
1

Lecture 15

Sorting

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures

2

Warm Up

If I handed you a stack of papers and asked you to sort
them by author name alphabetically, how would you do it?

Selection Sort - Flip through the stack from front to back looking for the first name, then pull it to the front. Then I would
flip through again looking for the second name and put it behind the first and so on until all were sorted

Insertion Sort - Look at the first two papers and put them in sorted order, then look at the third and put it in sorted order
with the previous two and continue until the whole stack is in sorted order

Merge Sort - Spread the papers out on the ground and break them into subsections, sort the subsections section by
section then put them all back together

Bucket Sort - Put the papers into groups based on the first letter of the author’s name until I had 26 piles, then sort within
those piles and put them all back together

3

Intro to Sorting
Selection Sort
Insertion Sort
Merge Sort
Quick Sort
Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

4

Intro to Sorting

5

Types of Sorts

Specialized Sorts (“Niche Sorts”)

Leverages specific properties about the
items in the list to achieve faster
runtimes

Typically runs in O(n) time

e.g., sorting integers or strings where we
sort by each individual digit or character

Comparison Sort

Compare two elements at a time

General sort, works for most types of
elements

What does this mean?
compareTo() works for your elements
● And for our running times to be correct,

compareTo() must run in O(1) time

6

Stable Sort, In-Place Sort

● A stable sorting algorithm is one that maintains
the relative order of elements with equal keys in
the sorted output as they appeared in the input
○ e.g., Insertion Sort, Merge Sort, Radix Sort

● Stability is important when multiple sorting
operations are performed on data with multiple
keys. For example, if you first sort a list of
students by name and then by grade, a stable
sort will ensure that students with the same
grade remain sorted by name. This
characteristic is crucial in scenarios where
secondary attributes need to be preserved after
sorting by primary attributes.

● In-place sort: A sorting algorithm is in-place if it
modifies input array and does not allocate extra
memory. Useful for minimizing memory usage

Name Grade

Bas 60

Frank 80

Jana 60

Jouni 60

Lara 20

Nick 80

Rose 60

Sam 40

Name Grade

Lara 20

Sam 40

Bas 60

Jana 60

Jouni 60

Rose 60

Frank 80

Nick 80

Sorting by the Grade attribute (the key) maintains
the relative order of the Name attribute for persons
with equal Grade

These lines do
not cross

7

Principle 1: Iterative Improvement

Invariants/Iterative improvement
● Step-by-step, make one more part of the input your desired output

We’ll write iterative algorithms to satisfy the following invariant:

After k iterations of the loop, the first k elements of the array will be sorted.

8

Insertion Sort

9

Insertion Sort
● Insertion sort works by iteratively inserting each element of

an unsorted list into its correct position in a sorted portion
of the list. It is like sorting playing cards in your hands. You
split the cards into two groups: the sorted cards and the
unsorted cards. Then, you pick a card from the unsorted
group and put it in the right place in the sorted group.
○ Start with second element of the array as first element in the

array is assumed to be sorted.
○ Compare second element with the first element and check if

the second element is smaller then swap them.
○ Move to the third element and compare it with the first two

elements and put at its correct position
○ Repeat until the entire array is sorted.

● Time complexity: O(n2), as there are two nested loops:
○ Outer loop to select each element in the unsorted group one

by one, with O(n) complexity
○ Inner loop to insert that element into the sorted group, with

O(n) complexity

● Insertion Sort | GeeksforGeeks
○ https://www.youtube.com/watch?v=OGzPmgsI-pQ

Insertion Sort: Basic Algorithm

For each position i from 1 to length-1

Swap successive pairs to put value in position i in
correct location relative to earlier values

sorted unsortedi

1 8 4 3 7 2

1 4 8 3 7 2

1 3 4 8 7 2

1 3 4 7 8 2

1 2 3 4 7 8

pos 1

pos 2

pos 3

pos 4

pos 4

https://www.youtube.com/watch?v=OGzPmgsI-pQ

10

Insertion Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

11

Insertion Sort
0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

public void insertionSort(collection) {

for (entire list)

if(currentItem is smaller than largestSorted)

int newIndex = findSpot(currentItem);

shift(newIndex, currentItem);

