
Lecture 5
Algorithm Performance Analysis

Department of Computer Science
Hofstra University

1

Motivation

There is hereby imposed on the taxable income of every individual (other than a surviving
spouse as defined in section 2(a) or the head of a household as defined in section 2(b)) who
is not a married individual (as defined in section 7703) a tax determined in accordance with
the following table:

If you are single, never lost your spouse, and not the head of a household, you pay taxes
according to the following table:

Use flesch score to measure of text readability

Performance: how good that strategy is.

Algorithm: a strategy for solving a problem.

Problem with just looking at the
“stopwatch” time.

 different computers
 different compilers
 different

libraries/optimizations

Is NOT a good representation of how good our algorithm is.
The time for running the
specific code on a specific
machine on a specific input

Algorithm with good performance can answer
very hard questions in very short amount of
time. We need to have a sense of how good our
algorithm is without just running it.

2

Performance Analysis Overview

 Count number of operations instead of time’
 # operations is independent of the hardware platform

 Focus on how performance scales with large input size
 Asymptotic complexity refers to the study of how an algorithm's

resource usage (such as time or space) grows relative to the size of its
input as the input size approaches infinity.

Algorithm OutputInput

3

Algorithm runtime

 Algorithm runtime is dependent on the inputs.
 hasLetter(“Happy”, a): search for the letter “a” in the word “Happy”, loop runs for 2

iterations before finishing and returning true.
 hasLetter(“Happy”, x): search for the letter “x” in the word “Happy”, loop runs for 5

iterations before finishing and returning false.

boolean hasLetter(String word, char letter)
{
 for (int i = 0; i < word.length(); i++) {
 if (word.charAt(i) == letter) {
 return true;
 }
 }
 return false;
}

4

Asymptotic Analysis

 Asymptotic analysis examines how functions behave as their
input grows arbitrarily large. It focuses on the limiting
behavior of functions for large input size, rather than their
exact values for specific inputs.
 Runtime as input size n gets large, as we don’t care if the algorithm

runs for 10 ms vs. 2 s with small input size n; we care if it runs for 100
s vs. 100 hours/days/years for very large n.

 Big-O Notation (O-notation) denotes upper bound
 Theta Notation (Θ-notation) denotes exact bound
 Omega Notation (Ω-notation) denotes exact bound

5

Three Notations
 Let f(n) and g(n) be two functions that map from the set of natural numbers to the

set of natural numbers.
 Big O denotes upper bound: Function f(n) is said to be O(g(n)) if there exist a

positive constant c and n0 such that, 0 ≤ f(n) ≤ cg(n) for all n ≥ n0
 Big Omega Ω denotes lower bound: Function f is said to be Ω(g(n)), if there exist a

positive constant c and n0 such that, 0 ≤ cg(n) ≤ f(n) for all n ≥ n0
 Big Theta Θ denotes exact bound: Function f is said to be Θ(g), if there exist

constants c1, c2 > 0 and a natural number n0 such that c1*g(n) ≤ f(n) ≤ c2*g(n) for
all n ≥ n0

f n = Θ(n)

https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-
analysis-of-algorithms/ 6

https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/

Big-O Complexity Chart
 We use big-O notation to express how algorithm performance scale with input size.

 Two functions are in the same big-O class if they have the same rate of growth with increasing
input size.

 𝑓𝑓1 𝑛𝑛 dominates 𝑓𝑓2 𝑛𝑛 if O 𝑓𝑓2 𝑛𝑛 < O 𝑓𝑓1 𝑛𝑛 , i.e., 𝑓𝑓1 𝑛𝑛 has higher asymptotic complexity
than 𝑓𝑓2 𝑛𝑛 in big O notation

 O(1) < O(logn) < O(n) < O(nlogn) < O(n²) < O(2") < O(n!

https://www.bigocheatsheet.com/ 7

O(log n) Complexity

 In big O notation, the base of the logarithm does not matter
because all logarithms with different bases differ only by a
constant factor. Since big O notation focuses on the asymptotic
growth rate of an algorithm and ignores constant factors, the
base of the logarithm becomes irrelevant.

 log𝑎𝑎(𝑛𝑛) = log𝑏𝑏 𝑛𝑛
log𝑏𝑏 𝑎𝑎

 Here log𝑏𝑏 𝑎𝑎 is a constant for any fixed bases a and b. This
means that log𝑎𝑎(𝑛𝑛) is proportional to log𝑏𝑏(𝑛𝑛) , differing only
by a constant multiplier. In big O notation, constant factors are
ignored because they do not affect the growth rate as n
approaches infinity. Therefore O(log𝑎𝑎 𝑛𝑛) = O(log𝑏𝑏 𝑛𝑛), and
often written as O(log(𝑛𝑛)).

