

 Root node: the single node with no parent at the top of the tree.
Leaf node: a node with no children

 Subtree: a node and all it descendants
 Height of a tree: defined as the number of edges in the longest

path from the root node to a leaf node.
 A tree with only a root node has height of 0.
 The trees below all have height of 2.

1

4

2 8
7

1

4

8

1

4

2

1

4

2 8

0

1

Full Binary Tree
 A full binary tree with height h has total number of leaves 2h,

and total number of nodes: n = 2h+1−1
 In a full binary tree, each level is completely filled. The number

of nodes at each level l is 2l. Therefore, the total number of
nodes is the sum of nodes at all levels from 0 to h, which is a
geometric series: n=1+2+4+…+2h=2h+1-1

 This means that for a full binary tree, the total number of nodes
grows exponentially with the height of the tree
 h=0: n=21−1=1
 h=1: n=22−1=3
 h=2: n=23−1=7

1

4

2 8

1

4

2 8

0

-2 0.5

h=0 h=1 h=2
8

Height of a Binary Tree

 For a binary tree with n nodes, the height h is bounded by:
⌈log₂(n+1)⌉ - 1 ≤ h ≤ n - 1
 The lower bound represents a perfectly balanced tree, and the upper

bound represents a degenerate tree (essentially a linked list).
 The minimum height of a binary tree with n nodes is ⌈log₂(n+1)⌉ - 1,

which occurs in the most balanced configuration, where ⌈⌉ is the ceiling
operator, e.g., ⌈1.0⌉=1, ⌈1.3⌉=2.

 The maximum height of a binary tree with n nodes is n-1, which occurs
in the case of a skewed tree (a linear chain or linked list).

9

Tree Traversal - Motivation

start

finish

Imagine this is a hedge maze

Mazes benefit from "Depth First Traversals"

What's my next step?

Maze Traversal A
E

F

B

C D

you

Social Network

How closely are you connected with D?

Suppose you have a list of your friends and
each of your friends have lists

What's my next step?

This problem benefits from "Breadth First Traversals"

Bottom line: Order we visit
matters and we'll make
choices based on our needs

Warning: These first examples are really graphs. We'll visit graphs in
detail in the next course. Here they are used as motivating examples

Strategy: go until
hit a dead end,
then retrace
steps and try
again

Strategy: look at all of your friends
first, and then branch out.

10

BFS vs. DFS
 Breadth-First Search (BFS) and Depth-First Search (DFS) are two

fundamental algorithms used for traversing or searching graphs and trees
 BFS traversal explores all the neighboring nodes at the present depth prior to

moving on to the nodes at the next depth level.
 DFS uses backtracking. The deepest node is visited and then backtracks to its parent

node if no sibling of that node exists

Breadth First Search (BFS) Animations
https://www.youtube.com/watch?v=QUfEOCOEKkc
Depth First Search (DFS) Animations
https://www.youtube.com/watch?v=3_NMDJkmvLo 11

https://www.youtube.com/watch?v=QUfEOCOEKkc
https://www.youtube.com/watch?v=3_NMDJkmvLo

Traversal Order for Binary Trees

 Breadth First Traversal with BFS
 Level Order Traversal

 Depth First Traversals with DFS
 Pre-order Traversal (Root-Left-Right)
 In-order Traversal (Left-Root-Right)
 Post-order Traversal (Left-Right-Root)

12

Graph Traversal with BFS: Level-order
Traversal (Contd.)

A

E FD G

B C
Challenging: When we finish B,
how do we go to C next?

Idea: Keep a list and keep adding
to it and removing from start.

Visit:
A B C D E F G

Visit: A B C D E F G

List: A B C D E F G

We used this list like a "Queue"

 Add to the end
 Remove from the front
 First-In, First-Out (FIFO)

look at the first element 13

Tree traversals with DFS: pre-order, in-order,
post-order

function inOrderTraversal(node) {
 if (node !== null) {
 inOrderTraversal(node.left);
 visitNode(node);
 inOrderTraversal(node.right);
 }
}

function preOrderTraversal(node) {
 if (node !== null) {
 visitNode(node);
 preOrderTraversal(node.left);
 preOrderTraversal(node.right);
 }
}

function postOrderTraversal(node) {
 if (node !== null) {
 postOrderTraversal(node.left);
 postOrderTraversal(node.right);
 visitNode(node);
 }
}

cbdaefabcdef cdbfea
Preorder Traversal in Binary Tree Animations
https://www.youtube.com/watch?v=gLx7Px7IE
zg

Inorder Traversal in Binary Tree Animations
https://www.youtube.com/watch?v=ne5o
OmYdWGw

Postorder Traversal in Binary Tree Animations
https://www.youtube.com/watch?v=a8kmbu
Nm8Uo 14

https://www.youtube.com/watch?v=gLx7Px7IEzg
https://www.youtube.com/watch?v=gLx7Px7IEzg
https://www.youtube.com/watch?v=ne5oOmYdWGw
https://www.youtube.com/watch?v=ne5oOmYdWGw
https://www.youtube.com/watch?v=a8kmbuNm8Uo
https://www.youtube.com/watch?v=a8kmbuNm8Uo

Summary of Tree Traversals with DFS

 Pre-order traversal:
1) Visit the node itself.
2) Traverse the left subtree.
3) Traverse the right subtree.
 Begins at the root, ends at the right-most node.