}

public int findSpot(currentItem) {

for (sorted list going backwards)

if (spot found) return

}

public void shift(newIndex, currentItem) {

for (i = currentItem > newIndex)

item[i+1] = item[i]

item[newIndex] = currentItem

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

Useful for:

Yes

Yes

Mostly sorted collections of
primitives

12

Insertion Sort Stability

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

✓

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

3 5a 4 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

✓

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

Insertion sort is stable
● All swaps happen between

adjacent items to get current item
into correct relative position
within sorted portion of array

13

Insertion Sort: More Examples

14

Selection Sort

15

Selection Sort
● Selection Sort works by repeatedly selecting the smallest element from the

unsorted portion and swapping it with the first unsorted element. This process
continues until the entire array is sorted
○ First find the smallest element and swap it with the first element. This way we get the smallest

element at its correct position
○ Then find the smallest among remaining elements (or second smallest) and move it to its

correct position by swapping
○ After k iterations of the loop, the k smallest elements of the array are (sorted) in indices 0, … , k-

1
○ Keep going until all elements are sorted.

● Time complexity: O(n2), as there are two nested loops:
○ Outer loop to select each element one by one with O(n) complexity
○ Inner loop to compare that element with every other element with O(n) complexity

● Selection Sort | GeeksforGeeks
○ https://www.youtube.com/watch?v=xWBP4lzkoyM

4 7 2 10 1 8

1 7 2 10 4 8

1 2 7 10 4 8

1 2 4 10 7 8

1 2 4 7 10 8

1 2 4 7 8 10

sorted unsorted

sorted unsorted

unsorted

Selection Sort: Basic Algorithm

For each position i from 0 to length-2

Find smallest element in positions i to
length-1
Swap it with element in position i

sorted unsorted

which next?

i

https://www.youtube.com/watch?v=xWBP4lzkoyM

16

Selection Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

17

Selection Sort

public void selectionSort(collection) {

for (entire list)

int newIndex = findNextMin(currentItem);

swap(newIndex, currentItem);

}

public int findNextMin(currentItem) {

min = currentItem

for (unsorted list)

if (item < min)

min = currentItem

return min

}

public int swap(newIndex, currentItem) {

temp = currentItem

currentItem = newIndex

newIndex = currentItem

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

Useful for:

No

Yes

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

Top K sort without needing
extra space

18

Selection Sort Stability

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

✓

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

…

*Swapping non-adjacent items can result in instability of sorting algorithms

19

20

Principle 2: Divide and Conquer

General recipe:

1. Divide your work into smaller pieces (subproblems)
recursively

2. Conquer the recursive subproblems
○ In many algorithms, conquering a subproblem requires no extra

work beyond recursively dividing and combining it!

3. Combine the results of your recursive calls

Examples: Merge Sort, Quick Sort

divideAndConquer(input) {
if (small enough to solve):

conquer, solve, return results
else:

divide input into a smaller pieces
recurse on smaller pieces
combine results and return

}

21

Merge Sort

22

Merge Sort
● Merge sort

○ Divide array into two halves. Recursively sort
each half. Merge two halves

● Merge Sort Algorithm: A Step-by-Step
Visualization, Quoc Dat Phung
○ https://www.youtube.com/watch?v=ho05egqcPl4

0 1 2 3

55 1 7 6

0 1

55 1

0 1

7 6

0

55

0

1

0

7

0

6

0 1 2 3

1 6 7 55

0 1

1 55

0 1

6 7

input M E R G E S O R T E X A M P L E

sort left half E E G M O R R S T E X A M P L E

sort right half E E G M O R R S A E E L M P T X

merge results A E E E E G L M M O P R R S T X

Merge Sort overview

https://www.youtube.com/watch?v=ho05egqcPl4

23

Merge Sort

0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22

0 1 2 3

55 1 7 6

0 1 2 3

2 8 22 91

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

8

0

2

0

91

0

22

0

55

0

1

0 1 2 3

1 6 7 55

0

7

0

6

…

…

Conquer

Divide in half
each time

Actual sorting
happens here

24

Merge Sort: Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22

0 1 2 3

55 1 7 6

0 1

8 2

0 1

91 22

0 1

55 1

0 1

7 6

0

8

0

2

0

91

0

22

0

55

0

1

0

7

0

6

Recursive Case:
split the array in
half and recurse on
both halves

When array hits
size 1, stop
dividing.

