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Lecture 13

Shortest Paths

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures 
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BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm
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Review: Graph traversal w/ DFS
● Depth First Search: go as far as you can down one path till you hit a dead 
end (no neighbors, or no unvisited neighbors).  Once you hit a dead end, 
backtrack and try other edges that you have not tried yet

● Analogy of wandering a maze – if you get stuck at a dead end, trace your 
steps backwards to the previous fork in the road, and try a different path

one valid DFS traversal: 10, 5, 3, 2, 4, 8, 7,6, 9, 15, 12, 14, 18
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Review: Graph traversal w/ BFS
● Breadth First Search - traverse level by level, and visit 1-hop neighbors 
before 2-hop neighbors before 3-hop neighbors…

● Analogy: sound wave spreading from a starting point, going outwards in 
all directions; mold on a piece of food spreading outwards so that it 
eventually covers the whole surface

one valid BFS traversal: 10, 5, 15, 3, 8, 12, 18, 2, 4, 7, 9, 14, 6
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BFS for (Unweighted) Shortest Path Problem

● BFS can find shortest paths in an unweighted graph
○ BFS visits nodes in order of their distance from the source node, ensuring the 

first path found to any node is the shortest possible path in terms of the number 
of edges

○ Time complexity: O(V+E)

● Advantages:
○ Optimal for unweighted graphs
○ Simple implementation

● Limitations:
○ Only works for unweighted graphs

(Unweighted) Shortest Path Problem

Given source node s (start) and a target 
node t, how long is the shortest path from 

s to t? What edges makeup that path?
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Keep track of how far each node is from the start with 
two maps
SD: Shortest Distance from source node
PN: Previous Node stores backpointers: each node 
remembers what node was used to arrive at it

...

Map<Node, Edge> PN = ...

Map<Node, Double> SD = ...

PN.put(start, null);

SD.put(start, 0.0);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

PN.put(to, edge);

SD.put(to, SD.get(from) + 1);

perimeter.add(to);

visited.add(to);

}

}

}

return PN;

}

BFS for Shortest Paths in an Unweighted Graph

A

B

E

C

D

start
VISITED

PERIMETER

PN

SD
0

1

1

2

2

A B C D E
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Shortest Path Tree

The table of SD/PN encodes the Shortest Path Tree 
(SPT), which encodes the shortest path and 
distance from the start node to every other node

Shortest path to any node can be obtained from 
SPT

○Length of shortest path from A to D?
■ Lookup in SD map: 2

○What’s the shortest path from A to D?
■ Build the path backwards from PN: start at D, follow backpointer to B, follow 

backpointer to A – the shortest path is ABD

Node SD PN

A 0 /

B 1 A

C 1 A

D 2 B or C

E 2 C

A

B

E

C

D

start
VISITED

PN

SD
0

1

1

2

2

Depending on the order of visiting A’s 
successors with BFS: either B before C, or 
C before B, D’s PN may be either B or C
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BFS Time Complexity

• Using Adjacency List: O(V + E)
• Each node is processed exactly once: O(V)
• Each edge is examined exactly once: O(E)
• Total complexity: O(V + E)
• Efficient for sparse graphs (where E is much less than V²)

• Using Adjacency Matrix: O(V²)
• For each node, we must check all possible edges to other vertices
• This results in O(V²) operations regardless of the actual number of edges
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BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm
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Dijkstra’s Algorithm

● Named after its inventor, Edsger W. Dijkstra 
(1930-2002)
○ 1972 Turing Award

● Solves the Shortest Path Problem on a 
weighted graph

A

B

C

D

14.0

12.0

9000.2

1.5

start

target
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Edge Relaxation
Relax edge e = u→v with weight w(u,v). (We also write edge uv to denote u→v)

▪ SD[u] is length of shortest known path from s to u. 

▪ SD[v] is length of shortest known path from s to v. 

▪ PN[v] is the previous node on shortest known path from s to v. 

▪ If e = u→v gives shorter path to v through u, update SD[v] and PN[v].

▪ SD[v] = min(SD[v], SD[u] + w(u,v)); PN[v]=u 

Previous shortest path from s to v 

goes through node x, with cost of 7.2

s

3.1

After relaxing edge uv, the shortest 

path from s to v is updated to go 

through node u, with cost of 4.4

1.3

u

v

private void relax(DirectedEdge e)

{

Int u = e.from(), v = e.to();

if (SD[v] > SD[u] + w(u,v))

{

SD[v] = SD[u] + w(u,v);  

PN[v] = u;

}

}

7.2

PN[v]=u

OLD PN(v)=x, SD[v] = 7.2 > SD[u] + w(u,v) = 

3.1+1.3 = 4.4

NEW SD[v]  SD[u] + w(u,v) = 4.4, PN[v] = u

x
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Generic Shortest-paths Algorithm
Generic algorithm (to compute SPT from s)

For each node v: SD[v] = ∞. 