 In-order traversal:
1) Traverse the left subtree.
2) Visit the node itself.
3) Traverse the right subtree.
 Begins at the left-most node, ends at the rightmost node.

 Post-order traversal:
1) Traverse the left subtree.
2) Traverse the right subtree.
3) Visit the node itself.
 Begins with the left-most node, ends with the root.

15

Geeks for Geeks Tutorials

 https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/
 https://www.geeksforgeeks.org/preorder-traversal-of-binary-tree/
 https://www.geeksforgeeks.org/inorder-traversal-of-binary-tree/
 https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/
 Running Example

16

https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/
https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/
https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/
https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/

Pre-order traversal of nodes is 1 -> 2 ->
4 -> 5 -> 3 -> 6

17

In-order traversal of nodes is 4 -> 2 -> 5 -> 1
-> 3 -> 6.

18

Post-order traversal of nodes is 4 -> 5 -> 2 -
> 6 -> 3 -> 1

19

Motivation for Binary Search Tree

Agra Beijing Chicago Essen Lagos Montreal Quito

toFind Chicago
Sorted arrays are good for search,

but bad for insertion/removal

Binary Search - O(logn) search:
get rid of half each time

Agra

Beijing

Chicago

Essen

Lagos

Montreal

Quito

root So now we can do the same kind of fast
searching we did within an array, but we
can also get the benefit of a fast insert
and a fast removal that a tree provides.

20

Binary Search Tree (BST)

9

3 10

1 5 30

9

3 10

1 5 30

< 9 > 9
9

3 10

1 5 30

< 9 > 9

< 3 & < 9 > 3 & < 9 > 9 & > 10

 A BST is an ordered, or sorted, binary
tree, with the following invariants:

 For every node with key k:
 The left subtree has only keys smaller than

k
 The right subtree has only keys greater

than k
 This invariant applies recursively

throughout tree

Binary Search Tree Animations | Data Structure | Visual How
https://www.youtube.com/watch?v=ymGjUOiR8Jg 21

https://www.youtube.com/watch?v=ymGjUOiR8Jg

Searching for a Key: Binary Tree vs. Binary
Search Tree

public boolean containsKeyBT(node,
key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 return

containsKeyBT(node.left)||
containsKeyBT(node.right);

 }
}

public boolean containsKeyBST(node, key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 if (key <= node.key) {
 return containsKeyBST(node.left);
 } else {
 return containsKeyBST(node.right);
 }
 }
}

* explores left, if not found then explores right
* explores either left or right at each level

Best Case:
- finds value at overallRoot (random value)

Worst Case:
- doesn’t find value, has to check every node

Best Case:
- finds value at overallRoot (middle value)

Worst Case:
- doesn’t find value, has to check one path

22

Searching a BST

E

C LA Q

B M

Same fundamental idea as
binary search of an array

toFind C

Compare: E and C

Compare: B and C

Compare: C and C

Found it!

toFind P

Compare: E and P

Compare: M and P

Compare: Q and P

Not Found!

Node is null

You could solve this with recursion.

You could also solve it with iteration by
keeping track of your current node.

How to implement this?

23

Searching a BST Iteratively
public class BinaryTree<E> {
 TreeNode<E> root;
 public boolean search(E toSearch) {
 TreeNode<E> curr = root;

 while (curr != null) {
 if (toSearch < curr.getValue())
 curr = curr.getLeftChild();

 else if (toSearch > curr.getValue())
 curr = curr.getRightChild();
 else
 return true;
 }

 return false;
}

}

E

C LA Q

B M

root t.search(’L’)

Traverse down tree until:
a) end is reached
b) element is found

curr

Do NOT change root pointer!