Sort the pieces through recursion

25

Merge Sort: Combine Step

0 1 2 3

2 8 22 91

0 1 2 3

1 6 7 55

Combine

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combining two sorted arrays:
1. Initialize two pointers to start of both arrays
2. Repeat until all elements are added:

1. Add the smaller element of the two pointers to the result array
2. Move that pointer forward one spot

26

Merge Sort

mergeSort(list) {
if (list.length == 1):

return list
else:

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

Worst case runtime?

Best case runtime?

In Practice runtime?

Stable?

In-place?

Yes

No

Same

Same

0 1 2 3

55 1 7 6

0 1

55 1

0 1

7 6

0

55

0

1

0

7

0

6

0 1 2 3

1 6 7 55

0 1

1 55

0 1

6 7

n

2 log n

𝑂(𝑛 log𝑛)

27

Quick Sort

28

Quick Sort
● Choose a Pivot: Select an element from the array as the pivot. The choice of

pivot can vary (e.g., first element, last element, random element, or median)

● Partition the Array:
○ 1. The pivot is compared with each element in the array
○ 2. Elements smaller than the pivot are moved to its left
○ 3. Elements larger than the pivot are moved to its right
○ 4. The pivot is placed in its final sorted position

● Recursively Call: Recursively apply the same process to the two partitioned
sub-arrays (left and right of the pivot).

● Base Case: The recursion stops when there is only one element left in the
sub-array, as a single element is already sorted.

● Quick sort in 4 minutes (recommended)
○ https://www.youtube.com/watch?v=Hoixgm4-P4M

https://www.youtube.com/watch?v=Hoixgm4-P4M

29

Quick Sort Example
● Input array [4, 3, 9, 7, 1, 2, 10, 6, 5]

● Choose the last element as pivot

30

0

8

Quick Sort (v1)

0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

0 1 2 3

1 2 6 7

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

1

0

2

0

6

0

7

0

8

0

22

0 1 2 3

1 6 7 55

0

55

0

91

…

…

Conquer

Divide: Choose a
“pivot” element,
partition array
relative to it

Combine:
Concatenate the
now-sorted arrays

PIVOT

0

8

31

0

8

Quick Sort (v1): Divide Step

0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

Recursive Case:
● Choose a “pivot”

element
● Partition: linear scan

through array, add
smaller elements to
one array and larger
elements to another

● Recursively partition

PIVOT

Base Case:
● When array hits size

1, stop dividing

0 1

7 6

0

1

0

2

PIVOT PIVOT

0 1

22 55

0

91

PIVOT PIVOT

0

6

0

7

0

22

0

55

32

Quick Sort (v1): Combine Step

Combine

Simply concatenate
the arrays that were
created earlier.
Partition step already
left them in order

0

8

0

1

0

2

0

91

0

6

0

7

0

22

0

55

0 1

6 7

0 1

22 55

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

0 1 2 3

1 2 6 7

0 1 2

22 55 91

33

Quick Sort (v1)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?
Number of compares is quadratic:
𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1
= 𝑂(𝑛2)

Best case runtime?

Average runtime?

Stable?

In-place?

No

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

PIVOT

PIVOT

0

6

0

7

0 1 2 3

1 2 6 7

0 1

6 7

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half

𝑂(𝑛 log 𝑛)

𝑂(𝑛2)

𝑂(𝑛 log𝑛)

Can be

(non-trivial derivation)

34

Strategies for Choosing a Pivot

Just take the first element
● Very fast

● But has worst case: for example, sorted lists have Ω(n²) runtime

Take the median of the full array
● Can find the median in O(n) time (QuickSelect). It’s complicated

● Worst case is O(n log n) … but the constant factors are large. No one does quicksort this

way.

Take the median of the first, last, and middle element
● Makes pivot slightly more content-aware, at least won’t select very smallest/largest

● Worst case is still O(n²) , but on real-world data tends to perform well!