8

Big-O Notation Examples

 Rate of growth determined by the dominating highest-order term;
ignore lower-order terms, constant terms, and coefficients in big-O
notation.

 Examples:
 𝑓𝑓 𝑛𝑛 = 𝐶𝐶1𝑛𝑛 + 𝐶𝐶2: complexity O(n)
 𝑓𝑓 𝑛𝑛 = 𝐶𝐶1 log𝑛𝑛 + 𝐶𝐶2: complexity O(log n)
 𝑓𝑓 𝑛𝑛 = 𝐶𝐶3𝑛𝑛 + 𝐶𝐶4 log log𝑛𝑛 + 𝐶𝐶5: complexity O(n)
 𝑓𝑓 𝑛𝑛 = 100, 1000000, log2000, 104: complexity O(1)
 𝑓𝑓 𝑛𝑛 = n/4, 2n+3, n/100 + log n, n + 10000, log n + 10: complexity O(n)
 𝑓𝑓 𝑛𝑛 = n2 + n, 2n2, n2 + 1000n, n2 + n log n + n, n2/10000: complexity

O(n2)
 Also works for multiple variables:

 𝑓𝑓 𝑛𝑛,𝑚𝑚 = 100n2 + 1000m + n. Asymptotic complexity O(n2 + m)
 𝑓𝑓 𝑛𝑛,𝑚𝑚 = 1000m^2 + 200mn + 30m + 20n. Asymptotic complexity O(m2

+ mn)

Big-O notation in 5 minutes
https://www.youtube.com/watch?v=__vX2sjlpXU

Big-O Notation in 3 Minutes
https://www.youtube.com/watch?v=x2CRZaN2xgM

9

https://www.youtube.com/watch?v=__vX2sjlpXU
https://www.youtube.com/watch?v=x2CRZaN2xgM

Exercise

 1. Suppose algorithm running time for input size 𝑛𝑛 is 𝑔𝑔 𝑛𝑛 = 2𝑛𝑛 +
𝑛𝑛2 + 100, what is its complexity in big-O notation?

 ANS: 𝑂𝑂(2𝑛𝑛)
 For 𝑔𝑔 𝑛𝑛 = 3𝑛𝑛 log𝑛𝑛 + 4 log𝑛𝑛 + 𝑛𝑛2 + 𝑛𝑛,
 ANS: 𝑂𝑂(𝑛𝑛2)
 For 𝑔𝑔 𝑛𝑛 = 3𝑛𝑛 log𝑛𝑛 + 4 log𝑛𝑛 + 𝑛𝑛,
 ANS: 𝑂𝑂(𝑛𝑛 log𝑛𝑛)
 2. If Algorithm 1 has complexity 𝑂𝑂 log𝑛𝑛 , Algorithm 2 has

complexity 𝑂𝑂(𝑛𝑛2), will Algorithm 1 always have fewer operations
(shorter running time) than Algorithm 2?

 ANS: No. If Algorithm 1 has running time 100000 ∗ log𝑛𝑛,
Algorithm 2 has running time 3𝑛𝑛2, then 100000 ∗ log𝑛𝑛 > 3𝑛𝑛2 for
small 𝑛𝑛.

10

Exercise Con’t

 3. Suppose algorithm running time for input size 𝑛𝑛 is
 𝑛𝑛2 + 𝑛𝑛 + log𝑛𝑛
 𝑛𝑛 ∗ 𝑛𝑛 − 𝑖𝑖 + 𝑛𝑛 + log𝑛𝑛 (𝑖𝑖 is a loop iteration variable within 1 to 𝑛𝑛)
 0.001 ∗ 𝑛𝑛2 + 1000 ∗ 𝑛𝑛 + 10000 ∗ log𝑛𝑛
 (𝑛𝑛 + 100)2+(100 ∗ 𝑛𝑛 + 100000) + 100 ∗ log𝑛𝑛
What is the big O notation for the algorithm complexity in each case?