For each node v: PN[v] = null. 

SD[s] = 0. 

Repeat until done:

- Relax any edge. 

Proposition. Generic algorithm computes SPT (if it exists) from s. 

Proof. 

▪ Throughout algorithm, SD[v] is the length of a simple path from s to v (and PN[v] is its previous node on 

the path). 

▪ Each successful relaxation decreases SD[v] for some v. 

▪ The entry SD[v] can decrease at most a finite number of times.

Efficient implementations. How to choose which edge to relax?

▪ Ex 1. Dijkstra’s algorithm. (no negative weights)

▪ Ex 2. Topological sort. (DAG with no directed cycles)

▪ Ex 3. Bellman–Ford algorithm. (negative weights, can detect negative cycles) 
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Dijkstra's Algorithm

● Initialization:
○ Set the distance to the source node as 0 and to all other nodes as infinity.
○ Mark all nodes as unvisited and store them in a priority queue.

● Main Loop:
○ Visit the unvisited node u with the shortest known distance (minimum SD)  from the queue.
○ For each unvisited neighbor node v of node u, calculate its tentative distance through the 

current node. If this distance is smaller than the previously recorded distance, update it with 
edge relaxation for edge uv.

○ Mark the current node as visited once all its neighbors are processed.

● Termination:
○ The algorithm continues until all reachable nodes are visited.

● Notes:
○ Greedy and optimal algorithm: any node that has been visited should have its shortest 

distance to the source. 
○ It works for both undirected and directed graphs. The only difference is how to get neighbors

of node v, as each undirected edge is treated as two directed edges in  both directions.
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Dijkstra’s Algorithm: Idea

● Initialization:
○ Start node has distance 0; all other nodes have distance ∞

● At each step:
○ Pick the closest unknown node v (with smallest SD)
○ Add it to the “cloud” of known nodes (set of nodes whose shortest distance 

has been computed)
○ Update “best-so-far” distances for nodes with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOWN

UNKNOWN

PERIMETER

start
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dijkstraShortestPath(G graph, V start)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS, 
“known” is set of nodes that 

have been visited and we 
know shortest paths to them

Init all paths to infinite.

Greedy algo: visit closest 
node first

Consider all nodes reachable 
from the newly-added node 

u: would getting there 
through u be a shorter path 

than their current path 
length? 

• Suppose we already visited B, SD[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• Relaxation updates SD[D], PN[D]

C D

B
A

KNOWN

PERIMETER

0

2

3 7??

2

3 5

1

start

u v

Set known; Map PN, SD;

initialize SD with all nodes mapped to ∞, except start to 0

while (there are unknown nodes):

let u be the closest unknown node

known.add(u);

for each edge (u,v) from u with weight w:

oldDist = SD.get(v)      // previous best path to v

newDist = SD.get(u) + w  // what if we went through u?

if (newDist < oldDist):

SD.put(v, newDist)

PN.put(v, u)
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Dijkstra’s Algorithm: Key Properties

Once a node is visited (marked 
known), its shortest path is known. 
Can reconstruct path by following 
back-pointers (in PN map)

dijkstraShortestPath(G graph, V start)

Set known; Map PN, SD;

initialize SD with all nodes mapped to ∞, except start to 0

while (there are unknown nodes):

let u be the closest unknown node

known.add(u)

for each edge (u,v) to unknown v with weight w:

oldDist = SD.get(v)      // previous best path to v

newDist = SD.get(u) + w  // what if we went through u?

if (newDist < oldDist):

SD.put(v, newDist)

PN.put(v, u)

While a node is not yet 
visited/known, another shorter path 
might be found. We call this update 
relaxing the distance because it only 
ever shortens the current best path

If we only need path to a specific 
node, can stop early once that node 
is visited, and return a partial shortest 
path tree
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Dijkstra’s Algorithm: Runtime

dijkstraShortestPath(G graph, V start)

Set known; Map PN, SD;

initialize SD with all nodes mapped to ∞, except start to 0

while (there are unknown nodes):

let u be the closest unknown node

known.add(u)

for each edge (u,v) to unknown v with weight w:

oldDist = SD.get(v)      // previous best path to v

newDist = SD.get(u) + w  // what if we went through u?

if (newDist < oldDist):

SD.put(v, newDist)

PN.put(v, u)

update distance in list of unknown nodes

O(V)

O(V)

O(log V) using binary 
min-heap implementation 

of a priority queue

O(E) 

O(log V)  

Initialization: O(V)
Extracting nodes: O(V log V)
Edge relaxations: O(E log V)
Total runtime: O((V+E) log V)
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Greedy Algorithms

● A greedy algorithm makes the locally optimal choice at each step 
● Dijkstra’s is “greedy” because once a node is marked as visited, it is 

never revisited
○ This is why Dijkstra’s does not work with negative edge weights