Pick a random element
● Get O(n log n) runtime with probability at least 1-1/n²

● No simple worst-case input (e.g. sorted, reverse sorted)

35

Quick Sort (v2: In-Place) Example I

K R A T E L E P U I M Q C X O S

Repeat until i and j pointers cross

▪ Scan i from left to right so long as (a[i] < a[lo]).

▪ Scan j from right to left so long as (a[j] > a[lo]).

▪ Exchange a[i] with a[j].

lo i jjjj

pivot
K R A T E L E P U I M Q C X O S

lo i j

K C A T E L E P U I M Q R X O S

i i jjj

lo

K C A I E L E P U T M Q R X O S

i j

When pointers cross.

▪ Exchange a[lo] with a[j].

i i jjj

lo

K C A I E E L P U T M Q R X O S

i j ij

lo

E C A I E K L P U T M Q R X O S

ij hi

36

Quick Sort (v2: In-Place) Example II
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

PIVOT? PIVOT? PIVOT?

Select a pivot

Move pivot out
of the way

Bring low and high
pointers together,
swapping elements
if needed

Meeting point is
where pivot
belongs; swap in.
Now recurse on
smaller portions
of same array!

Divide PIVOT!

37

Quick Sort is Equivalent to Sorting by BST

5

62

1 3

BST In-order traversal
gives sorted list
[1,2,3,4,5,6,7,9,10]

4

9

7 10

Key idea: compareTo calls are same for Binary Search Tree (BST) insert and

Quick Sort.
● Every number gets compared to 5; 1, 3, 4 get compared to only 2.

● Recall: Insertion into a BST has average-case complexity O(N log N)

38

Trace of a Quick Sort Example

lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

0 5 15 E C A I E K L P U T M Q R X O S

0 3 4 E C A E I K L P U T M Q R X O S

0 2 2 A C E E I K L P U T M Q R X O S

0 0 1 A C E E I K L P U T M Q R X O S

1 1 A C E E I K L P U T M Q R X O S

4 4 A C E E I K L P U T M Q R X O S

6 6 15 A C E E I K L P U T M Q R X O S

7 9 15 A C E E I K L M O P T Q R X U S

7 7 8 A C E E I K L M O P T Q R X U S

8 8 A C E E I K L M O P T Q R X U S

10 13 15 A C E E I K L M O P S Q R T U X

10 12 12 A C E E I K L M O P R Q S T U X

10 11 11 A C E E I K L M O P Q R S T U X

10 10 A C E E I K L M O P Q R S T U X

14 14 15 A C E E I K L M O P Q R S T U X

15 15 A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

no partition
for subarrays

of size 1

initialvalues

random shuffle

result

Quick Sort trace (array contents after each partition)

39

Best-Case vs. Worst-Case

When the list is randomly shuffled, and if we happen to

always pick the median element as the pivot, then

Quick Sort has the best-case complexity of O(n log n).

This corresponds to a balanced BST

When the list is already sorted, and if we always pick

the first element as the pivot, then Quick Sort has the

worst-case complexity of O(n2). This corresponds to a

extremely unbalanced BST.

40

Heap Sort

41

Heap Sort

1. Run Floyd’s buildHeap

2. Call removeMin n times

public void heapSort(input) {

E[] heap = buildHeap(input)

E[] output = new E[n]

for (n)

output[i] = removeMin(heap)

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

No

Yes

𝑂 𝑛 log𝑛

𝑂 𝑛

𝑂 𝑛 log𝑛

42

In Place Heap Sort
0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

43

In Place Heap Sort

public void inPlaceHeapSort(input) {

buildHeap(input) // alters original array

for (n : input)

input[n – i - 1] = removeMin(heap)

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

No

Yes

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
● Run reverse afterwards O(n)
● Use a max heap
● Reverse compare function to emulate max heap

𝑂 𝑛 log𝑛

𝑂 𝑛

𝑂 𝑛 log𝑛

44

Bucket Sort

45

Bucket Sort

● Bucket sort is a comparison
sort algorithm that works by
distributing the elements of
an array into a number of
buckets and then each
bucket is sorted individually
using a stable sorting
algorithm, e.g., Insertion
Sort or Merge Sort.