 ANS: 𝑂𝑂(𝑛𝑛2)
 What is the answer if 2n is added to each term?
 ANS: 𝑂𝑂(2n)

11

Loop Complexity Analysis Examples

for (int i = 1; i < n; i = i*c) {
 //Some O(1) code
}

for (int i = 0; i < n; i = i+c) {
 //Some O(1) code
}

i = 0, c, 2c, … < n, number of iterations 𝑛𝑛
𝑐𝑐

Complexity O(n)

for (int i = n; i > 0; i = i-c) {
 //Some O(1) code
}

i = n, n-c, n-2c, … > n, number of iterations 𝑛𝑛
𝑐𝑐

Complexity O(n)

i = c0, c1, c2, …, ck-1 < n, number of iterations k < logcn+1
Complexity O(logcn). As the base does not

for (int i = n; i > 1; i = i/c) {
 //Some O(1) code
}

i = n/c0, n/c1, n/c2, …, n/ck-1 > 1, number of iterations k < logcn+1
Complexity O(logcn)

12

Consecutive Loops

void reduce (int[] vals) {

 int minIndex =0;

 for (int i=0; i < vals.length; i++) {

 if (vals[i] < vals[minIndex]){

 minIndex = i;

 }}

 int minVal = vals[minIndex];

for (int i=0; i < vals.length; i++){

 vals[i] = vals[i] - minVal;

 }

}

O(1)

 The first for loop finds the minimum
value of input array vals with size n.
It runs for n iterations, each taking
constant time O(1), hence it has
linear complexity O(n).

 The second for loop reduces each
value in the array by the minimum
value. It runs for n iterations, each
taking constant time O(1), hence it
has linear complexity O(n).
 e.g., vals = [1,2,5,3] before,

[0,1,4,2] after.
 Two assignment statements each

has complexity O(1)
 Total complexity of the entire

algorithm is linear O(n) (the result
of O(n)+O(n)+O(1)+O(1)).

O(1)

O(n)

O(n)

+

+

+

+

13

Nested Loops

int maxDifference (int[] vals) {

 int max = 0;

 for (int i=0; i < vals.length; i++) {

 for (int j=0; j < vals.length; j++) {

 if (vals[i] – vals[j] > max) {

 max = vals[i] – vals[j];

 }

 }

 }

 return max;

}

O(1)

O(1)
O(n2)

O(n)

 The nested for loops look for
the maximum difference
between any two array
elements of input array vals
with size n:
 e.g., vals = [1,7,2,4,6,8],

return 8 – 1 = 7
 Inner loop runs for n

iterations, each taking
constant time O(1), hence it
has linear complexity O(n).

 Outer loop runs for n
iterations, each taking linear
time O(n), hence it has
quadratic complexity O(n2).

14

Exercises

int fun (int n) {
 for (int i = 0; i < n; i = i+c) {
 //Some O(1) code
 }
 for (int i = 0; i < n; i = i*2) {
 //Some O(1) code
 }
 for (int i = 0; i < 100; i = i++) {
 //Some O(1) code
 }
}

 First loop has complexity O(n)
 Second loop has complexity O(log n)
 Third loop has complexity O(1)
 Total complexity is O(n), result of O(n)+O(log n)+O(1)

int fun (int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 1; j < n; j = j*2) {
 //Some O(1) code
 }
 }
}

 Inner loop has complexity O(log n)
 Outer loop has complexity O(n)
 Total complexity is O(n log n), result of O(n)*O(log n)

15

Exercises Con’t
int fun (int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 1; i < n; j = j*2) {
 //Some O(1) code}
 }
 for (int i = 0; i < n; i++) {
 for (int j = 1; j < n; j++) {
 //Some O(1) code}
 }
}

 First nested loop has complexity O(n log n)
 Second nested loop has complexity O(n2)
 Total complexity is O(n2), result of O(n log n) + O(n2)

int fun (int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 1; i < n; j = j*2) {
 //Some O(1) code}
 }
 for (int i = 0; i < m; i++) {
 for (int j = 1; j < m; j++) {
 //Some O(1) code}
 }
}

 First nested loop has complexity O(n log n)
 Second nested loop has complexity O(m2)
 Total complexity is O(n log n + m2), result of O(n log n) + O(m2)

16

Best-case, Average-case, Worst-case
Complexity

 Best-case complexity: best possible performance of algorithm
for any input of size n

 Worst-case complexity: worst possible performance of
algorithm for any input of size n

 Average-case complexity: performance on average, consider
all possible inputs of size n
 Often mathematically difficult to analyze

 In big-O notation, Best-case complexity ≤ Average-case
complexity ≤ Worst-case complexity

17

Best-case, Average-case, Worst-case
Complexity Example 1

 Algorithm complexity w.r.t input size n = word.length(), for Best-case, Average-case,
and Worst-case.

