
1

Lecture 6

ADTs Lined Lists

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures 



2

Abstract Data Type (ADT) vs. Data Structure

Abstract Data Type (ADT)
-A definition for expected operations and behavior

-A mathematical description of a collection with a set of supported operations and how they 
should behave when called upon

-Defines the input and outputs, not the implementations

-Can be expressed as an interface

-Examples: List, Map, Set

Data Structure
-A way of organizing and storing related data items

-An object that implements the functionality of a specified ADT

-Describes how the collection will perform the required operations

-Examples: LinkedIntList, ArrayIntList



3

Abstract Data Types (ADT): List Example

-each element is accessible by a 0-based index

-a list has a size (number of elements that have been added)

-elements can be added to the front, back, or elsewhere

-the ADT of a list can be implemented many ways through 
different Data Structures

- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements



4

interface: a construct in Java that defines a set of 
methods that a class promises to implement

Review: Interfaces

// Describes features common to all 
// shapes.

public interface Shape {
public double area();
public double perimeter();

}

Example

- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no 
code.

- Analogous to non-programming idea of roles/certifications:

- "I'm 'certified' as a Shape, because I implement the Shape 
interface. This assures you I know how to compute my area and 
perimeter."

- "I'm ‘certified’ as a CPA accountant. This assures you I know how
to do taxes, audits, and consulting."

public interface name {

public type name(type name, …, type name );

public type name(type name, …, type name );

…

}



5

interface: a construct in Java that defines a set of 
methods that a class promises to implement

Review: Interfaces: List Example

// Describes features common to all lists.

public interface List<E> {
public E get(int index);
public void set(E element, int index);
public void append(E element);
public E remove(int index);
…

// many more methods
}

In terms of ADTs, interfaces help us make sure that our 
implementations of that ADT are doing what they need to

For example, we could define an interface for the ADT 
List<E> and any class that implements it must have 
implementations for all of the defined methods



6

List<Integer> a = new ArrayList<Integer>();

Stack<Character> c = new Stack<Character>();

Queue<String> b = new LinkedList<String>();

Map<String, String> d = new TreeMap<String, String>();

Lists 

Stacks 

Queues 

Maps

Review: Java Collections

ADTs Data Structures

Java provides some DS implementations of ADTs for you!

But some data structures you made from scratch

Linked Lists - LinkedIntList was a collection of ListNode
Binary Search Trees – SearchTree was a collection of SearchTreeNodes



7

ADTs and Data Structures: (Loose) Analogy

Mode of Transportation

Must be able to move

Must be able to be steered

Car Airplane Bike

Tires Engines/wings Wheels

Steering wheel Control column Handlebars

Abstract Data Type (ADT) Data Structures

An ADT may be implemented with different data structures with 
different tradeoffs:
● Memory vs Speed
● Generic/Reusability vs Specific/Specialized
● ...



8

ADTs and Data Structures: List Example

List - Abstract Data Type (ADT) ArrayIntList - Data Structure

// Describes features common to all lists.

public interface List<E> {
public E get(int index);
public void set(E element, int index);
public void append(E element);
public E remove(int index);
…

}

public class ArrayIntList extends List<E>{
private int[] list;
private int size;

public ArrayIntList(){
//initialize fields

}

public int get(int index){
return list[index];

}

public void set(E element, int index){
list[index] = element;

}
…

}



9

ADTs Examples

● List: an ordered sequence of elements
● Set: an unordered collection of elements
● Map: a collection of “keys” and associated “values”
● Stack: a sequence of elements that can only go in or out from one end
● Queue: a sequence of elements that go in one end and exit the other
● Priority Queue: a sequence of elements that is ordered by “priority”
● Graph: a collection of points/vertices and edges between points
● Disjoint Set: a collection of sets of elements with no overlap



10

Case Study: The List ADT

list: a collection storing an ordered sequence of elements
● Each item is accessible by an index
● A list has a size defined as the number of elements in the list

Expected Behavior:
● get(index): returns the item at the given index
● set(value, index): sets the item at the given 

index to the given value
● append(value): adds the given item to the end of 

the list
● insert(value, index): insert the given item at 

the given index maintaining order
● delete(index): removes the item at the given 

index maintaining order
● size(): returns the number of elements in the list

List<String> names = new ArrayList<>();

names.add("Anish");

names.add("Amanda");

names.add(0, "Brian");



11

Case Study: List Implementations

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]

set data[index] = value

append data[size] = 

value, if out of space 

grow data

insert shift values to 

make hole at index, 

data[index] = value, if 

out of space grow data

delete shift following 

values forward

size return size 

state

behavior

data[]

size

LinkedList<E>

get loop until index, 

return node’s value

set loop until index, 

update node’s value

append create new node, 

update next of last node

insert create new node, 

loop until index, update 

next fields

delete loop until index, 

skip node

size return size 

state

behavior

Node front

size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0

88.6 26.1 94.4

list free space



12

Implementing Insert

0 1 2 3

insert(10, 0) 3 4 5

numberOfItems = 3

insert(element, index) with shifting

54310

4

insert(10, 0)

numberOfItems = 3

insert(element, index) with shifting

4

3 4 510

ArrayList<E>

LinkedList<E>



13

Implementing Delete

0 1 2 3

3 4 5

numberOfItems = 3

delete(index)with shifting

delete(0) 103 4 5

4

numberOfItems = 3

delete(index)with shifting

delete(0)

4

3 4 510

ArrayList<E>

LinkedList<E>



14

Implementing Append

0 1 2 3 4 5 6 7

0 1 2 3

append(2) 3 5

numberOfItems = 

append(element) with growth

410

4

2

5

10 3 4 5

ArrayList<E>

append(2)

numberOfItems = 

append(element) with growth

45

3 4 510 2

LinkedList<E>



15

Review: Complexity Class 

complexity class: A category of algorithm efficiency based on the 
algorithm's relationship to the input size N.