● This algorithm is efficient
when the input is uniformly
distributed over a range.

Elements are distributed among bins

Then, elements are sorted within each bin
Bucket Sort | GeeksforGeeks

https://www.youtube.com/watch?v=VuXbEb5ywrU

https://en.wikipedia.org/wiki/Bucket_sort

https://www.youtube.com/watch?v=VuXbEb5ywrU
https://en.wikipedia.org/wiki/Bucket_sort

46

Bucket Sort (aka Bin Sort)

● If all values are ints known to be in the range of 1 - K
● Create array of size K and put each element in its proper bucket

(“scatter”)
○ If elements are only ints simply store count of ints in each bucket

● Output results via linear pass through array of buckets (“gather”)

[5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5]
1 3

2 1

3 2

4 4

5 3

[1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5]

O(n)
O(K + n)

Total Runtime: O(K + n)

47

worst: O(K + n2)

best: O(K)

Bucket Sort with Data

● Make buckets of array of lists
● Put items into bucket, use insertion sort to sort individual buckets

[0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21, 0.12, 0.23, 0.68]

0

1

2

3

4

5

6

7

8

9
[0.12, 0.17, 0.21, 0.23, 0.26, 0.39,
0.68, 0.72, 0.78, 0.94]

O(n)

O(K + n)

0.78

0.17

0.39

0.26

0.72

0.94

0.21

0.12

0.23

0.68

0

1

2

3

4

5

6

7

8

9

0.78

0.17

0.39

0.26

0.72

0.94

0.21

0.12

0.23

0.68

Bucket Sort | GeeksforGeeks

https://www.youtube.com/watch?v=VuXbEb5ywrU

https://www.youtube.com/watch?v=VuXbEb5ywrU

48

Bucket Sort
function bucketSort(array, k) is

buckets ← new array of k empty lists

M ← 1 + the maximum key value in the array

for i = 0 to length(array) do

insert array[i] into buckets[floor(k × array[i] / M)]

for i = 0 to k do

nextSort(buckets[i])

return the concatenation of buckets[0],, buckets[k]

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

Useful for:

O(K + n) for ints
O(K + n2) for data if insertion sort is used

O(n)

O(n) if K ≅ n, always for ints, and if values are evenly distributed for data

Can be because insertion sort

No

When range, K, is smaller or not much larger than n (not many duplicates)
Not good when K >> N, wasted space

49

Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

50

Specialized Sorts (“Niche Sorts”)

So far we’ve learned about comparison sorts

● work on any comparable object
● have a best case lower bound of O(n log n)

This is because to sort using comparisons requires all elements to be
compared against one another

● n runtime to process all values into some ordered structure (tree)
● O(log n) runtime to remove items from structure in sorted order

What if we didn’t need to compare each element, what if we built a sort based
on inherent knowledge about the ordering of numbers?

Specialized Sorts: Sorting algorithms that only work on data types with
ordering already known to computer logic: numbers

- Bucket Sort for ints
- Radix Sort

51
51

Radix and Radix Sort

● Radix = “The base of a number system”
○ Number of unique digits, including the digit zero, used to represent numbers

● Radix of numbers:
○ Binary numbers have a radix of 2
○ decimals have a radix of 10
○ hexadecimals have a radix of 16

● Radix sort was first used in 1890 U.S. census by Hollerith

● Efficient O(n) complexity

● Not in-place sorting
○ May use more space than other sorting algorithms

● Basic idea: Bucket sort on each digit, from least significant digit to
most significant digit.

52

Radix Sort Algorithm

radix_sort(A, n, k) {

/* A: array; n: number of elements; k: number of digits in the
largest number */

create buckets (buckets can be arrays or lists)

for (d = 0; d <k; d++) {

/* sort A using digit position d as the key. */

for (i = 0; i<n; i++) {

p = the d-th digit (from right) of A[i]

Add A[i] to bucket p

}

A = Join the buckets

}

} Time complexity O(n)

53
53

Bucket Sort as used in Radix Sort

● Use bucket array of size R for radix of R

● Put elements into the correct bucket in the array

● R = 5; unique digits (0,1,2,3,4); list = (0,1,3,4,3,2,1,1,0,4,0)

