Lecture 6
ADTs Lined Lists

Department of Computer Science
Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures

Abstract Data Type (ADT) vs. Data Structure

Abstract Data Type (ADT)
A definition for expected operations and behavior

A mathematical description of a collection with a set of supported operations and how they
should behave when called upon

Defines the input and outputs, not the implementations
Can be expressed as an interface
Examples: List, Map, Set

Data Structure

A way of organizing and storing related data items
An object that implements the functionality of a specified ADT

Describes how the collection will perform the required operations
Examples: LinkedIntList, ArraylntList

Abstract Data Types (ADT): List Example

List - a collection storing an ordered sequence of elements

each element is accessible by a O-based index
a list has a size (number of elements that have been added)
elements can be added to the front, back, or elsewhere

the ADT of a list can be implemented many ways through
different Data Structures

in Java, a list can be represented as an ArrayList object

Adding an

l : element l
P%‘ Qﬁmg an

element element

Interfaces

interface: a construct in Java that defines a set of Example

methods that a class promises to implement

public interface name ({

public type name (type name, .., type name);
public type name (type name, .., type name);

public interface Shape {
public double areal();
public double perimeter () ;

«interface»
Interfaces give you an is-a relationship without code sharing. shape
A Rectangle object can be treated as a Shape but inherits no o)
il
code.
Analogous to non-programming idea of roles/certifications: Circle Rectangle Triangle

"I'm 'certified’ as a Shape, because | implement the Shape
interface. This assures you | know how to compute my area and
perimeter.”

"I'm ‘“certified” as a CPA accountant. This assures you | know how
to do taxes, audits, and consulting.”

radius

Circledradius)
areal
petimeter)

width, height

Rectangledsy)
areal
petimeter)

ah

Triangleda, b, ©)
areal)
petimeter)

Interfaces: List Example

interface: a construct in Java that defines a set of
methods that a class promises to implement

: blic interface List<E>
In terms of ADTs, interfaces help us make sure that our e ;ubllic E get (iét inde;i) ;

implementations of that ADT are doing what they need to public void set (E element, int index);
public void append(E element) ;
public E remove (int index);

For example, we could define an interface for the ADT
List<kE> and any class that implements it must have

) .) // many more methods
implementations for all of the defined methods }

Java Collections

Java provides some DS implementations of ADTs for you!

ADTs Data Structures

List<Integer> a = new ArraylList<Integer>();
Stack<Character> ¢ = new Stack<Character>();
Queue<String> b = new LinkedList<String>();

Map<String, String> d = new TreeMap<String, String>();

But some data structures you made from scratch

Linked Lists - was a collection of
Binary Search Trees - was a collection of

ADTs and Data Structures: (Loose) Analogy

An ADT may be implemented with different data structures with
different tradeofts:

e Memory vs Speed
e Generic/Reusability vs Specific/Specialized
L

Data Structures

Mode of Transportation Car Airplane Bike

Must be able to move Tires Engines/wings Wheels

Must be able to be steered Steering wheel Control column Handlebars

ADTs and Data Structures: List Example

List -

public interface List<E> {

public
public
public
public

E get(int index);

vold set (E element, int index);

volid append(E element);
E remove (int index);

ArraylntList - Data Structure

public class ArrayIntlList extends List<E>{
private int([] list;
private int size;

public ArrayIntList () {
//initialize fields

}

public int get (int index) {
return list[index];
}

public void set (E element, 1int index) {
list[index] = element;

}

ADTs Examples

List: an ordered sequence of elements

Set: an unordered collection of elements

Map: a collection of “keys” and associated “values”

Stack: a sequence of elements that can only go in or out from one end
Queue: a sequence of elements that go in one end and exit the other
Priority Queue: a sequence of elements that is ordered by “priority”
Graph: a collection of points/vertices and edges between points
Disjoint Set: a collection of sets of elements with no overlap

Case Study: The List ADT

list: a collection storing an ordered sequence of elements

e Each item is accessible by an index
e Alist has a size defined as the number of elements in the list

Adding an

set (value, index): setsthe item at the given

element
Expected Behavior: l
e get (index): returns the item at the given index Q‘ ‘ﬁ
° Adding an Adding an

index to the given value element element
e append (value): adds the given item to the end of o 1 2 3 4 5 & 7

the list
e insert(value, index):insertthe given item at

the given index maintaining order List<String> names = new ArrayList<>();
e delete (index):removes the item at the given names.add ("Anish") ;

index maintaining order names.add ("Amanda") ;

e size ():returns the number of elements in the list names.add (0, "Brian"):

10

state
Set of ordered items
Count of items

behavior
get(index) return item at index
set(item, index) replace item at index

append(item) add item to end of list

insert(item, index) add item at index

delete(index) delete item at index
size() count of items

Adding an

< -oundnoms-2

element element

ArraylList

uses an Array as underlying storage

ArrayList<E>

datal]
size

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data

insert shift values to
make hole at index,
data[index] = wvalue, if
out of space grow data
delete shift following
values forward

size return size

88.6 [26.1 | 94.4 0

list free space

Case Study: List Implementations

LinkedList

uses nodes as underlying storage

LinkedList<E>

Node front
size

get loop until index,

return node’s wvalue

set loop until index,

update node’s value

append create new node,

update next of last node

insert create new node,

loop until index, update
next fields

delete loop until index,
skip node

size return size

88.

6 26.1 94.

