
1

Lecture 13

Shortest Paths

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures

2

BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm

3

Review: Graph traversal w/ DFS
● Depth First Search: go as far as you can down one path till you hit a dead
end (no neighbors, or no unvisited neighbors). Once you hit a dead end,
backtrack and try other edges that you have not tried yet

● Analogy of wandering a maze – if you get stuck at a dead end, trace your
steps backwards to the previous fork in the road, and try a different path

one valid DFS traversal: 10, 5, 3, 2, 4, 8, 7,6, 9, 15, 12, 14, 18

4

Review: Graph traversal w/ BFS
● Breadth First Search - traverse level by level, and visit 1-hop neighbors
before 2-hop neighbors before 3-hop neighbors…

● Analogy: sound wave spreading from a starting point, going outwards in
all directions; mold on a piece of food spreading outwards so that it
eventually covers the whole surface

one valid BFS traversal: 10, 5, 15, 3, 8, 12, 18, 2, 4, 7, 9, 14, 6

5

BFS for (Unweighted) Shortest Path Problem

● BFS can find shortest paths in an unweighted graph
○ BFS visits nodes in order of their distance from the source node, ensuring the

first path found to any node is the shortest possible path in terms of the number
of edges

○ Time complexity: O(V+E)

● Advantages:
○ Optimal for unweighted graphs
○ Simple implementation

● Limitations:
○ Only works for unweighted graphs

(Unweighted) Shortest Path Problem

Given source node s (start) and a target
node t, how long is the shortest path from

s to t? What edges makeup that path?

6

Keep track of how far each node is from the start with
two maps
SD: Shortest Distance from source node
PN: Previous Node stores backpointers: each node
remembers what node was used to arrive at it

...

Map<Node, Edge> PN = ...

Map<Node, Double> SD = ...

PN.put(start, null);

SD.put(start, 0.0);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

PN.put(to, edge);

SD.put(to, SD.get(from) + 1);

perimeter.add(to);

visited.add(to);

}

}

}

return PN;

}

BFS for Shortest Paths in an Unweighted Graph

A

B

E

C

D

start
VISITED

PERIMETER

PN

SD
0

1

1

2

2

A B C D E

7

Shortest Path Tree

The table of SD/PN encodes the Shortest Path Tree
(SPT), which encodes the shortest path and
distance from the start node to every other node

Shortest path to any node can be obtained from
SPT

○Length of shortest path from A to D?
■ Lookup in SD map: 2

○What’s the shortest path from A to D?
■ Build the path backwards from PN: start at D, follow backpointer to B, follow

backpointer to A – the shortest path is ABD

Node SD PN

A 0 /

B 1 A

C 1 A

D 2 B or C

E 2 C

A

B

E

C

D

start
VISITED

PN

SD
0

1

1

2

2

Depending on the order of visiting A’s
successors with BFS: either B before C, or
C before B, D’s PN may be either B or C

8

BFS Time Complexity

• Using Adjacency List: O(V + E)
• Each node is processed exactly once: O(V)
• Each edge is examined exactly once: O(E)
• Total complexity: O(V + E)
• Efficient for sparse graphs (where E is much less than V²)

• Using Adjacency Matrix: O(V²)
• For each node, we must check all possible edges to other vertices
• This results in O(V²) operations regardless of the actual number of edges

9

BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm

10

Dijkstra’s Algorithm

● Named after its inventor, Edsger W. Dijkstra
(1930-2002)
○ 1972 Turing Award

● Solves the Shortest Path Problem on a
weighted graph

A

B

C

D

14.0

12.0

9000.2

1.5

start

target

11

Edge Relaxation
Relax edge e = u→v with weight w(u,v). (We also write edge uv to denote u→v)

▪ SD[u] is length of shortest known path from s to u.

▪ SD[v] is length of shortest known path from s to v.

▪ PN[v] is the previous node on shortest known path from s to v.

▪ If e = u→v gives shorter path to v through u, update SD[v] and PN[v].

▪ SD[v] = min(SD[v], SD[u] + w(u,v)); PN[v]=u

Previous shortest path from s to v

goes through node x, with cost of 7.2

s

3.1

After relaxing edge uv, the shortest

path from s to v is updated to go

through node u, with cost of 4.4

1.3

u

v

private void relax(DirectedEdge e)

{

Int u = e.from(), v = e.to();

if (SD[v] > SD[u] + w(u,v))

{

SD[v] = SD[u] + w(u,v);

PN[v] = u;

}

}

7.2

PN[v]=u

OLD PN(v)=x, SD[v] = 7.2 > SD[u] + w(u,v) =

3.1+1.3 = 4.4

NEW SD[v]  SD[u] + w(u,v) = 4.4, PN[v] = u

x

12

Generic Shortest-paths Algorithm
Generic algorithm (to compute SPT from s)

For each node v: SD[v] = ∞.

For each node v: PN[v] = null.

SD[s] = 0.

Repeat until done:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Proof.

▪ Throughout algorithm, SD[v] is the length of a simple path from s to v (and PN[v] is its previous node on

the path).

▪ Each successful relaxation decreases SD[v] for some v.

▪ The entry SD[v] can decrease at most a finite number of times.

Efficient implementations. How to choose which edge to relax?