<E extends Comparable<? super E>> {

 while (curr != null) {
 int comp = toSearch.compareTo(curr.getValue());

 if (comp < 0)
 curr = curr.getLeftChild();

 else if (comp > 0)
 curr = curr.getRightChild();
 else // comp = 0
 return true;
 }

We need to do
this over and over

if not found

Are we done? if calling object is greater than parameter,
compareTo returns a value > 0

if calling object is less than parameter,
compareTo returns a value < 0

if calling object is equal to parameter,
compareTo returns 0

Doesn’t work
with objects

It means that either the
class E itself or one of its super
classes implements Comparable

24

public class BinaryTree<E extends Comparable<? super E>> {
 TreeNode<E> root;

 private boolean search(TreeNode<E> p, E toSearch) {
 if (p == null)
 return false;
 int comp = toSearch.compareTo(p.getValue());
 if (comp == 0)
 return true;
 else if (comp < 0)
 return search(p.left, toSearch);
 else // comp > 0
 return search(p.right, toSearch);
 }
 public boolean search(E toSearch) {
 return search(root, toSearch);
 }
}

Searching a BST Recursively

E

C LA Q

B M

root p

Tree is empty

Found it!

look left

look right

t.search(’L’)

Root of the tree we look at

25

Run BST search
algo, traverse down
tree until end is
reached, then insert
it into that position.

20

30

5 25

10

20

30

5 25

10

7

Insert 7

20

30

5 25

10

✓7 27

8

20

30

5 25

10

✓7 27

Insert 8

Insert 27

Insertion into a BST

26

20

30

5 25

10

7

15

12

Delete 7

20

30

5 25

10

15

12

20

30

5 25

10

7

15

12

Delete 5

20

30

7 25

10

15

12

If leaf node:
delete it directly

If only one child:
 hoist child

Deletion from a BST

27

20

30

5 25

10

7

15

12

Delete 10

20

30

5 25

12

15

20

30

5 25

10

7

15

12

Delete 10

20

30

5 25

7

15

12

1) Find smallest
value in right subtree
(12). Replace deleted
element with it, then
delete right subtree
duplicate.

Deletion from a BST

7

2) Find largest value
in left subtree (7).
Replace deleted
element with it, then
delete left subtree
duplicate.

Two alternatives
when a deleted node
has two children.

28

Binary Search Tree Shape

The following are all valid BSTs resulting from adding elements: 1, 2,
4, and 8 in some order.
The order in which we put elements into a BST impacts the shape,
and the shape of a BST has a huge impact on the performance of
operations.

2

4

8

1

A

2

8

4

1

B
1

2

4

8

C

1

4

2 8

D

29

Binary Search Tree Shape (Contd.)

2

4

8

1

A ✓
Root comes first

Insert nodes as leaves
Inserting a node means making it a child of an existing node

8 needs to be inserted AFTER 4

2

2 4 1 8

2 1 4 8

2 4 8 1

✓

4 needs to be inserted AFTER 8

2

2 8 1 4

2 1 8 4

2 8 4 1

2

8

4

1

B

Root comes first

30

Binary Search Tree Shape (Contd.)

✓

1

1 2

1 2 4

1 2 4 8

1

1 4

1 4 2 8

1 4 8 2

1

2

4

8

C

1

4

2 8

D ✓

Needs to be inserted AFTER 1

Both 2 and 8 needs to be
inserted AFTER 4

Root comes first

Root comes first

Needs to be inserted AFTER 2

Needs to be inserted AFTER 4

Needs to be inserted AFTER 4

31

Traversal of a BST: Example I

 When we perform in-order traversal on a binary search tree,
we get the ascending order array.

 Pre-order traversal:
 Traversal sequence: 30, 10, 25, 18, 23,

27, 70, 60, 80
 In-order traversal:
 Traversal Sequence: 10, 18, 23, 25, 27,

30, 60, 70, 80
 Post-order traversal:
 Traversal sequence: 23, 18, 27, 25, 10,

60, 80, 70, 30

30

25 60 80

10 70

23

2718

32

Traversal of a BST: Example II

 Pre-order traversal:
 Begins at the root (7), ends at the right-

most node (10)
 Traversal sequence: 7, 1, 0, 3, 2, 5, 4, 6, 9,

8, 10
 In-order traversal:
 Begins at the left-most node (0), ends at

the rightmost node (10)
 Traversal Sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8,

9, 10
 Post-order traversal:
 Begins with the left-most node (0), ends

at the root (7)
 Traversal sequence: 0, 2, 4, 6, 5, 3, 1, 8,

10, 9, 7

7

3 80 10

1 9

4 6

52

33

In-Order Traversal of a BST
 In-order traversal of a BST visits the nodes in ascending order

of their values, i.e., from smallest to largest.
 BST Property: In a BST, for any given node:

 Values in the left subtree are less than the value of the node.
 Values in the right subtree are greater than the value of the node.

 In-order Traversal:
1) Traverse the left subtree.
2) Visit the node itself.
3) Traverse the right subtree.

 Resulting Order: By first visiting all nodes in the left subtree (which are
smaller), then the root, and finally all nodes in the right subtree (which
are larger), in-order traversal naturally outputs the nodes in non-
decreasing order.