● In the lecture and exams, when there are multiple possible orders of 
visiting the next node (with equal SD value), select the next node in 
alphabetical or numerical order
● The intermediate steps will depend on the order, but final result will be the same

● Other examples of greedy algorithms are:
○ Kruskal and Prim’s minimum spanning tree algorithms



19

Resolving Ambiguities

● As There are typically multiple possible orders of the same 
graph. In the lecture and exams, we often use the 
following rule to resolve any ambiguities:

● “When there are multiple possible orders of visiting the 
next node, select the next node in alphabetical or 
numerical order.”
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Example I

20

Node SD PN

A 0 /

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

∞ ∞ ∞

∞

∞

∞

∞

0

start

Visit Order

Start from the source node A 
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Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2?? ∞ ∞

1??

4??

∞

∞

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E ∞

F ∞

G ∞

H ∞

Visit Order

A

?? Means that SDs have not yet been 

finalized, as a shortcut may be found in 

the future.

Visit C next, since C has the smallest SD 

of 1 among all unknown (unvisited) nodes
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Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2?? ∞ ∞

1

4??

∞

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F ∞

G ∞

H ∞

Visit Order

A, C

Visit B next, since B has the smallest SD 

of 2 among all unvisited nodes
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Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4?? ∞

1

4??

∞

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F 4 B

G ∞

H ∞

Visit Order

A, C, B

We can choose to visit either D or F next, since 

they have equal smallest SD of 4 among all 

unvisited nodes. Let’s visit D in alphabetical order
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Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4?? ∞

1

4

∞

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F 4 B

G ∞

H ∞

Visit Order

A, C, B, D

Visit F next, since F has the smallest SD 

of 4 among all unvisited nodes
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Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7??

1

4

∞

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F 4 B

G ∞

H 7 F

Visit Order

A, C, B, D, F

Visit H next, since H has the smallest SD 

of 7 among all unvisited nodes
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Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8??

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F 4 B

G 8 H

H 7 F

Visit Order

A, C, B, D, F, H

Visit G next, since G has the smallest SD of 8 

among all unvisited nodes
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Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 11 C G

F 4 B

G 8 H

H 7 F

Visit Order

A, C, B, D, F, H, G

We found a shortcut to E going through G, so we 

update SD and PN for E. Visit E next, since it is 

the last unvisited node
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Example I Final

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 11 C G

F 4 B

G 7 8 8 H

H 7 F

Visit Order

A, C, B, D, F, H, G, E

All nodes have now been visited and are known
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Example I: Interpreting the Results

How to get the shortest path from A to E?

●Follow PN backpointers to get path 
ABFHGE

Visit Order

A, C, B, D, F, H, G, E

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 11 G

F 4 B

G 8 H

H 7 F
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Given this directed graph, run Dijkstra’s 
Algo to find shortest paths starting from 
source node A. Give the node visit order, 
and fill in this table of SN (Shortest 
Distance) and PN (Previous Node), 
crossing out old SD and PN as you find a 
shortcut path with smaller SD

Example I Exam Question and Answer

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

start

Visit Order
A, C, B, D, F, H, G, E

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 11 C G

F 4 B

G 7 8 8 H

H 7 F
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● Dijkstras Shortest Path Algorithm Explained | With Example | Graph 
Theory
○ https://www.youtube.com/watch?v=bZkzH5x0SKU

Example II

https://www.youtube.com/watch?v=bZkzH5x0SKU
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Initialize
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Visit node A

OLD SD[B] = ∞ > SD[A] + w(A,B) = 0+2 = 2

NEW SD[B]  SD[A] + w(A,B) = 2, PN[B] = A

OLD SD[D] = ∞ > SD[A] + w(A,D) = 0+8 = 8

NEW SD[D]  SD[A] + w(A,D) = 8, PN[D] = A
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Visit node B

OLD SD[D] = 8 > SD[B] + w(B,D) = 2+5 = 7

NEW SD[D]  SD[B] + w(B,D) = 7, PN[D] = B

OLD SD[E] = ∞ > SD[B] + w(B,E) = 2+6 = 8

NEW SD[E]  SD[B] + w(B,E) = 8, PN[E] = B
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Visit node D

OLD SD[E] = 8 < SD[D] + w(D,E) = 7+3 = 10

No update, SD[E] stays 8, PN[E] stays B

OLD SD[F] = ∞ > SD[D] + w(D,F) = 7+2 = 9

NEW SD[F]  SD[D] + w(D,F) = 9, PN[F] = D
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Visit node E

OLD SD[C] = ∞ > SD[E] + w(E.C) = 8+9 = 17

NEW SD[C]  SD[E] + w(E.C) = 17, PN[C] = E

OLD SD[F] = 9 = SD[E] + w(E.F) = 8+1 = 9

No update, SD[F] stays 9, PN[F] = D (You can also update PN[F] = E.)
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Visit node F