▪ Ex 1. Dijkstra’s algorithm. (no negative weights)

▪ Ex 2. Topological sort. (DAG with no directed cycles)

▪ Ex 3. Bellman–Ford algorithm. (negative weights, can detect negative cycles)

13

Dijkstra's Algorithm

● Initialization:
○ Set the distance to the source node as 0 and to all other nodes as infinity.
○ Mark all nodes as unvisited and store them in a priority queue.

● Main Loop:
○ Visit the unvisited node u with the shortest known distance (minimum SD) from the queue.
○ For each unvisited neighbor node v of node u, calculate its tentative distance through the

current node. If this distance is smaller than the previously recorded distance, update it with
edge relaxation for edge uv.

○ Mark the current node as visited once all its neighbors are processed.

● Termination:
○ The algorithm continues until all reachable nodes are visited.

● Notes:
○ Greedy and optimal algorithm: any node that has been visited should have its shortest

distance to the source.
○ It works for both undirected and directed graphs. The only difference is how to get neighbors

of node v, as each undirected edge is treated as two directed edges in both directions.

14

Dijkstra’s Algorithm: Idea

● Initialization:
○ Start node has distance 0; all other nodes have distance ∞

● At each step:
○ Pick the closest unknown node v (with smallest SD)
○ Add it to the “cloud” of known nodes (set of nodes whose shortest distance

has been computed)
○ Update “best-so-far” distances for nodes with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOWN

UNKNOWN

PERIMETER

start

15

dijkstraShortestPath(G graph, V start)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS,
“known” is set of nodes that

have been visited and we
know shortest paths to them

Init all paths to infinite.

Greedy algo: visit closest
node first

Consider all nodes reachable
from the newly-added node

u: would getting there
through u be a shorter path

than their current path
length?

• Suppose we already visited B, SD[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• Relaxation updates SD[D], PN[D]

C D

B
A

KNOWN

PERIMETER

0

2

3 7??

2

3 5

1

start

u v

Set known; Map PN, SD;

initialize SD with all nodes mapped to ∞, except start to 0

while (there are unknown nodes):

let u be the closest unknown node

known.add(u);

for each edge (u,v) from u with weight w:

oldDist = SD.get(v) // previous best path to v

newDist = SD.get(u) + w // what if we went through u?

if (newDist < oldDist):

SD.put(v, newDist)

PN.put(v, u)

16

Dijkstra’s Algorithm: Key Properties

Once a node is visited (marked
known), its shortest path is known.
Can reconstruct path by following
back-pointers (in PN map)

dijkstraShortestPath(G graph, V start)

Set known; Map PN, SD;

initialize SD with all nodes mapped to ∞, except start to 0

while (there are unknown nodes):

let u be the closest unknown node

known.add(u)

for each edge (u,v) to unknown v with weight w:

oldDist = SD.get(v) // previous best path to v

newDist = SD.get(u) + w // what if we went through u?

if (newDist < oldDist):

SD.put(v, newDist)

PN.put(v, u)

While a node is not yet
visited/known, another shorter path
might be found. We call this update
relaxing the distance because it only
ever shortens the current best path

If we only need path to a specific
node, can stop early once that node
is visited, and return a partial shortest
path tree

17

Dijkstra’s Algorithm: Runtime

dijkstraShortestPath(G graph, V start)

Set known; Map PN, SD;

initialize SD with all nodes mapped to ∞, except start to 0

while (there are unknown nodes):

let u be the closest unknown node

known.add(u)

for each edge (u,v) to unknown v with weight w:

oldDist = SD.get(v) // previous best path to v

newDist = SD.get(u) + w // what if we went through u?

if (newDist < oldDist):

SD.put(v, newDist)

PN.put(v, u)

update distance in list of unknown nodes

O(V)

O(V)

O(log V) using binary
min-heap implementation

of a priority queue

O(E)

O(log V)

Initialization: O(V)
Extracting nodes: O(V log V)
Edge relaxations: O(E log V)
Total runtime: O((V+E) log V)

18

Greedy Algorithms

● A greedy algorithm makes the locally optimal choice at each step
● Dijkstra’s is “greedy” because once a node is marked as visited, it is

never revisited
○ This is why Dijkstra’s does not work with negative edge weights

● In the lecture and exams, when there are multiple possible orders of
visiting the next node (with equal SD value), select the next node in
alphabetical or numerical order
● The intermediate steps will depend on the order, but final result will be the same

● Other examples of greedy algorithms are:
○ Kruskal and Prim’s minimum spanning tree algorithms

19

Resolving Ambiguities

● As There are typically multiple possible orders of the same
graph. In the lecture and exams, we often use the
following rule to resolve any ambiguities:

● “When there are multiple possible orders of visiting the
next node, select the next node in alphabetical or
numerical order.”

20

Example I

20

Node SD PN

A 0 /

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

∞ ∞ ∞

∞

∞

∞

∞

0

start

Visit Order

Start from the source node A

21

Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2?? ∞ ∞

1??

4??

∞

∞

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E ∞

F ∞

G ∞

H ∞

Visit Order

A

?? Means that SDs have not yet been

finalized, as a shortcut may be found in

the future.