 This property makes in-order traversal particularly useful for
retrieving data from a BST in sorted order.

34

am

Performance Analysis of BST
{ am, at, ate, ear, eat, east }

eat

east

ear

ate

at

am

eat

east

ear

ate

at

Storing a dictionary as a BST

am eat

east

ear

ate

at

containsKey(root, east)

Structure of a BST depends
on the order of insertion

How does the performance scale with input size n?

Best case: O(1)

Compared with 3
out of 7 words

Compared with all
7 words

Performance also depends on
the actual structure of the BST

4 3

6

public boolean containsKey(node, key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 if (key <= node.key) {
 return containsKey(node.left);
 } else {
 return containsKey(node.right);
 }
 }
} 35

AVL Tree

node

am eat

east

ear

ate

at

height ≈ log(n)

Best
case

Average
case

Worst
case

Linked List O(1) O(n) O(n)

BST O(1) O(log n) O(n)

AVL Tree O(1) O(log n) O(log n)

containsKey(root, key)

Inserting elements into BST in
order results in a linked list!

Left
Height

Right
Height

AVL Tree: A balanced BST that maintains the invariant: |LeftHeight –
RightHeight | <= 1 for all nodes in the tree. It minimizes the BST
height. (discussed in next lecture.)

36

BST vs. Hash Table

 Time Complexity
 Average case:

 Hash Tables generally offer O(1) average time complexity for insertion, deletion,
and search operations.

 BSTs provide O(log n) time complexity for these operations, assuming the tree is
balanced.

 Worst case
 Hash Tables can degrade to O(n) performance in cases of poor hash function

design or many collisions.
 BSTs maintain O(log n) performance even in the worst-case for self-balancing

BST.
 Ordered Operations

 BSTs excel at operations requiring ordered data
 In-order traversal yields sorted elements.
 Efficient range searches (e.g., finding all keys within a range)

 Hash Tables do not inherently maintain order, making these operations more
difficult.

37

Video Tutorials

 Tree Traversal Algos // Michael Sambol
 https://www.youtube.com/playlist?list=PL9xmBV_5YoZO1JC2RgEi04nLy

6D-rKk6b
 Binary Search Tree : Overview

 https://www.youtube.com/watch?v=6I3evyt9ApA
 Binary Search Tree : Insert Overview

 https://www.youtube.com/watch?v=KkEnuK-2Ymc
 Binary Search Tree: Deletion Overview

 https://www.youtube.com/watch?v=DkOswl0k7s4
 Binary Search Tree Removal

 https://www.youtube.com/watch?v=8K7EO7s_iFE
 Binary Search Trees (BST) Explained in Animated Demo

 https://www.youtube.com/watch?v=mtvbVLK5xDQ

38

https://www.youtube.com/playlist?list=PL9xmBV_5YoZO1JC2RgEi04nLy6D-rKk6b
https://www.youtube.com/playlist?list=PL9xmBV_5YoZO1JC2RgEi04nLy6D-rKk6b
https://www.youtube.com/watch?v=6I3evyt9ApA
https://www.youtube.com/watch?v=KkEnuK-2Ymc
https://www.youtube.com/watch?v=DkOswl0k7s4
https://www.youtube.com/watch?v=8K7EO7s_iFE
https://www.youtube.com/watch?v=mtvbVLK5xDQ

	Lecture 8�Binary Search Tree
	Lecture Goals
	Different Trees in Computer Science
	Defining Trees
	Binary Trees
	Tree Node
	Definitions
	Full Binary Tree
	Height of a Binary Tree
	Tree Traversal - Motivation
	BFS vs. DFS
	Traversal Order for Binary Trees
	Graph Traversal with BFS: Level-order Traversal (Contd.)
	Tree traversals with DFS: pre-order, in-order, post-order
	Summary of Tree Traversals with DFS
	Geeks for Geeks Tutorials
	Slide Number 17
	In-order traversal of nodes is 4 -> 2 -> 5 -> 1 -> 3 -> 6.
	Post-order traversal of nodes is 4 -> 5 -> 2 -> 6 -> 3 -> 1
	Motivation for Binary Search Tree
	Binary Search Tree (BST)
	Searching for a Key: Binary Tree vs. Binary Search Tree
	Searching a BST
	Searching a BST Iteratively
	Searching a BST Recursively
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Binary Search Tree Shape
	Binary Search Tree Shape (Contd.)
	Binary Search Tree Shape (Contd.)
	Traversal of a BST: Example I
	Traversal of a BST: Example II
	In-Order Traversal of a BST
	Performance Analysis of BST
	AVL Tree
	BST vs. Hash Table
	Video Tutorials