OLD SD[C] = 17 > SD[F] + w(F,C) = 9+3 = 12

NEW SD[C]  SD[F] + w(F,C) = 12, PN[C] = F 
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Visit node C

Nothing changes, since C has no unvisited neighbor nodes
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End of Algorithm

● The table now contains the SD (shortest distance) to each 
node N from the source node A, and its PN (previous node) in 
the shortest path
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Getting the Shortest Path from A to C

● C’s previous node is F; F’s previous node is D; D’s previous 
node is B; B’s previous node is A

● Shortest Path from A to C is ABDFC
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Node SD PN

A 0 /

B 2 A

C 17 12 E F

D 8 7 A B

E 8 B

F 9 D

Given this directed graph, run Dijkstra’s 
Algo to find shortest paths starting from 
source node A. Give the node visit order, 
and fill in this table of SN (Shortest 
Distance) and PN (Previous Node), 
crossing out old SD and PN as you find a 
shortcut path with smaller SD

Visit Order
A, B, D, E, F, C

Example II Exam Question and Answer



1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

choose source node 0
relax all edges adjacent from 0
choose node 1  
relax all edges adjacent from 1

v       SD 

0

1

2

3

4

5

6

7

∞

∞
∞

∞

∞

∞

∞

∞

v       PN

0

1

2

3

4

5

6

7

-

-

-

-

-

-

-

-

0

5

17

20

9

14

29

8

0

1

1

0

7

4

0

choose node 7
relax all edges adjacent from 7
choose node 4
relax all edges adjacent from 4

15

17

13

26

7

2

4

5

choose node 5
relax all edges adjacent from 5
choose node 2
relax all edges adjacent from 2
choose node 3
relax all edges adjacent from 3
choose node 6
relax all edges adjacent from 6

14

25

5

2

Example III

Node SD PN

0 0 /

1 5 0

2 17 15 14 1 7 5

3 20 17 1 2

4 9 0

5 14 13 7 4

6 29 26 25 4 5 2

7 8 0

Visit Order
0, 1, 7, 4, 5, 2, 3, 6

42



BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm

43



▪ Suppose that a graph is a Directed Acyclic Graph 

(DAG), i.e., it has no directed cycles. It is easier 

and faster to find shortest paths than in a general 

digraph.

▪ Idea: Consider nodes in topological order. Relax 

all outgoing edges from that node

▪ Time Complexity: O(V+E). After finding 

topological order, the algorithm process all nodes 

and for every node, it runs a loop for all adjacent 

nodes. Total adjacent nodes in a graph is O(E), 

so the double for loop has complexity O(V+E). 

Therefore, overall time complexity is O(V+E)

Topological Sort for Shortest Paths in DAG 

Topological Sort-based SPT for a DAG

For each node v: SD [v] = ∞. 

For each node v: PN[v] = null. 

SD [s] = 0. 

Create a topological order of the DAG 

For every node u in topological order:

- Relax all its outgoing edges 

44



Topological Sort Example I
▪ Consider this DAG, use Topological Sort to find Shortest Paths in DAG, 

considering the topological order ADBCEF (Different topological orders will 

result in different algorithm process, but final results will be the same)

45
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Visit A

Visit D

Initialize
Here we use distTo to denote 

SD, edgeTo to denote PN

Here nodes B 

and D both have 

distTo equal to 

1, so we may 

visit either one 

next. Suppose 

we choose to 

visit D next.

46



Visit C

Visit E

Visit B

8 CC
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Node SD PN

A 0 /

B 1 A

C 7 B

D 1 A

E 2 -13 D C

F 8 -12 C E

Visit Order
A, D, B, C, E, F

Topological Sort Example I: Final Answer (for 

Exams

48
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1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

V      SD

0

1

2

3

4

5

6

7

∞

∞
∞

∞

∞

∞

∞

∞

v       PN

0

1

2

3

4

5

6

7

-

-

-

-

-

-

-

-

0

5

17

20

9

13

29

8

0

1

1

0

4

4

0

15

17

26

7

2

5

14

25

5

2

0  1  4  7  5  2  3  6

▪ Consider this DAG and a topological order 01475236

Topological Sort Example II

Node SD PN

0 0 /

1 5 0

2 17 15 14 1 7 5

3 20 17 1 2

4 9 0

5 13 4

6 29 26 25 4 5 2

7 8 0

Visit Order
0, 1, 4, 7, 5, 2, 3, 6
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Longest Paths in a DAG

▪ Formulate as a shortest paths 

problem in edge-weighted DAGs.