Visit C next, since C has the smallest SD

of 1 among all unknown (unvisited) nodes

22

Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2?? ∞ ∞

1

4??

∞

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F ∞

G ∞

H ∞

Visit Order

A, C

Visit B next, since B has the smallest SD

of 2 among all unvisited nodes

23

Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4?? ∞

1

4??

∞

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F 4 B

G ∞

H ∞

Visit Order

A, C, B

We can choose to visit either D or F next, since

they have equal smallest SD of 4 among all

unvisited nodes. Let’s visit D in alphabetical order

24

Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4?? ∞

1

4

∞

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F 4 B

G ∞

H ∞

Visit Order

A, C, B, D

Visit F next, since F has the smallest SD

of 4 among all unvisited nodes

25

Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7??

1

4

∞

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F 4 B

G ∞

H 7 F

Visit Order

A, C, B, D, F

Visit H next, since H has the smallest SD

of 7 among all unvisited nodes

26

Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8??

12??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 C

F 4 B

G 8 H

H 7 F

Visit Order

A, C, B, D, F, H

Visit G next, since G has the smallest SD of 8

among all unvisited nodes

27

Example I

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11??

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 11 C G

F 4 B

G 8 H

H 7 F

Visit Order

A, C, B, D, F, H, G

We found a shortcut to E going through G, so we

update SD and PN for E. Visit E next, since it is

the last unvisited node

28

Example I Final

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 11 C G

F 4 B

G 7 8 8 H

H 7 F

Visit Order

A, C, B, D, F, H, G, E

All nodes have now been visited and are known

29

Example I: Interpreting the Results

How to get the shortest path from A to E?

●Follow PN backpointers to get path
ABFHGE

Visit Order

A, C, B, D, F, H, G, E

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11

0

start

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 11 G

F 4 B

G 8 H

H 7 F

30

Given this directed graph, run Dijkstra’s
Algo to find shortest paths starting from
source node A. Give the node visit order,
and fill in this table of SN (Shortest
Distance) and PN (Previous Node),
crossing out old SD and PN as you find a
shortcut path with smaller SD

Example I Exam Question and Answer

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

start

Visit Order
A, C, B, D, F, H, G, E

Node SD PN

A 0 /

B 2 A

C 1 A

D 4 A

E 12 11 C G

F 4 B

G 7 8 8 H

H 7 F

31

● Dijkstras Shortest Path Algorithm Explained | With Example | Graph
Theory
○ https://www.youtube.com/watch?v=bZkzH5x0SKU

Example II

https://www.youtube.com/watch?v=bZkzH5x0SKU

32

Initialize

33

Visit node A

OLD SD[B] = ∞ > SD[A] + w(A,B) = 0+2 = 2

NEW SD[B]  SD[A] + w(A,B) = 2, PN[B] = A

OLD SD[D] = ∞ > SD[A] + w(A,D) = 0+8 = 8

NEW SD[D]  SD[A] + w(A,D) = 8, PN[D] = A

34

Visit node B

OLD SD[D] = 8 > SD[B] + w(B,D) = 2+5 = 7

NEW SD[D]  SD[B] + w(B,D) = 7, PN[D] = B

OLD SD[E] = ∞ > SD[B] + w(B,E) = 2+6 = 8

NEW SD[E]  SD[B] + w(B,E) = 8, PN[E] = B

35

Visit node D

OLD SD[E] = 8 < SD[D] + w(D,E) = 7+3 = 10

No update, SD[E] stays 8, PN[E] stays B

OLD SD[F] = ∞ > SD[D] + w(D,F) = 7+2 = 9

NEW SD[F]  SD[D] + w(D,F) = 9, PN[F] = D

36

Visit node E

OLD SD[C] = ∞ > SD[E] + w(E.C) = 8+9 = 17

NEW SD[C]  SD[E] + w(E.C) = 17, PN[C] = E

OLD SD[F] = 9 = SD[E] + w(E.F) = 8+1 = 9

No update, SD[F] stays 9, PN[F] = D (You can also update PN[F] = E.)

37

Visit node F

OLD SD[C] = 17 > SD[F] + w(F,C) = 9+3 = 12

NEW SD[C]  SD[F] + w(F,C) = 12, PN[C] = F

38

Visit node C

Nothing changes, since C has no unvisited neighbor nodes

39

End of Algorithm

● The table now contains the SD (shortest distance) to each
node N from the source node A, and its PN (previous node) in
the shortest path

40

Getting the Shortest Path from A to C

● C’s previous node is F; F’s previous node is D; D’s previous
node is B; B’s previous node is A

● Shortest Path from A to C is ABDFC

41

Node SD PN

A 0 /

B 2 A

C 17 12 E F

D 8 7 A B

E 8 B

F 9 D

Given this directed graph, run Dijkstra’s
Algo to find shortest paths starting from
source node A. Give the node visit order,
and fill in this table of SN (Shortest
Distance) and PN (Previous Node),
crossing out old SD and PN as you find a
shortcut path with smaller SD

Visit Order
A, B, D, E, F, C

Example II Exam Question and Answer

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

choose source node 0
relax all edges adjacent from 0
choose node 1
relax all edges adjacent from 1

v SD

0

1

2

3

4

5

6

7

∞

∞
∞

∞

∞

∞

∞

∞

v PN

0

1

2

3

4

5

6

7

-

-

-

-

-

-

-

-

0

5

17

20

9

14

29

8

0

1

1

0

7

4

0

choose node 7
relax all edges adjacent from 7
choose node 4
relax all edges adjacent from 4

