
1

Lecture 12

Graphs

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures

2

Inter-data Relationships

● Elements only store
pure data, no
connection info

● Only relationship
between data is order

0 1 2

A B C

Arrays

● Elements store data
and connection info

● Directional
relationships between
nodes; limited
connections

Trees

● Elements AND
connections can store
data

● Relationships dictate
structure; huge
freedom with
connections

B

A C

B

A

C

Graphs

3

Applications
Physical Maps
● Airline maps

○ nodes are airports, edges are flight paths

● Traffic
○ nodes are addresses, edges are streets

Relationships
● Social media graphs

○ nodes are accounts, edges are follower
relationships

● Traffic
○ nodes are classes, edges are usage

Influence
● Biology

○ nodes are cancer cell desinations, edges are
migration paths

Related topics
● Web Page Ranking

○ nodes are web pages, edges are
hyperlinks

● Wikipedia
○ nodes are articles, edges are links

And so many more!!

www.allthingsgraphed.com

http://www.allthingsgraphed.com/

4

Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where…

● V is a set of nodes
○ A node or “node” is a data entity
○ V = { A, B, C, D, E, F, G, H }

● E is a set of edges
○ An edge is a connection between two nodes

○ E = { (A, B), (A, C), (A, D), (A, H),
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}

A

B

CD

E

F

G

H

5

Graph Terminology

Graph Direction
● Undirected graph – edges have no direction and are two-way

○ V = { Karen, Jim, Pam }
○ E = { (Jim, Pam), (Jim, Karen) } inferred (Karen, Jim) and (Pam, Jim)

● Directed graphs – edges have direction and are thus one-way
○ V = { Gunther, Rachel, Ross }
○ E = { (Gunther, Rachel), (Rachel, Ross), (Ross, Rachel) }

Degree of a Node
● Degree – the number of edges connected to that node

○ Karen : 1, Jim : 2, Pam : 1
● In-degree – the number of directed edges that point to a node

○ Gunther : 0, Rachel : 2, Ross : 1
● Out-degree – the number of directed edges that start at a node

○ Gunther : 1, Rachel : 1, Ross : 1

Karen Jim

Pam

Gunther

Rachel

Ross

Undirected Graph:

Directed Graph:

6

More Graph Terminology
Two nodes are connected if there is a path between
them
● If all the nodes are connected, we say the graph is

connected
○ A directed graph is weakly connected if replacing

every directed edge with an undirected edge
results in a connected graph

○ A directed graph is strongly connected if a directed
path exists between every pair of nodes

● The number of edges leaving a node is its degree

A path is a sequence of nodes connected by edges
● A simple path is a path without repeated nodes
● A cycle is a path whose first and last nodes are the same

○ A graph with a cycle is cyclic

a

b

c

f

e

g

d

j

p

m

n

i

o

p

m

n

i

o

not connected

connected

7

Directed vs Undirected; Acyclic vs Cyclic

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed: Undirected:

8

Node & Edge Labels

Labeled and Weighted Graphs

Edge Labels

a

b

c

d

Node Labels

b

d

c

e

a

Numeric Edge Labels
(Edge Weights)

1

2

3

1

2

3

4

5

1

a

b

c

d

9

Multi-Variable Analysis
● So far, we thought of everything as being in terms of some single

argument “n”
● With graphs, we need to consider:

○ n (or |V|): total number of nodes (sometimes written as V)
○ m (or |E|): total number of edges (sometimes written as E)
○ deg(u): degree of node u (how many outgoing edges it has)

10

Adjacency Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0

6
2 3

4

5

0 1

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0
otherwise.
Worst-case Time Complexity
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get out-neighbors of u:
Get in-neighbors of u:

Space Complexity:
More suitable for dense graphs

O(1)

O(1)

O(1)

O(n)

O(n)

O(n2) For an undirected graph, adjacency matrix is
symmetric w.r.t diagonal line. A node u’s out-
neighbors are the same as its in-neighbors

11

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0
otherwise.
Worst-case Time Complexity
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get outneighbors of u:
Get inneighbors of u:

Space Complexity:
More suitable for sparse graphs

Adjacency List
A

B

C

D

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D

O(1)

O(deg(u))

O(deg (u))

O(deg(u))

O(n + m)

O(n + m)

12

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Adjacency List
A

B

C

D

Hash Tables

0

1

2

3

A

B

C

D

C

D

A

B

B

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0
otherwise.
Worst-case Time Complexity
(assuming a good hash function so
all hash table operations are O(1))
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get outneighbors of u:
Get inneighbors of u:

Space Complexity:

O(1)

O(1)

O(1)

O(deg(u))

O(n)

O(n + m)

13

2-Hop Neighbors (through Matrix Multiplication)

● Matrix multiplication for finding two-hop neighbors

1

2 3

0

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

2

=

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

=

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

Node 3 is a two-hop

neighbor of node 0 along

two different paths

A graph and its adjacency

matrix representation

0 1 2 3

0 0 1 1 0

1 0 0 0 1

2 0 1 0 1

3 0 0 0 0

0 1 2 3

0 0 1 0 2

1 0 0 0 0

2 0 0 0 1

3 0 0 0 0

Node 3 is a two-hop

neighbor of node 2 along 1

path

The adjacency

matrix representation

The adjacency matrix representation for

two-hop neighbors, obtained by matrix-

matrix product of the adjacency matrix

14

2-Hop Neighbors (through Matrix Multiplication)

● Consider the multiplication of the first row of the left matrix wit the
last column of the right matrix:
○ 0*0 + 1*1 + 1*1 + 0*0 = 2.

● This means that there are two 2-hop paths from 1 to 3:
○ Path 0→1→ 3 consisting of two edges 0→1 & 1→ 3, corresponding to the first term of

1*1
○ Path 0→2→ 3 consisting of two edges 0→2 &2→ 3, corresponding to the second term

of 1*1

1

2 3

00 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

=

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

Path 0→1→ 3

Path 0→2→ 3

15

BFS & DFS for Trees

16

This is our goal, but how do we translate into code?
• Use a data structure to ”queue up” children…

Breadth-First Search (BFS)
BFS: Explore nodes “layer by layer”; like level-order traversal of a tree,
now generalized to any graph; visit 1-hop neighbors, then 2-hop
neighbors, …, until all nodes have been visited

1

2

3

4

5
6

7

8

s

VISITED

9

for (Node n : s.neighbors) {

0

1

2

3

4

17

BFS Implementation
bfs(Graph graph, Node start) {

A queue keeps track of “outer
edge” of nodes still to explore

Kick off the algorithm by
adding start to perimeter

1

2

3

4

5
6

7

8

9start

Grab one element at a time
from the perimeter

Look at all that
element’s unvisited

children

Add new ones to
perimeter!

Queue<Node> perimeter = new Queue<>();

Set<Node> visited = new Set<>();

perimeter.add(start);

visited.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

perimeter.add(to);

visited.add(to);

}

}

}

}

18

BFS Implementation: In Action
PERIMETER bfs(Graph graph, Node start) {

Queue<Node> perimeter = new Queue<>();

Set<Node> visited = new Set<>();

perimeter.add(start);

visited.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

perimeter.add(to);

visited.add(to);

}

}

}

}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

19

0

1

2

3

4

BFS Intuition: Why Does it Work?
PERIMETER bfs(Graph graph, Node start) {

Queue<Node> perimeter = new Queue<>();

Set<Node> visited = new Set<>();

perimeter.add(start);

visited.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

perimeter.add(to);

visited.add(to);

}

}

}

}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

• Using FIFO queue means we explore an entire
layer before moving on to the next layer

• Keep going until perimeter is empty

20

BFS Application: Multiple-Source Shortest Paths
Problem
● Given a digraph and a set of source nodes,

find shortest path from any node in the set
to every other node, assuming all edges
have weight 1.
○ e.g., S = { 1, 7, 10 }.
○ Shortest path to 4 is 7 → 6 → 4.
○ Shortest path to 5 is 7 → 6 → 0 → 5.
○ Shortest path to 12 is 10 → 12.

● Can be done with BFS, and initialize by
enqueuing all source nodes

dist = 1

(1-hop

neighbors)

dist = 0

1

7

10

6

9

12

0

8

4

11

5

2

3

dist = 2

(2-hop

neighbors)

dist = 3

(3-hop

neighbors)

21

Set<Node> visited; // assume global

connected(Node s, Node t) {
if (s == t) {
return true;

} else {
visited.add(s);
for (Node n : s.neighbors) {
if (!visited.contains(n)) {
if (connected(n, t)) {
return true;

}
}

}
return false;

}
}

Depth-First Search (DFS) (Recursive Algorithm)
• DFS explores one branch “all the way down” before coming back to try other branches
• Depending on the order of visiting branches, many possible orderings: e.g., {1, 2, 5, 6, 9, 7,

8, 4, 3}, {1, 4, 3, 2, 5, 8, 6, 7, 9}, etc.