▪ Negate all weights

▪ Find shortest paths

▪ Negate all the weights and path 

lengths

▪ For general graphs, the longest 

paths problem is an unsolved 

problem (exponential time at best)

shortest paths input

5->4 0.35 5->4 -0.35
4->7 0.37 4->7 -0.37

5->7 0.28 5->7 -0.28

5->1 0.32 5->1 -0.32

4->0 0.38 4->0 -0.38

0->2 0.26 0->2 -0.26

3->7 0.39 3->7 -0.39

1->3 0.29 1->3 -0.29

7->2 0.34 7->2 -0.34

6->2 0.40 6->2 -0.40

3->6 0.52 3->6 -0.52

6->0 0.58 6->0 -0.58

6->4 0.93 6->4 -0.93

longest paths input

s
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BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm

51
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Bellman-Ford Algorithm
● A shortest path algorithm that works with negative edge 

weights

● There can be at most V - 1 edges in our shortest path
○ If there are V or more edges in a path that means there’s a cycle/repeated 

node
● Run V - 1 iterations of shortest path analysis through the graph

○ Repeatedly revisit and update SD and PN 
● Look at each node’s outgoing edges in each iteration
● It is slower than Dijkstra’s because it will revisit previously 

assessed nodes
● Can terminate early when all SD values have converged
● The order of edge relaxations affects algorithm efficiency but 

not correctness
● Time complexity: 

● Worst Case: O(VE)
○ Average Case: O(VE)

● If the graph is dense or complete, the value of E becomes 
O(V2). So overall time complexity becomes O(V3)

● Bellman-Ford, by Michael Sambol
● https://www.youtube.com/watch?v=9PHkk0UavIM
● https://www.youtube.com/watch?v=obWXjtg0L64

Bellman–Ford algorithm 

For each node v: SD [v] = ∞. 

For each node v: PN[v] = null. 

SD [s] = 0. 

Repeat V-1 times:

- Relax each edge. 

https://www.youtube.com/watch?v=obWXjtg0L64
https://www.youtube.com/watch?v=obWXjtg0L64
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Bellman-Ford Example

53

node SD PN

S 0

A ∞

B ∞

C ∞

D ∞

E ∞

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

∞ ∞

∞

∞

∞

0
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Bellman-Ford Example

54

node SD PN

S 0 -

A 10 S

B 10 C

C 12 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 1 - for each node’s outgoing edge, does that 

give us a shorter way to get to a new node?
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Bellman-Ford Example

55

node SD PN

S 0 -

A 10 S

B 10 C

C 12 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 2 - re-examining outgoing edges, can we 

improve the distance to any given node?

5 D

8 D
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Bellman-Ford Example

56

node SD PN

S 0 -

A 5 D

B 10 C

C 8 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 3 - repeat!

7

* With a shortened distance to A 

from iteration 2 we can improve 

the distance to C
5

* With a shortened distance to C 

in this iteration we can improve 

distance to B
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Bellman-Ford Example

57

node SD PN

S 0 -

A 5 D

B 5 C

C 7 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 4 - repeat!

No changes!

this means we can stop early

I will not ask you to run Bellman-Ford algo in the final exam
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Bellman-Ford Example II

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

v  SD[]

0

1

2

3

4

5

6

7

∞

∞
∞

∞

∞

∞

∞

∞

v  PN[]

0

1

2

3

4

5

6

7

-

-

-

-

-

-

-

-

0

5

17

20

9

13

28

8

0

1

1

0

4

2

0

14

17

26

5

2

5

25

2

Iter 1 Iter 2 Iter 3 (converged, no further changes, so stop here)

Reverse order of edge 

relaxations will result in 

slower convergence 

I will not ask you to run Bellman-Ford algo in the final exam
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A Toy Example with Negative Edge Weights

● Let’s run Dijkstra’s algorithm, Topological Sort, and Bellman Ford 
Algorithm on this DAG with a negative edge weight

A

B

C
1

10

D

-20

1

E1
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N SD PN

A 0

B ∞

C ∞

D ∞

E ∞

Visit A Visit C

N SD PN

A 0

B 10 A

C 1 A

D ∞

E ∞

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E ∞

Visit D

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E 3 D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E 3 D

Visit E

E’s SD of 3 
is Incorrect

Visit B

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E 3 D

Visit E

Dijkstra’s algorithm does not work for a graph w/ 
negative edge weights

A

B

C
1

10

D

-20

1

E1
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● Dijkstra’s Algorithm is greedy: each node is visited once, and any 
node that has been visited should have its shortest distance from 
the source.

● After visiting A, C, D, we have computed D’s SD is 2, but after 
visiting B, D’s SD is updated to -10, which violates the greedy 
optimal assumption. 

● Even if we update D’s SD to be -10, its downstream node E’s SD 
will not be updated.