15

17

13

26

7

2

4

5

choose node 5
relax all edges adjacent from 5
choose node 2
relax all edges adjacent from 2
choose node 3
relax all edges adjacent from 3
choose node 6
relax all edges adjacent from 6

14

25

5

2

Example III

Node SD PN

0 0 /

1 5 0

2 17 15 14 1 7 5

3 20 17 1 2

4 9 0

5 14 13 7 4

6 29 26 25 4 5 2

7 8 0

Visit Order
0, 1, 7, 4, 5, 2, 3, 6

42

BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm

43

▪ Suppose that a graph is a Directed Acyclic Graph

(DAG), i.e., it has no directed cycles. It is easier

and faster to find shortest paths than in a general

digraph.

▪ Idea: Consider nodes in topological order. Relax

all outgoing edges from that node

▪ Time Complexity: O(V+E). After finding

topological order, the algorithm process all nodes

and for every node, it runs a loop for all adjacent

nodes. Total adjacent nodes in a graph is O(E),

so the double for loop has complexity O(V+E).

Therefore, overall time complexity is O(V+E)

Topological Sort for Shortest Paths in DAG

Topological Sort-based SPT for a DAG

For each node v: SD [v] = ∞.

For each node v: PN[v] = null.

SD [s] = 0.

Create a topological order of the DAG

For every node u in topological order:

- Relax all its outgoing edges

44

Topological Sort Example I
▪ Consider this DAG, use Topological Sort to find Shortest Paths in DAG,

considering the topological order ADBCEF (Different topological orders will

result in different algorithm process, but final results will be the same)

45

1

Visit A

Visit D

Initialize
Here we use distTo to denote

SD, edgeTo to denote PN

Here nodes B

and D both have

distTo equal to

1, so we may

visit either one

next. Suppose

we choose to

visit D next.

46

Visit C

Visit E

Visit B

8 CC

47

Node SD PN

A 0 /

B 1 A

C 7 B

D 1 A

E 2 -13 D C

F 8 -12 C E

Visit Order
A, D, B, C, E, F

Topological Sort Example I: Final Answer (for

Exams

48

1

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

V SD

0

1

2

3

4

5

6

7

∞

∞
∞

∞

∞

∞

∞

∞

v PN

0

1

2

3

4

5

6

7

-

-

-

-

-

-

-

-

0

5

17

20

9

13

29

8

0

1

1

0

4

4

0

15

17

26

7

2

5

14

25

5

2

0 1 4 7 5 2 3 6

▪ Consider this DAG and a topological order 01475236

Topological Sort Example II

Node SD PN

0 0 /

1 5 0

2 17 15 14 1 7 5

3 20 17 1 2

4 9 0

5 13 4

6 29 26 25 4 5 2

7 8 0

Visit Order
0, 1, 4, 7, 5, 2, 3, 6

49

Longest Paths in a DAG

▪ Formulate as a shortest paths

problem in edge-weighted DAGs.

▪ Negate all weights

▪ Find shortest paths

▪ Negate all the weights and path

lengths

▪ For general graphs, the longest

paths problem is an unsolved

problem (exponential time at best)

shortest paths input

5->4 0.35 5->4 -0.35
4->7 0.37 4->7 -0.37

5->7 0.28 5->7 -0.28

5->1 0.32 5->1 -0.32

4->0 0.38 4->0 -0.38

0->2 0.26 0->2 -0.26

3->7 0.39 3->7 -0.39

1->3 0.29 1->3 -0.29

7->2 0.34 7->2 -0.34

6->2 0.40 6->2 -0.40

3->6 0.52 3->6 -0.52

6->0 0.58 6->0 -0.58

6->4 0.93 6->4 -0.93

longest paths input

s

50

BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm

51

52

Bellman-Ford Algorithm
● A shortest path algorithm that works with negative edge

weights

● There can be at most V - 1 edges in our shortest path
○ If there are V or more edges in a path that means there’s a cycle/repeated

node
● Run V - 1 iterations of shortest path analysis through the graph

○ Repeatedly revisit and update SD and PN
● Look at each node’s outgoing edges in each iteration
● It is slower than Dijkstra’s because it will revisit previously

assessed nodes
● Can terminate early when all SD values have converged
● The order of edge relaxations affects algorithm efficiency but

not correctness
● Time complexity:

● Worst Case: O(VE)
○ Average Case: O(VE)

● If the graph is dense or complete, the value of E becomes
O(V2). So overall time complexity becomes O(V3)

● Bellman-Ford, by Michael Sambol
● https://www.youtube.com/watch?v=9PHkk0UavIM
● https://www.youtube.com/watch?v=obWXjtg0L64

Bellman–Ford algorithm

For each node v: SD [v] = ∞.

For each node v: PN[v] = null.

SD [s] = 0.