Buckets

= 0 0,0,0

= 1 1,1,1

= 2 2

= 3 3,3

= 4 4,4

Sorted list:

0,0,0,1,1,1,2,3,3,4,4

54

Radix Sort: bucket sort on every digit/bit
● For N elements between (L, H), using H-L+1 buckets can sort the

elements in one round

● Problem: the range (L, H) may be too large.
○ Sorting 4-byte unsigned integers, range is [0, 232-1] → 232 buckets

● Solution(radix sort): apply bucket sort on every digit/bit

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

2
0
5
1
7
3
4
6

Use two

buckets 0 and 1

55

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

2
0
5
1
7
3
4
6

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0

1

0 1 0
0 0 0
1 0 0
1 1 0

1 0 1
0 0 1
1 1 1
0 1 1

Merge Step 1: Sort by the

least significant bit

2
0
5
1
7
3
4
6

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

0

1

0 0 0
1 0 0
1 0 1
0 0 1

0 1 0
1 1 0
1 1 1
0 1 1

Merge

Step 2. Sort by the

middle bit

56

Radix Sort Algorithm Introduction in 5 Minutes, CS Dojo

https://www.youtube.com/watch?v=XiuSW_mEn7g

Radix Sort Animations | Data Structure | Visual How

https://www.youtube.com/watch?v=Om4BljCs_qE

2
0
5
1
7
3
4
6

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

0

1

0 0 0
0 0 1
0 1 0
0 1 1

1 0 0
1 0 1
1 1 0
1 1 1

Merge

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Step 3. Sort
by the most
significant bit

0
1
2
3
4
5
6
7

https://www.youtube.com/watch?v=XiuSW_mEn7g
https://www.youtube.com/watch?v=Om4BljCs_qE

57
57

You can choose an appropriate radix value

● Numbers in different formats
○ decimal whole numbers: (126, 328, 636, 341, 416, 131, 328)
○ Binary numbers: (0 001 111 110, 0 101 001 000, 1 001 111 100, 0 101 010 101,

0 110 100 000, 0 010 000 011, 0 101 001 000)
○ Octal numbers: (0176, 0510, 1174, 0525, 0640, 0203, 0510)
○ Hexadecimal numbers: (07E, 148, 27C, 1A0, 083, 148)

● Radix sort of decimal numbers using ten buckets: 0 to 9

341

131

126

636

416

328

329

416

126

328

329

131

636

341

126

131

328

329

341

416

636

329

416

126

636

328

131

341

051

071

412

043

033

817

009

009

412

817

033

043

051

071

009

033

043

051

071

412

817

043

009

817

412

051

033

071

Example 1 Example 2

58

O(n)O(n)

Radix Sort Example

[478, 537, 9, 721, 3, 38, 143, 67]

0

1 721

2

3 3, 143

4

5

6

7 537, 67

8 478, 38

9 9

0 03, 09

1

2 721

3 537, 38

4 143

5

6 67

7 478

8

9

[721, 3, 143, 537, 67, 478, 38, 9] [3, 9, 721, 537, 38, 143, 67, 478]

0 003, 009, 038, 067

1 143

2

3

4 478

5 537

6

7 721

8

9

[3, 9, 38, 67, 143, 478, 537, 721]

O(n)
O(n) O(n)

O(n)

59

Radix Sort Time Complexity

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

Useful for:

O(n)

O(n)

O(n)

Yes

No

Sorting ints

60

Sorting Summary

61

Sorting: Summary

Best-Case Worst-Case Space Stable

Selection Sort O(n2) O(n2) O(1) No

Insertion Sort O(n) O(n2) O(1) Yes

Heap Sort O(nlogn) O(nlogn) O(n) No

In-Place Heap

Sort

O(nlogn) O(nlogn) O(1) No

Merge Sort O(nlogn) O(nlogn) O(nlogn)
O(n)* optimized

Yes

Quick Sort O(nlogn) O(n2) O(n) No

In-place Quick

Sort

O(nlogn) O(n2) O(1) No

Bucket Sort O(n) O(n2) O(K+n) Yes

Radix O(n) O(n) O(n) Yes

No single sorting algorithm is
“the best”!
● Different algos have different

properties in different situations
● The best one is one that is well-

suited to your data

62

References I
● Insertion Sort | GeeksforGeeks

○ https://www.geeksforgeeks.org/insertion-sort-algorithm/
○ https://www.geeksforgeeks.org/time-and-space-complexity-of-insertion-sort-algorithm/
○ https://www.youtube.com/watch?v=OGzPmgsI-pQ