● We cannot visit B before D, since we must visit the closest 
unknown node (with smallest SD), which is D. (Unlike topological 
sort, which visits B before D and gets the correct result,)

Dijkstra’s algorithm does not work for a graph w/ 
negative edge weights
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Topological sort works for a DAG w/ negative 
edge weights

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞

C ∞

D ∞

E ∞

Visit A Visit B

N SD PN

A 0

B 10 A

C 1 A

D ∞

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

E1

Visit C

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit E

Consider topological order ABCDE
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N SD PN

A 0

B ∞

C ∞

D ∞

E ∞

Visit A Visit C

N SD PN

A 0

B 10 A

C 1 A

D ∞

E ∞

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E ∞

Visit B

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit E

Consider topological order ACBDE

Topological sort works for a DAG w/ negative 
edge weights

A

B

C
1

10

D

-20

1

E1
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A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞

C ∞

D ∞

E ∞

Iter 1 Iter 2

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

No change
converged

E1

Suppose we visit nodes in this 
order at each iteration: A, B, C, D, 
E.  We run for 2 iterations (less 
than V-1=3 iterations), and 
converge to the correct SPT

Bellman Ford works for a graph with negative 
edge weights
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Dijkstra's Algorithm vs. Bellman-Ford Algorithm

● Dijkstra's Algorithm:
○ Uses a priority queue to select the next node to process.

○ Greedily selects the node with the smallest tentative distance to source node.

○ Works only on graphs with non-negative edge weights.

● Bellman-Ford Algorithm:
○ Iteratively relaxes all edges V-1 times.

○ Can handle graphs with negative edge weights, and can detect negative cycles.

■ Relax all the edges one more time, i.e. the V-th time. Negative cycle exists if any edge can be 
further relaxed

■ It can find any negative cycle that is reachable from source node s (but not negative cycles that 
are unreachable from s).

■ If there is a negative cycle that is reachable from source node s, then any paths that go through 
the cycle has distance −∞, since the cost can be reduced by traversing the cycle infinite number 
of times. 

● Dijkstra's algorithm is faster and more efficient for graphs with non-negative 
weights; Bellman-Ford Algorithm is more versatile as it can handle negative 
weights and detect negative cycles, albeit at the cost of lower efficiency



BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm

66



Johnson’s Algorithm for all-pairs shortest paths

▪ Idea: run Dijkstra’s Single Source shortest path algorithm with every node 

as the source.

▪ Dijkstra’s algorithm doesn’t work for negative weight edge. The idea of 

Johnson’s algorithm is to reweight all edges and make them all positive, 

then run Dijkstra’s algorithm with every node as the source.

▪ We can run Bellman-Ford algorithm with every node as the source without reweighting, 

since Bellman-Ford algorithm can handle negative edge weights, but the time 

complexity is much higher than running Dijkstra’s algorithm.

▪ How to transform a given graph into a graph with non-negative weight 

edges without changing the shortest paths? 

67



Example I: Increase weight of every edge by a constant?

▪ True or False: In a weighted graph, assume that the shortest path from source s to 
destination t is correctly calculated using a shortest path algorithm. If we increase 
weight of every edge by a constant, the shortest path always remains same.

▪ False. See the following counterexample. There are 4 edges sa, ab, bt and st with 
weights 1, 1, 1 and 4 respectively. The shortest path from s to t is sabt with cost 3. If 
we increase weight of every edge by 1, the shortest path changes to st with cost 5.

▪ Similarly for negative weight edges. There are 4 edges sa, ab, bt and st with 
weights -1, -1, -1 and -2 respectively. The shortest path from s to t is sabt with cost -
3. If we increase weight of every edge by 1, the shortest path changes to st with 
cost -1.

as b t
1 1 1

4

as b t
2 2 2

5

as b t
- 1

-2

as b t
0 0 0

-1

- 1 - 1
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Double the original weights?

▪ True or False: Is the following statement valid about shortest paths? Given a 

graph, suppose we have calculated shortest path from a source to all other 

vertices. If we modify the graph such that weights of all edges becomes 

double of the original weight, then the shortest path remains same, and only 

the total weight of path changes.

▪ True. The shortest path remains same. It is like if we change unit of distance 

from meter to kilo meter, the shortest paths do not change. But this does not 

make weights positive.
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Johnson’s algorithm for All-pairs Shortest Paths
1. Let the given graph be G. Add a dummy source node d, and add edges with 

weight 0 from d to all vertices of G. Let the modified graph be G’.

2. Run Bellman-Ford on G’ with d as the source. Let the shortest distances 
calculated by Bellman-Ford be h[0], h[1], .. h[V-1]. If we find a negative weight 
cycle, then return. (We run Bellman-Ford algorithm since it can handle negative 
edge weights.)

3. Reweight the edges of the original graph. For each edge (u, v), assign the new 
weight as w'(u, v) = w(u, v) + h[u] – h[v], which is greater than or equal to 0.

4. Remove the added dummy node d, and run Dijkstra’s algorithm with every 
node as the source to obtain all-pairs shortest paths. Subtract h[s] – h[t] from 
length of each shortest path from s to t to obtain the lengths of shortest paths in 
the original graph.