Repeat V-1 times:

- Relax each edge.

https://www.youtube.com/watch?v=obWXjtg0L64
https://www.youtube.com/watch?v=obWXjtg0L64

53

Bellman-Ford Example

53

node SD PN

S 0

A ∞

B ∞

C ∞

D ∞

E ∞

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

∞ ∞

∞

∞

∞

0

54

Bellman-Ford Example

54

node SD PN

S 0 -

A 10 S

B 10 C

C 12 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 1 - for each node’s outgoing edge, does that

give us a shorter way to get to a new node?

55

Bellman-Ford Example

55

node SD PN

S 0 -

A 10 S

B 10 C

C 12 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 2 - re-examining outgoing edges, can we

improve the distance to any given node?

5 D

8 D

56

Bellman-Ford Example

56

node SD PN

S 0 -

A 5 D

B 10 C

C 8 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 3 - repeat!

7

* With a shortened distance to A

from iteration 2 we can improve

the distance to C
5

* With a shortened distance to C

in this iteration we can improve

distance to B

57

Bellman-Ford Example

57

node SD PN

S 0 -

A 5 D

B 5 C

C 7 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 4 - repeat!

No changes!

this means we can stop early

I will not ask you to run Bellman-Ford algo in the final exam

58

Bellman-Ford Example II

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

v SD[]

0

1

2

3

4

5

6

7

∞

∞
∞

∞

∞

∞

∞

∞

v PN[]

0

1

2

3

4

5

6

7

-

-

-

-

-

-

-

-

0

5

17

20

9

13

28

8

0

1

1

0

4

2

0

14

17

26

5

2

5

25

2

Iter 1 Iter 2 Iter 3 (converged, no further changes, so stop here)

Reverse order of edge

relaxations will result in

slower convergence

I will not ask you to run Bellman-Ford algo in the final exam

59

A Toy Example with Negative Edge Weights

● Let’s run Dijkstra’s algorithm, Topological Sort, and Bellman Ford
Algorithm on this DAG with a negative edge weight

A

B

C
1

10

D

-20

1

E1

60

N SD PN

A 0

B ∞

C ∞

D ∞

E ∞

Visit A Visit C

N SD PN

A 0

B 10 A

C 1 A

D ∞

E ∞

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E ∞

Visit D

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E 3 D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E 3 D

Visit E

E’s SD of 3
is Incorrect

Visit B

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E 3 D

Visit E

Dijkstra’s algorithm does not work for a graph w/
negative edge weights

A

B

C
1

10

D

-20

1

E1

61

● Dijkstra’s Algorithm is greedy: each node is visited once, and any
node that has been visited should have its shortest distance from
the source.

● After visiting A, C, D, we have computed D’s SD is 2, but after
visiting B, D’s SD is updated to -10, which violates the greedy
optimal assumption.

● Even if we update D’s SD to be -10, its downstream node E’s SD
will not be updated.

● We cannot visit B before D, since we must visit the closest
unknown node (with smallest SD), which is D. (Unlike topological
sort, which visits B before D and gets the correct result,)

Dijkstra’s algorithm does not work for a graph w/
negative edge weights

62

Topological sort works for a DAG w/ negative
edge weights

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞

C ∞

D ∞

E ∞

Visit A Visit B

N SD PN

A 0

B 10 A

C 1 A

D ∞

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

E1

Visit C

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit E

Consider topological order ABCDE

63

N SD PN

A 0

B ∞

C ∞

D ∞

E ∞

Visit A Visit C

N SD PN

A 0

B 10 A

C 1 A

D ∞

E ∞

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E ∞

Visit B

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit E

Consider topological order ACBDE

Topological sort works for a DAG w/ negative
edge weights

A

B

C
1

10

D

-20

1

E1

64

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞

C ∞

D ∞

E ∞

Iter 1 Iter 2

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

No change
converged

E1

Suppose we visit nodes in this
order at each iteration: A, B, C, D,
E. We run for 2 iterations (less
than V-1=3 iterations), and
converge to the correct SPT

Bellman Ford works for a graph with negative
edge weights

65

Dijkstra's Algorithm vs. Bellman-Ford Algorithm

● Dijkstra's Algorithm:
○ Uses a priority queue to select the next node to process.

○ Greedily selects the node with the smallest tentative distance to source node.

○ Works only on graphs with non-negative edge weights.

● Bellman-Ford Algorithm:
○ Iteratively relaxes all edges V-1 times.

○ Can handle graphs with negative edge weights, and can detect negative cycles.

■ Relax all the edges one more time, i.e. the V-th time. Negative cycle exists if any edge can be
further relaxed

■ It can find any negative cycle that is reachable from source node s (but not negative cycles that
are unreachable from s).

■ If there is a negative cycle that is reachable from source node s, then any paths that go through
the cycle has distance −∞, since the cost can be reduced by traversing the cycle infinite number
of times.

● Dijkstra's algorithm is faster and more efficient for graphs with non-negative
weights; Bellman-Ford Algorithm is more versatile as it can handle negative
weights and detect negative cycles, albeit at the cost of lower efficiency

BFS

Dijkstra’s Algorithm

Topological Sort

Bellman-Ford Algorithm

Johnson’s Algorithm

66

Johnson’s Algorithm for all-pairs shortest paths

▪ Idea: run Dijkstra’s Single Source shortest path algorithm with every node

as the source.