Complexity 
Class

Big-O Runtime if you 
double N

Example Algorithm

constant O(1) unchanged Accessing an index of 
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than 
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops

... ... ... ...

exponential O(2N) multiplies drastically Fibonacci with recursion



16

List ADT tradeoffs 

Time needed to access Nth element:

● ArrayList: 
● LinkedList: 

Time needed to insert at Nth element (if the array is full!)

● ArrayList: 
● LinkedList:

Amount of space used overall/across all elements

● ArrayList: 
● LinkedList: 

Amount of space used per element

● ArrayList: 
● LinkedList: 

O(1) constant time

O(N) linear time

O(N) linear time

O(N) linear time

sometimes wasted space at end of array
compact, one node for each entry

minimal, one element of array

tiny bit extra, object with two fields

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

ArrayList<Character> myArr

‘h’ ‘o’ /‘e’ ‘l’ ‘l’front

LinkedList<Character> myLl



17

A quick aside: Types of memory

int[] array = new int[3];

array[0] = 3;

array[1] = 7;

array[2] = 3;

Node front = new Node(3); 

front.next = new Node(7);

front.next.next = new Node(3);

Arrays - contiguous memory: when the “new” keyword is used on an array the OS allocates a single, right-sized 
block of computer memory → Good cache locality

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

d672 8baf 020a 713f 04e3 2e6e3 7 3

Nodes- non-contiguous memory: when the “new” keyword is used on a single node the OS allocates memory 
space for that object at the next available memory location → Poor cache locality

array

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

4b44 052f d3cd 23d4
front 3 7 3



18

ArrayList vs. Linkedlist
ArrayList LinkedList

ArrayList uses dynamic array to store data items. LinkedList uses doubly linked list to store data 

items.

Manipulation with ArrayList is slow. If any element is 

removed from the array, all the bits are shifted in 

memory.

Manipulation with LinkedList is fast, since no bit 

shifting is required.

ArrayList class can act as a list only because it 

implements List only.

LinkedList class can act as a list and queue both 

because it implements List and Deque interfaces.

ArrayList is better for storing and accessing data. LinkedList is better for manipulating data.

ArrayList has less memory overhead, and each index 

only holds actual data.

LinkedList has more memory overhead, and each 

node holds both data and references/pointers

ArrayList has good cache locality due to contiguous 

memory allocation

LinkedList has poor cache locality due to non-

contiguous memory allocation

13 42 51
tailhead

data data data

Doubly Linked List

13 42 51
head

data data data

Singly Linked List

13 42 51

Array



19

References

Array vs. Single Linked List (In Terms of Representation)
● https://www.youtube.com/watch?v=R9PTBwOzceo&list=PLBlnK6fEyqRj9lld8s

WIUNwlKfdUoPd1Y&index=31

Linked lists in 4 minutes
● https://www.youtube.com/watch?v=F8AbOfQwl1c

https://www.youtube.com/watch?v=R9PTBwOzceo&list=PLBlnK6fEyqRj9lld8sWIUNwlKfdUoPd1Y&index=31
https://www.youtube.com/watch?v=R9PTBwOzceo&list=PLBlnK6fEyqRj9lld8sWIUNwlKfdUoPd1Y&index=31
https://www.youtube.com/watch?v=F8AbOfQwl1c


20

Full-Length Lectures

[CSE 373 WI24] Lecture 02: Intro to ADTs
● https://www.youtube.com/watch?v=Kpf1xBVZxNg&list=PLEcoVsAaONjd5n69K

84sSmAuvTrTQT_Nl&index=1

https://www.youtube.com/watch?v=Kpf1xBVZxNg&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=1
https://www.youtube.com/watch?v=Kpf1xBVZxNg&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=1

	Slide 1
	Slide 2: Abstract Data Type (ADT) vs. Data Structure
	Slide 3: Abstract Data Types (ADT): List Example
	Slide 4: Review: Interfaces
	Slide 5: Review: Interfaces: List Example
	Slide 6: Review: Java Collections
	Slide 7: ADTs and Data Structures: (Loose) Analogy
	Slide 8: ADTs and Data Structures: List Example
	Slide 9: ADTs Examples
	Slide 10: Case Study: The List ADT
	Slide 11: Case Study: List Implementations
	Slide 12: Implementing Insert
	Slide 13: Implementing Delete
	Slide 14: Implementing Append
	Slide 15: Review: Complexity Class 
	Slide 16: List ADT tradeoffs 
	Slide 17: A quick aside: Types of memory
	Slide 18: ArrayList vs. Linkedlist
	Slide 19: References
	Slide 20: Full-Length Lectures