● Selection Sort | GeeksforGeeks
○ https://www.geeksforgeeks.org/selection-sort-algorithm-2/
○ https://www.geeksforgeeks.org/time-and-space-complexity-analysis-of-selection-sort/
○ https://www.youtube.com/watch?v=xWBP4lzkoyM

● Merge Sort Algorithm: A Step-by-Step Visualization, Quoc Dat Phung
○ https://www.youtube.com/watch?v=ho05egqcPl4

● Merge sort in 3 minutes
○ https://www.youtube.com/watch?v=4VqmGXwpLqc

● Merge Sort Algorithm: A Step-by-Step Visualization (recommended)
○ https://www.youtube.com/watch?v=ho05egqcPl4

● Merge Sort Animations | Data Structure | Visual How
○ https://www.youtube.com/watch?v=spVhtO_IcGg

https://www.geeksforgeeks.org/insertion-sort-algorithm/
https://www.geeksforgeeks.org/time-and-space-complexity-of-insertion-sort-algorithm/
https://www.youtube.com/watch?v=OGzPmgsI-pQ
https://www.geeksforgeeks.org/selection-sort-algorithm-2/
https://www.geeksforgeeks.org/time-and-space-complexity-analysis-of-selection-sort/
https://www.youtube.com/watch?v=xWBP4lzkoyM
https://www.youtube.com/watch?v=ho05egqcPl4
https://www.youtube.com/watch?v=4VqmGXwpLqc
https://www.youtube.com/watch?v=ho05egqcPl4
https://www.youtube.com/watch?v=spVhtO_IcGg

63

References II

● Quicksort: Partitioning an array, KC Ang
○ https://www.youtube.com/watch?v=MZaf_9IZCrc

● QuickSort | geeksforgeeks
○ https://www.geeksforgeeks.org/quick-sort-algorithm/
○ https://www.youtube.com/watch?v=PgBzjlCcFvc

● Quick sort in 4 minutes (recommended)
○ https://www.youtube.com/watch?v=Hoixgm4-P4M

● Quicksort Algorithm: A Step-by-Step Visualization (recommended)
○ https://www.youtube.com/watch?v=pM-6r5xsNEY

● Visualization of Quick sort (HD)
○ https://www.youtube.com/watch?v=aXXWXz5rF64

https://www.youtube.com/watch?v=MZaf_9IZCrc
https://www.geeksforgeeks.org/quick-sort-algorithm/
https://www.youtube.com/watch?v=PgBzjlCcFvc
https://www.youtube.com/watch?v=Hoixgm4-P4M
https://www.youtube.com/watch?v=pM-6r5xsNEY
https://www.youtube.com/watch?v=aXXWXz5rF64

64

References III

● Radix Sort Algorithm Introduction in 5 Minutes, CS Dojo
○ https://www.youtube.com/watch?v=XiuSW_mEn7g

● Radix Sort Animations | Data Structure | Visual How
○ https://www.youtube.com/watch?v=Om4BljCs_qE

● Radix Sort
○ https://www.geeksforgeeks.org/radix-sort/
○ https://www.geeksforgeeks.org/time-and-space-complexity-of-radix-sort-algorithm/

● Bucket Sort | GeeksforGeeks
○ https://www.geeksforgeeks.org/bucket-sort-2/
○ https://www.youtube.com/watch?v=VuXbEb5ywrU

● Time Complexities of all Sorting Algorithms
○ https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/

https://www.youtube.com/watch?v=XiuSW_mEn7g
https://www.youtube.com/watch?v=Om4BljCs_qE
https://www.geeksforgeeks.org/radix-sort/
https://www.geeksforgeeks.org/time-and-space-complexity-of-radix-sort-algorithm/
https://www.geeksforgeeks.org/bucket-sort-2/
https://www.youtube.com/watch?v=VuXbEb5ywrU
https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/