▪ Dijkstra’s algorithm doesn’t work for negative weight edge. The idea of

Johnson’s algorithm is to reweight all edges and make them all positive,

then run Dijkstra’s algorithm with every node as the source.

▪ We can run Bellman-Ford algorithm with every node as the source without reweighting,

since Bellman-Ford algorithm can handle negative edge weights, but the time

complexity is much higher than running Dijkstra’s algorithm.

▪ How to transform a given graph into a graph with non-negative weight

edges without changing the shortest paths?

67

Example I: Increase weight of every edge by a constant?

▪ True or False: In a weighted graph, assume that the shortest path from source s to
destination t is correctly calculated using a shortest path algorithm. If we increase
weight of every edge by a constant, the shortest path always remains same.

▪ False. See the following counterexample. There are 4 edges sa, ab, bt and st with
weights 1, 1, 1 and 4 respectively. The shortest path from s to t is sabt with cost 3. If
we increase weight of every edge by 1, the shortest path changes to st with cost 5.

▪ Similarly for negative weight edges. There are 4 edges sa, ab, bt and st with
weights -1, -1, -1 and -2 respectively. The shortest path from s to t is sabt with cost -
3. If we increase weight of every edge by 1, the shortest path changes to st with
cost -1.

as b t
1 1 1

4

as b t
2 2 2

5

as b t
- 1

-2

as b t
0 0 0

-1

- 1 - 1

68

Double the original weights?

▪ True or False: Is the following statement valid about shortest paths? Given a

graph, suppose we have calculated shortest path from a source to all other

vertices. If we modify the graph such that weights of all edges becomes

double of the original weight, then the shortest path remains same, and only

the total weight of path changes.

▪ True. The shortest path remains same. It is like if we change unit of distance

from meter to kilo meter, the shortest paths do not change. But this does not

make weights positive.

69

Johnson’s algorithm for All-pairs Shortest Paths
1. Let the given graph be G. Add a dummy source node d, and add edges with

weight 0 from d to all vertices of G. Let the modified graph be G’.

2. Run Bellman-Ford on G’ with d as the source. Let the shortest distances
calculated by Bellman-Ford be h[0], h[1], .. h[V-1]. If we find a negative weight
cycle, then return. (We run Bellman-Ford algorithm since it can handle negative
edge weights.)

3. Reweight the edges of the original graph. For each edge (u, v), assign the new
weight as w'(u, v) = w(u, v) + h[u] – h[v], which is greater than or equal to 0.

4. Remove the added dummy node d, and run Dijkstra’s algorithm with every
node as the source to obtain all-pairs shortest paths. Subtract h[s] – h[t] from
length of each shortest path from s to t to obtain the lengths of shortest paths in
the original graph.

Time complexity: Johnson’s algorithm uses both Dijkstra and Bellman-Ford as
subroutines. The main steps in the algorithm are Bellman-Ford Algorithm called
once and Dijkstra called V times. Time complexity of Bellman Ford is O(VE) and
time complexity of Dijkstra is O((V + E) log V). So overall time complexity is O((V2

+ VE) log V).

70

Johnson’s Algorithm: Proof
▪ The following property is always true since h[] values are the shortest

distances from the dummy source code d:
▪ h[v] <= h[u] + w(u, v)

▪ The property states that the shortest distance from u to v must be
smaller than or equal to the shortest distance from s to u plus edge
weight w(u, v).
▪ If h[v] > h[u] + w(u, v), then Bellman-Ford with starting node d will set h[v] = h[u]

+ w(u, v), after visiting u and performing edge relaxation

▪ Because of this inequality, the new weights w’(u, v) = w(u, v) + h[u] –
h[v] must be greater than or equal to 0.

▪ After reweighting, all weights become non-negative, and lengths of all
paths between any two vertices s and t is increased by the same
amount, hence the shortest paths remain the same as the original graph
before reweighting.
▪ Consider any path between two vertices s and t, the weight of every path is

increased by h[s] – h[t], since the added h[] values for all intermediate vertices
on the path from s to t cancel each other out

▪ Consider two path between s and t: s->x->y->t, and s->x’->y’->t. Distance of the
1st path s->x->y->t is increased by h(s)-h(x)+h(x)-h(y)+h(y)-h(t)=h(s)-h(t), and
distance of the 2nd path s->x’->y’->t is increased by h(s)-h(x’)+h(x')-h(y’)+h(y’)-
h(t)=h(s)-h(t)

u v
w(u,v)

h(u)

d

h(v)

71

Johnson’s Algorithm Example I
▪ Add a dummy source node d and add edges with weight 0 from s to all

vertices of the original graph.