11

Implementing Insert

ArrayList<E>

insert (element, index) with shifting

insert (10, O0) 10 3 4 5

numberOfItems = 4

LinkedList<E>

insert (element, index) with shifting

insert (10, O0) 10 3 4 5

numberOfItems = 4

Implementing Delete

ArrayList<E>

delete (index) with shifting

delete (0) 3 4 5 5

numberOfItems = 4

LinkedList<E>

delete (index) with shifting

delete (0) 10 3 4

numberOfItems = 4

Implementing Append

ArrayList<E>

append (element) with growth

append (2) 10 3 4 5
numberOfItems = 5
10 3 4 5 2
append (element) with growth
append (2)| 10 3 4 5 2

numberOfItems = §

14

Complexity Class

complexity class: A category of algorithm efficiency based on the
algorithm's relationship to the input size N.

Complexity
Class

Big-O

Runtime if you
double N

Example Algorithm

constant 0(1) unchanged Accessing an index of
an array

logarithmic O(log, N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log, N) | slightly more than Merge sort algorithm
doubles

quadratic O(N2?) quadruples Nested loops

exponential o(2V) multiplies drastically | Fibonacci with recursion

Operations

))
Bl 0(n"2)

O(n)

O(log n), O(1)

Elements

15

List ADT tradeofts

Time needed to access Nth element:

ArrayList<Character> myArr

\h/

\e/

\1/

\l/

\o/

LinkedList<Character> myLl

e ArrayList: O(1) constant time front ‘h’

\el

\ll

\ll

e LinkedList: O(N) linear time

Time needed to insert at Nth element (if the array is fulll)
e ArrayList: O(N) linear time
e LinkedList: O(N) linear time

Amount of space used overall/across all elements
e Arraylist: sometimes wasted space at end of array
e LinkedList: compact, one node for each entry

Amount of space used per element
e ArrayList: minimal, one element of array

e LinkedList: tiny bit extra, object with two fields

16

A quick aside: Types of memory

- contiguous memory: when the “"new” keyword is used on an array the OS allocates a single, right-sized
block of computer memory = Good cache locality

int[] array = new int[3];

array[0] = 3;

array[l] = 7; array 1T 3 7 3
arrayl[2] = 3;

- non-contiguous memory: when the “new” keyword is used on a single node the OS allocates memory
space for that object at the next available memory location = Poor cache locality

Node front = new Node (3);
front.next = new Node(7) ;

\ 4
\ 4

front.next.next = new Node (3); front 3 7 | 3

ArrayList vs. Linkedlist

ArrayList

LinkedList

ArrayList uses dynamic array to store data items.

Manipulation with ArrayList is slow. If any element is

removed from the array, all the bits are shifted in

memory.

ArrayList class can act as a list only because it

implements List only.

ArrayList is better for storing and accessing data.

ArrayList has less memory overhead, and each index

only holds actual data.

ArrayList has good cache locality due to contiguous
memory allocation

Array

13

42

51

Singly Linked List

head ~l

[
»

13

LinkedList uses doubly linked list to store data
items.

Manipulation with LinkedList is fast, since no bit
shifting is required.

LinkedList class can act as a list and queue both
because it implements List and Deque interfaces.

LinkedList is better for manipulating data.

LinkedList has more memory overhead, and each
node holds both data and references/pointers

LinkedList has poor cache locality due to non-
contiguous memory allocation

Doubly Linked List
tail

42

data (\e*\

data (\e"l\

1
»

head ‘ ‘
51 M NEE o Ta2 51 N«

P P

< <

X
data (\e‘f‘ Q‘e\‘ data (\eﬁi\ Q‘e\‘ data (\e"i\ Q@“ data 0@"3 "

References

Array vs. Single Linked List (In Terms of Representation)
e https://www.youtube.com/watch?v=RIPTBwOzceo&list=PLBInK6fEyqR|9lld8s

WIUNwIKfdUoPd1Y&index=31
Linked lists in 4 minutes
e https://www.youtube.com/watch?v=F8AbOfQwlic

19

https://www.youtube.com/watch?v=R9PTBwOzceo&list=PLBlnK6fEyqRj9lld8sWIUNwlKfdUoPd1Y&index=31
https://www.youtube.com/watch?v=R9PTBwOzceo&list=PLBlnK6fEyqRj9lld8sWIUNwlKfdUoPd1Y&index=31
https://www.youtube.com/watch?v=F8AbOfQwl1c

Full-Length Lectures

|CSE 373 WI24] Lecture 02: Intro to ADTs

e https://www.youtube.com/watch?v=KpfixBVZxNgé&list=PLEcoVsAaONjd5n69K
84sSmAuUVTITOT_NI&index-=1

20

https://www.youtube.com/watch?v=Kpf1xBVZxNg&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=1
https://www.youtube.com/watch?v=Kpf1xBVZxNg&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=1

	Slide 1
	Slide 2: Abstract Data Type (ADT) vs. Data Structure
	Slide 3: Abstract Data Types (ADT): List Example
	Slide 4: Review: Interfaces
	Slide 5: Review: Interfaces: List Example
	Slide 6: Review: Java Collections
	Slide 7: ADTs and Data Structures: (Loose) Analogy
	Slide 8: ADTs and Data Structures: List Example
	Slide 9: ADTs Examples
	Slide 10: Case Study: The List ADT
	Slide 11: Case Study: List Implementations
	Slide 12: Implementing Insert
	Slide 13: Implementing Delete
	Slide 14: Implementing Append
	Slide 15: Review: Complexity Class
	Slide 16: List ADT tradeoffs
	Slide 17: A quick aside: Types of memory
	Slide 18: ArrayList vs. Linkedlist
	Slide 19: References
	Slide 20: Full-Length Lectures