Time complexity: Johnson’s algorithm uses both Dijkstra and Bellman-Ford as 
subroutines. The main steps in the algorithm are Bellman-Ford Algorithm called 
once and Dijkstra called V times. Time complexity of Bellman Ford is O(VE) and 
time complexity of Dijkstra is O((V + E) log V). So overall time complexity is O((V2

+ VE) log V). 
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Johnson’s Algorithm: Proof
▪ The following property is always true since h[] values are the shortest 

distances from the dummy source code d:
▪ h[v] <= h[u] + w(u, v) 

▪ The property states that the shortest distance from u to v must be 
smaller than or equal to the shortest distance from s to u plus edge 
weight w(u, v). 
▪ If h[v] > h[u] + w(u, v), then Bellman-Ford with starting node d will set h[v] = h[u] 

+ w(u, v), after visiting u and performing edge relaxation

▪ Because of this inequality, the new weights w’(u, v) = w(u, v) + h[u] –
h[v] must be greater than or equal to 0. 

▪ After reweighting, all weights become non-negative, and lengths of all 
paths between any two vertices s and t is increased by the same 
amount, hence the shortest paths remain the same as the original graph 
before reweighting.
▪ Consider any path between two vertices s and t, the weight of every path is 

increased by h[s] – h[t], since the added h[] values for all intermediate vertices 
on the path from s to t cancel each other out

▪ Consider two path between s and t: s->x->y->t, and s->x’->y’->t. Distance of the 
1st path s->x->y->t is increased by h(s)-h(x)+h(x)-h(y)+h(y)-h(t)=h(s)-h(t), and 
distance of the 2nd path s->x’->y’->t is increased by h(s)-h(x’)+h(x')-h(y’)+h(y’)-
h(t)=h(s)-h(t)

u v
w(u,v)

h(u)

d

h(v)
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Johnson’s Algorithm Example I
▪ Add a dummy source node d and add edges with weight 0 from s to all 

vertices of the original graph. 

▪ Run Bellman-Ford algorithm to calculate the shortest distances from d to all 
other vertices. The shortest distances from d to s, a, b and t are
▪ h[s]=0 (path d→0), h[a]=-1 (path d→s→a), h[b]=-2 (path d→s→a→b), h[t]=-3 (path 

d→s→a→b→t) 

▪ Remove node d and reweight each edge uv as: w'(u, v) = w(u, v) + h[u] – h[v].
▪ w’(s, a) = w(s, a) + h[s] – h[a] = -1 + 0 - (-1) = 0

▪ w’(a, b) = w(a, b) + h[a] – h[b] = -1 + -1 - (-2) = 0

▪ w’(b, t) = w(b, t) + h[b] – h[t] = -1 + -2 - (-3) = 0

▪ w’(s, t) = w(s, t) + h[s] – h[t] = -2 + 0 - (-3) = 1

as b t
- 1

-2

- 1 - 1

0 0 0 0

h[s]=0 h[a]=-1 h[b]=-2 h[t]=-3

d

as b t
- 1

-2

- 1 - 1
as b t

0

1

0 0

Reweighted graphOriginal graph

N h(N)

s 0

a -1

b -2

t -3

Shortest paths 
starting from 
dummy node

Original graph
w/ dummy node
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Johnson’s Algorithm Example I Con’t
▪ Since all weights are now greater than or equal to 0, run Dijkstra’s shortest path algorithm on 

the reweighted graph with every node as the source. Let’s start from source node s for 
example, and obtain the shortest paths table for the reweighted graph

▪ We then subtract h[s] – h[t] from length of each shortest path from s to t to obtain the shortest 
paths table for the original graph (PN stays the same)
▪ SD(a) = SD’(a) - (h[s] - h[a]) = 0 - (0 - (-1)) = -1

▪ SD(b) = SD’(b) - (h[s] - h[b]) = 0 - (0 - (-2)) = -2

▪ SD(t) = SD’(t) - (h[s] - h[t]) = 0 - (0 - (-3)) = -3

N SD PN

s 0 /

a -1 s

b -2 a

t -3 b

N SD’ PN

s 0 /

a 0 s

b 0 a

t 0 b

Shortest paths from s 
in reweighted graph

Shortest paths from s 
in original graph

as b t
- 1

-2

- 1 - 1

Original graph

as b t
0

1

0 0

Reweighted graph

N h(N)

s 0

a -1

b -2

t -3

Shortest paths 
starting from 
dummy node

h[s]=0 h[a]=-1 h[b]=-2 h[t]=-3
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Johnson’s Algorithm Example II
▪ Add a dummy source node d and add edges with weight 0 from s to all vertices of 

the original graph. 