▪ Run Bellman-Ford algorithm to calculate the shortest distances from d to all
other vertices. The shortest distances from d to s, a, b and t are
▪ h[s]=0 (path d→0), h[a]=-1 (path d→s→a), h[b]=-2 (path d→s→a→b), h[t]=-3 (path

d→s→a→b→t)

▪ Remove node d and reweight each edge uv as: w'(u, v) = w(u, v) + h[u] – h[v].
▪ w’(s, a) = w(s, a) + h[s] – h[a] = -1 + 0 - (-1) = 0

▪ w’(a, b) = w(a, b) + h[a] – h[b] = -1 + -1 - (-2) = 0

▪ w’(b, t) = w(b, t) + h[b] – h[t] = -1 + -2 - (-3) = 0

▪ w’(s, t) = w(s, t) + h[s] – h[t] = -2 + 0 - (-3) = 1

as b t
- 1

-2

- 1 - 1

0 0 0 0

h[s]=0 h[a]=-1 h[b]=-2 h[t]=-3

d

as b t
- 1

-2

- 1 - 1
as b t

0

1

0 0

Reweighted graphOriginal graph

N h(N)

s 0

a -1

b -2

t -3

Shortest paths
starting from
dummy node

Original graph
w/ dummy node

72

Johnson’s Algorithm Example I Con’t
▪ Since all weights are now greater than or equal to 0, run Dijkstra’s shortest path algorithm on

the reweighted graph with every node as the source. Let’s start from source node s for
example, and obtain the shortest paths table for the reweighted graph

▪ We then subtract h[s] – h[t] from length of each shortest path from s to t to obtain the shortest
paths table for the original graph (PN stays the same)
▪ SD(a) = SD’(a) - (h[s] - h[a]) = 0 - (0 - (-1)) = -1

▪ SD(b) = SD’(b) - (h[s] - h[b]) = 0 - (0 - (-2)) = -2

▪ SD(t) = SD’(t) - (h[s] - h[t]) = 0 - (0 - (-3)) = -3

N SD PN

s 0 /

a -1 s

b -2 a

t -3 b

N SD’ PN

s 0 /

a 0 s

b 0 a

t 0 b

Shortest paths from s
in reweighted graph

Shortest paths from s
in original graph

as b t
- 1

-2

- 1 - 1

Original graph

as b t
0

1

0 0

Reweighted graph

N h(N)

s 0

a -1

b -2

t -3

Shortest paths
starting from
dummy node

h[s]=0 h[a]=-1 h[b]=-2 h[t]=-3

73

Johnson’s Algorithm Example II
▪ Add a dummy source node d and add edges with weight 0 from s to all vertices of

the original graph.

▪ Run Bellman-Ford algorithm to calculate the shortest distances from d to all other
vertices. The shortest distances from d to 0, 1, 2 and 3 are
▪ h[0]=0 (path d→0), h[1]=-5 (path d→0→1), h[2]=-1 (path d→0→1→2), h[3]=0 (path d→3)

▪ Remove node d and reweight each edge uv as: w'(u, v) = w(u, v) + h[u] – h[v].
▪ w’(0,1)=-5+0-(-5)=0, w’(1,2)=4+(-5)-(-1)=0, w’(2,3)=1+(-1)-0=0, w’(0,3)=3+0-0=3,

w’(0,2)=2+0-(-1)=3

▪ Since all weights are now greater than or equal to 0, run Dijkstra’s algorithm on
the reweighted graph with every node as the source

h[0]=0 h[1]=-5

h[3]=0 h[2]=-1

d

Reweighted graphOriginal graph

N h(N)

0 0

1 -5

2 -1

3 0

Shortest paths
starting from
dummy node

Original graph
w/ dummy node 74

Johnson’s Algorithm Example II Con’t
▪ Let’s run Dijkstra’s algorithm starting from source node 0, and obtain the shortest paths table for the

reweighted graph

▪ We then subtract h[s] – h[t] from length of each shortest path from s to t to obtain the shortest paths table
for the original graph (PN stays the same)
▪ SD(1)=SD’(1)-(h[0]-h[1])=0-(0-(-5))=-5

▪ SD(2)=SD’(2)-(h[0]-h[2])=0-(0-(-1))=-1

▪ SD(3)=SD’(3)-(h[0]-h[3])=0-(0-0)=0)

N SD’ PN

0 0 /

1 0 0

2 0 1

3 0 2

N SD PN

0 0 /

1 -5 0

2 -1 1

3 0 2
Shortest paths from 0
in reweighted graph

Shortest paths from 0
in original graph

Reweighted graph Original graph

N h(N)

0 0

1 -5

2 -1

3 0

Shortest paths
starting from
dummy node

h[0]=0 h[1]=-5

h[3]=0 h[2]=-1

75

Algorithm Applicability Worst-Case Complexity

Breadth First
Search (BFS)

Unweighted, undirected or directed graph Adjacency List: O(V + E)
Adjacency Matrix: O(V²)

Dijkstra’s
algorithm

Undirected or directed graph; no negative
weights/cycles

O((V+E) log V)
(binary min-heap)

Topological
Sort

Directed Acyclic Graph (DAG) (no cycles,
negative weights OK)

O(V+E)

Bellman-Ford
algorithm

Directed graph with negative weights;
undirected graph with no negative weights
(since a negative weight edge forms a
negative cycle by itself)

O(VE)

Johnson’s
algorithm

Same as Bellman-Ford O((V2 + VE) log V)

Single Source Shortest-paths Algorithms
Summary

76

77

References
● Dijkstras Shortest Path Algorithm Explained | With Example | Graph Theory

○ https://www.youtube.com/watch?v=bZkzH5x0SKU

● Dijkstra's algorithm in 3 minutes
○ https://www.youtube.com/watch?v=_lHSawdgXpI