 Best-case: O(1), if word starts with letter
 hasLetter("apple", "a");

 Worst-case: O(n), if letter at the end (or missing)
 hasLetter("happy", "x");
 hasLetter("happy", ”y");

 Average-case: O(n), assuming letter may take on any random value

boolean hasLetter(String word, char letter)
{
 for (int i = 0; i < word.length(); i++) {
 if (word.charAt(i) == letter) {
 return true;
 }
 }
 return false;
}

18

Best-case, Average-case, Worst-case
Complexity Example 2

 Algorithm complexity w.r.t input n = size of input array arr[], for Best-case, Average-
case, and Worst-case, for a made-up function that returns 0 for even n, and sum of
array elements for odd n. (So the name getSum() is not accurate.)

 Best-case: O(1), if n is even (n%2 == 0)
 Worst-case: O(n), if n is odd (n%2 != 0)
 Average-case: O(n), assuming n may be even or odd with equal chance

int getSum (int arr[], int n)
{
 if (n%2 == 0) {
 return 0; }
 int sum = 0;
 for (int i=0; i<n; i++) {
 sum += arr[i]; }
 return sum;
}

19

Analyzing Search Algorithms

Linear Search: Basic Algorithm

Start at the first index in the array

while index < length of the array:
 if toFind matches current value,
 return true
 increment index by 1

return false

Best Case Worst Case

Linear Search

Binary Search*

* Assuming data is sorted

E.g. hasLetter(String word, char letter)

Binary Search: Basic Algorithm

Initialize low = 0, high = length of list

while low <= high:
 mid = (high+low)/2
 if toFind matches value at mid,
 return true
 if toFind < value at mid
 high = mid-1
 else low = mid+1
return false

Worst case: don't find!

times to half size?

first half
second half

Cuts search
base in half
at each
iteration, so
the total #
iterations is
log2(n)

How many times can we divide
by 2 before we get to 1?

sorting cost?

O(1) O(n)
O(1) O(log(n))

Binary search in 4 minutes
https://www.youtube.com/watch?v=fDKIpRe8GW4 20

https://www.youtube.com/watch?v=fDKIpRe8GW4

Additional Resources

 Big-O analysis
 http://web.mit.edu/16.070/www/lecture/big_o.pdf -- Big O handout from MIT
 https://www.interviewcake.com/article/java/big-o-notation-time-and-space-

complexity -- explanation of Big O with examples
 http://discrete.gr/complexity/ -- "A Gentle Introduction to Algorithm Complexity

Analysis" GIves a lot more detail than what we provided.
 Sorting algorithms

 http://www.java2novice.com/java-sorting-algorithms/ -- 5 different sort algorithm
explanation with codes

 https://www.cs.cmu.edu/~adamchik/15-
121/lectures/Sorting%20Algorithms/sorting.html -- different search algrotihms with
solid examples

 Timing code in Java
 http://stackoverflow.com/questions/180158/how-do-i-time-a-methods-execution-in-

java -- many ways offered by many people

21

	Lecture 5�Algorithm Performance Analysis
	Motivation
	Performance Analysis Overview
	Algorithm runtime
	Asymptotic Analysis
	Three Notations
	Big-O Complexity Chart
	O(log n) Complexity
	Big-O Notation Examples
	Exercise
	Exercise Con’t
	Loop Complexity Analysis Examples
	Consecutive Loops
	Nested Loops
	Exercises
	Exercises Con’t
	Best-case, Average-case, Worst-case Complexity
	Best-case, Average-case, Worst-case Complexity Example 1
	Best-case, Average-case, Worst-case Complexity Example 2
	Analyzing Search Algorithms
	Additional Resources