65

References IV

● Sort Algos // Michael Sambol Michael Sambol

○ https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAPIq1BeUf4j20pl

○ Merge Sort, Quick Sort, Bubble Sort, Insertion Sort, Selection Sort, Heap Sort

● 10 Sorting Algorithms Easily Explained

○ https://www.youtube.com/watch?v=rbbTd-gkajw
○ Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort, Heap Sort,

Counting Sort, Shell Sort, Tim Sort, Radix Sort

https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAPIq1BeUf4j20pl
https://www.youtube.com/watch?v=rbbTd-gkajw

66

Full-Length Lectures

● [CSE 373 WI24] Lecture 19: Introduction to Sorting
○ https://www.youtube.com/watch?v=xCezN9A7yhQ&list=PLEcoVsAaONjd5n69K84

sSmAuvTrTQT_Nl&index=18

● [CSE 373 WI24] Lecture 20: More Sorting Algorithms
○ https://www.youtube.com/watch?v=9wVXtKko5CM&list=PLEcoVsAaONjd5n69K84

sSmAuvTrTQT_Nl&index=19

https://www.youtube.com/watch?v=xCezN9A7yhQ&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=18
https://www.youtube.com/watch?v=xCezN9A7yhQ&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=18
https://www.youtube.com/watch?v=9wVXtKko5CM&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=19
https://www.youtube.com/watch?v=9wVXtKko5CM&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=19

	Slide 1
	Slide 2: Warm Up
	Slide 3
	Slide 4
	Slide 5: Types of Sorts
	Slide 6: Stable Sort, In-Place Sort
	Slide 7: Principle 1: Iterative Improvement
	Slide 8
	Slide 9: Insertion Sort
	Slide 10: Insertion Sort
	Slide 11: Insertion Sort
	Slide 12: Insertion Sort Stability
	Slide 13: Insertion Sort: More Examples
	Slide 14
	Slide 15: Selection Sort
	Slide 16: Selection Sort
	Slide 17: Selection Sort
	Slide 18: Selection Sort Stability
	Slide 19
	Slide 20: Principle 2: Divide and Conquer
	Slide 21
	Slide 22: Merge Sort
	Slide 23: Merge Sort
	Slide 24: Merge Sort: Divide Step
	Slide 25: Merge Sort: Combine Step
	Slide 26: Merge Sort
	Slide 27
	Slide 28: Quick Sort
	Slide 29: Quick Sort Example
	Slide 30: Quick Sort (v1)
	Slide 31: Quick Sort (v1): Divide Step
	Slide 32: Quick Sort (v1): Combine Step
	Slide 33: Quick Sort (v1)
	Slide 34: Strategies for Choosing a Pivot
	Slide 35: Quick Sort (v2: In-Place) Example I
	Slide 36: Quick Sort (v2: In-Place) Example II
	Slide 37: Quick Sort is Equivalent to Sorting by BST
	Slide 38: Trace of a Quick Sort Example
	Slide 39: Best-Case vs. Worst-Case
	Slide 40
	Slide 41: Heap Sort
	Slide 42: In Place Heap Sort
	Slide 43: In Place Heap Sort
	Slide 44
	Slide 45: Bucket Sort
	Slide 46: Bucket Sort (aka Bin Sort)
	Slide 47: Bucket Sort with Data
	Slide 48: Bucket Sort
	Slide 49
	Slide 50: Specialized Sorts (“Niche Sorts”)
	Slide 51: Radix and Radix Sort
	Slide 52: Radix Sort Algorithm
	Slide 53: Bucket Sort as used in Radix Sort
	Slide 54: Radix Sort: bucket sort on every digit/bit
	Slide 55
	Slide 56
	Slide 57: You can choose an appropriate radix value
	Slide 58: Radix Sort Example
	Slide 59: Radix Sort Time Complexity
	Slide 60
	Slide 61: Sorting: Summary
	Slide 62: References I
	Slide 63: References II
	Slide 64: References III
	Slide 65: References IV
	Slide 66: Full-Length Lectures