● Topological sort
○ https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/

● Bellman-Ford, Michael Sambol
○ https://www.youtube.com/watch?v=9PHkk0UavIM

○ https://www.youtube.com/watch?v=obWXjtg0L64

● Bellman Ford Shortest Path Algorithm, ByteQuest
○ https://www.youtube.com/watch?v=B5PmlJACZ9Y

● Shortest Path Algorithms Explained (Dijkstra's & Bellman-Ford), b001
○ https://www.youtube.com/watch?v=TtQi1LVVOUI

● Johnson’s algorithm for All-pairs shortest paths
○ https://www.geeksforgeeks.org/johnsons-algorithm/

● Johnson's Algorithm Explained, Basics Strong
○ https://www.youtube.com/watch?v=MV7EAD9zL64

○ @14:36 The 0->4 edge weight was incorrectly changed from 1 to 0

○ (Complexity analysis óf Dijkstra's algorithm is different since it is based on a different min-heap algorithm)

https://www.youtube.com/watch?v=bZkzH5x0SKU
https://www.youtube.com/watch?v=_lHSawdgXpI
https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/
https://www.youtube.com/watch?v=9PHkk0UavIM
https://www.youtube.com/watch?v=obWXjtg0L64
https://www.youtube.com/watch?v=B5PmlJACZ9Y
https://www.youtube.com/watch?v=TtQi1LVVOUI
https://www.geeksforgeeks.org/johnsons-algorithm/
https://www.youtube.com/watch?v=MV7EAD9zL64

78

Full-Length Lectures
● [CSE 373 WI24] Lecture 15: Shortest Path

○ https://www.youtube.com/watch?v=L8nhMwhUn4U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT
_Nl&index=14

https://www.youtube.com/watch?v=L8nhMwhUn4U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=14
https://www.youtube.com/watch?v=L8nhMwhUn4U&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=14

	Slide 1
	Slide 2
	Slide 3: Review: Graph traversal w/ DFS
	Slide 4: Review: Graph traversal w/ BFS
	Slide 5: BFS for (Unweighted) Shortest Path Problem
	Slide 6: BFS for Shortest Paths in an Unweighted Graph
	Slide 7: Shortest Path Tree
	Slide 8: BFS Time Complexity
	Slide 9
	Slide 10: Dijkstra’s Algorithm
	Slide 11: Edge Relaxation
	Slide 12: Generic Shortest-paths Algorithm
	Slide 13: Dijkstra's Algorithm
	Slide 14: Dijkstra’s Algorithm: Idea
	Slide 15
	Slide 16: Dijkstra’s Algorithm: Key Properties
	Slide 17: Dijkstra’s Algorithm: Runtime
	Slide 18: Greedy Algorithms
	Slide 19: Resolving Ambiguities
	Slide 20: Example I
	Slide 21: Example I
	Slide 22: Example I
	Slide 23: Example I
	Slide 24: Example I
	Slide 25: Example I
	Slide 26: Example I
	Slide 27: Example I
	Slide 28: Example I Final
	Slide 29: Example I: Interpreting the Results
	Slide 30: Example I Exam Question and Answer
	Slide 31: Example II
	Slide 32: Initialize
	Slide 33: Visit node A
	Slide 34: Visit node B
	Slide 35: Visit node D
	Slide 36: Visit node E
	Slide 37: Visit node F
	Slide 38: Visit node C
	Slide 39: End of Algorithm
	Slide 40: Getting the Shortest Path from A to C
	Slide 41: Example II Exam Question and Answer
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Topological Sort Example I
	Slide 46
	Slide 47
	Slide 48: Topological Sort Example I: Final Answer (for Exams
	Slide 49: Topological Sort Example II
	Slide 50: Longest Paths in a DAG
	Slide 51
	Slide 52: Bellman-Ford Algorithm
	Slide 53: Bellman-Ford Example
	Slide 54: Bellman-Ford Example
	Slide 55: Bellman-Ford Example
	Slide 56: Bellman-Ford Example
	Slide 57: Bellman-Ford Example
	Slide 58: Bellman-Ford Example II
	Slide 59: A Toy Example with Negative Edge Weights
	Slide 60: Dijkstra’s algorithm does not work for a graph w/ negative edge weights
	Slide 61: Dijkstra’s algorithm does not work for a graph w/ negative edge weights
	Slide 62: Topological sort works for a DAG w/ negative edge weights
	Slide 63: Topological sort works for a DAG w/ negative edge weights
	Slide 64: Bellman Ford works for a graph with negative edge weights
	Slide 65: Dijkstra's Algorithm vs. Bellman-Ford Algorithm
	Slide 66
	Slide 67: Johnson’s Algorithm for all-pairs shortest paths
	Slide 68: Example I: Increase weight of every edge by a constant?
	Slide 69: Double the original weights?
	Slide 70: Johnson’s algorithm for All-pairs Shortest Paths
	Slide 71: Johnson’s Algorithm: Proof
	Slide 72: Johnson’s Algorithm Example I
	Slide 73: Johnson’s Algorithm Example I Con’t
	Slide 74: Johnson’s Algorithm Example II
	Slide 75: Johnson’s Algorithm Example II Con’t
	Slide 76
	Slide 77: References
	Slide 78: Full-Length Lectures