▪ Run Bellman-Ford algorithm to calculate the shortest distances from d to all other 
vertices. The shortest distances from d to 0, 1, 2 and 3 are
▪ h[0]=0 (path d→0), h[1]=-5 (path d→0→1), h[2]=-1 (path d→0→1→2), h[3]=0 (path d→3) 

▪ Remove node d and reweight each edge uv as: w'(u, v) = w(u, v) + h[u] – h[v].
▪ w’(0,1)=-5+0-(-5)=0, w’(1,2)=4+(-5)-(-1)=0, w’(2,3)=1+(-1)-0=0, w’(0,3)=3+0-0=3, 

w’(0,2)=2+0-(-1)=3

▪ Since all weights are now greater than or equal to 0, run Dijkstra’s algorithm on 
the reweighted graph with every node as the source 

h[0]=0 h[1]=-5

h[3]=0 h[2]=-1

d

Reweighted graphOriginal graph

N h(N)

0 0

1 -5

2 -1

3 0

Shortest paths 
starting from 
dummy node

Original graph
w/ dummy node 74



Johnson’s Algorithm Example II Con’t
▪ Let’s run Dijkstra’s algorithm starting from source node 0, and obtain the shortest paths table for the 

reweighted graph

▪ We then subtract h[s] – h[t] from length of each shortest path from s to t to obtain the shortest paths table 
for the original graph (PN stays the same)
▪ SD(1)=SD’(1)-(h[0]-h[1])=0-(0-(-5))=-5

▪ SD(2)=SD’(2)-(h[0]-h[2])=0-(0-(-1))=-1

▪ SD(3)=SD’(3)-(h[0]-h[3])=0-(0-0)=0)

N SD’ PN

0 0 /

1 0 0

2 0 1

3 0 2

N SD PN

0 0 /

1 -5 0

2 -1 1

3 0 2
Shortest paths from 0 
in reweighted graph

Shortest paths from 0 
in original graph

Reweighted graph Original graph

N h(N)

0 0

1 -5

2 -1

3 0

Shortest paths 
starting from 
dummy node

h[0]=0 h[1]=-5

h[3]=0 h[2]=-1
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Algorithm Applicability Worst-Case Complexity

Breadth First 
Search (BFS)

Unweighted, undirected or directed graph Adjacency List: O(V + E)
Adjacency Matrix: O(V²)

Dijkstra’s 
algorithm

Undirected or directed graph; no negative 
weights/cycles

O((V+E) log V)
(binary min-heap)

Topological 
Sort

Directed Acyclic Graph (DAG) (no cycles, 
negative weights OK)

O(V+E)

Bellman-Ford
algorithm

Directed graph with negative weights; 
undirected graph with no negative weights 
(since a negative weight edge forms a 
negative cycle by itself)

O(VE)

Johnson’s 
algorithm

Same as Bellman-Ford O((V2 + VE) log V)

Single Source Shortest-paths Algorithms 
Summary  

76



77

References
● Dijkstras Shortest Path Algorithm Explained | With Example | Graph Theory

○ https://www.youtube.com/watch?v=bZkzH5x0SKU

● Dijkstra's algorithm in 3 minutes
○ https://www.youtube.com/watch?v=_lHSawdgXpI

● Topological sort
○ https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/

● Bellman-Ford, Michael Sambol
○ https://www.youtube.com/watch?v=9PHkk0UavIM

○ https://www.youtube.com/watch?v=obWXjtg0L64

● Bellman Ford Shortest Path Algorithm, ByteQuest
○ https://www.youtube.com/watch?v=B5PmlJACZ9Y

● Shortest Path Algorithms Explained (Dijkstra's & Bellman-Ford), b001
○ https://www.youtube.com/watch?v=TtQi1LVVOUI

● Johnson’s algorithm for All-pairs shortest paths
○ https://www.geeksforgeeks.org/johnsons-algorithm/

● Johnson's Algorithm Explained, Basics Strong
○ https://www.youtube.com/watch?v=MV7EAD9zL64

○ @14:36 The 0->4 edge weight was incorrectly changed from 1 to 0

○ (Complexity analysis óf Dijkstra's algorithm is different since it is based on a different min-heap algorithm)

https://www.youtube.com/watch?v=bZkzH5x0SKU
https://www.youtube.com/watch?v=_lHSawdgXpI
https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/
https://www.youtube.com/watch?v=9PHkk0UavIM
https://www.youtube.com/watch?v=obWXjtg0L64
https://www.youtube.com/watch?v=B5PmlJACZ9Y
https://www.youtube.com/watch?v=TtQi1LVVOUI
https://www.geeksforgeeks.org/johnsons-algorithm/
https://www.youtube.com/watch?v=MV7EAD9zL64
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Full-Length Lectures
● [CSE 373 WI24] Lecture 15: Shortest Path

○ https://www.youtube.com/watch?v=L8nhMwhUn4U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT
_Nl&index=14

https://www.youtube.com/watch?v=L8nhMwhUn4U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=14
https://www.youtube.com/watch?v=L8nhMwhUn4U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=14
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