1

2

3

4

5
6

7

8

s

VISITED

9

22

DFS w/ Stack vs. BFS w/ Queue
bfs(Graph graph, Node start) {

Queue<Node> perimeter = new Queue<>();

Set<Node> visited = new Set<>();

perimeter.add(start);

visited.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

perimeter.add(to);

visited.add(to);

}

}

}

}

dfs(Graph graph, Node start) {

Stack<Node> perimeter = new Stack<>();

Set<Node> visited = new Set<>();

perimeter.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

if (!visted.contains(from)) {

for (Edge edge:graph.edgesFrom(from)) {

Node to = edge.to();

perimeter.add(to)

}

visited.add(from);

}

}

}

23

Recap: Graph Traversals

BFS
(Iterative)

• Explore layer-by-layer: examine every node at
a certain distance from start, then examine
nodes that are one level farther

• Uses a queue!

DFS
(Iterative)

• Follow a “choice” all the way to the end, then
come back to revisit other choices

• Uses a stack!

DFS
(Recursive) On huge graphs, might overflow the call stack

24

Topological Sort

A Directed Acyclic Graph (DAG) : A directed
graph (digraph) without any cycles

A DAG encodes a “dependency graph”
○An edge (u, v) means u must precede v
○A topological sort or topological ordering of a DAG

gives a total node ordering that respects dependencies

Applications:
○Compiling multiple Java files
○Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological Sort:

With original edges for
reference:

A B C

Given a DAG

A

B

C

C before A

B before C

A before B

Not a DAG. No possible topological sort

25

Cycles and Undirected Edges

● Why is topological sort not possible for digraphs
containing cycles?
○ Imagine a graph with 3 nodes and edges = {1 to 2 , 2 to 3, 3 to 1}

forming a cycle. Now if we try to topologically sort this graph
starting from any node, it will always create a contradiction to our
definition. All the nodes in a cycle are indirectly dependent on each
other hence topological sortfails

● Why is topological sort not possible for graphs with
undirected edges?
○ Special case of a cycle. An undirected edge between two nodes u

and v means, there is an edge from u to v as well as from v to u.
Because of this both the nodes u and v depend upon each other
and none of them can appear before the other in the topological
sort without creating a contradiction

a digraph with a directed cycle

A

B

C

26

Topological Sort
Example I

27

Topological Sort Example II
Give all possible topological orderings of this DAG

A

B

C

E

D

By observation, we can get (A, C, B, D, E), (A, C, B, E, D)

28

Topological Sort Example III

Give all possible topological orderings of this DAG

A

B

C

E

D

E

By observation, we can get: all possible interleavings with (AB) or (BA)
before C, (DEF) or (DFE) or (EFD) after C. e.g., ABCDEF, BACEDF, etc.

29

DFS Traversals and Topological Sort
● DFS pre-order traversal

○ Visit a node during DFS forward traversal before visiting all its unvisited neighbors
○ .Pre-order traversal is obtained in the order that nodes are pushed onto the stack, or when the

recursive function call goes forward in the call stack
○ Upon finishing traversal starting from one node, restart from another unvisited node

● DFS post-order traversal
○ Visit a node during DFS backtracking after visiting all its unvisited neighbors, i.e., after reaching a

deadend.
○ Post-order traversal is obtained in the order that the nodes are popped off the stack, or when the

recursive function call returns from the call stack
○ Upon finishing traversal starting from one node, restart from another unvisited node
○ Any post-order traversal of a graph must end with a node with incoming edges (no predecessors),

hence any topological sort must start with a node with no predecessors
■ Tree traversal is a special case: any post-order traversal of a tree must end with the root

● Topological sort:
○ Perform DFS post-order traversal starting from any node (often, but not necessarily, a node with no

predecessors, to reduce the number of restarts) to get an ordered list of nodes, then reverse the
node order to get a topological sort (one of multiple possible)

○ Intuition: DFS post-order traversal outputs nodes from the deepest (farthest away from the starting
node) to the starting mode, hence the reverse order is a topological sort from the starting node

30

DFS Traversal of Graphs: Pre-order, Post-order
function preOrderTraversal(node) {
if (node !== null) {
visitNode(node);
preOrderTraversal(node.left);
preOrderTraversal(node.right);

}
}

function postOrderTraversal(node) {
if (node !== null) {
postOrderTraversal(node.left);
postOrderTraversal(node.right);
visitNode(node);

}
}

function preOrderTraversal(node) {
if (node !== null) {
visitNode(node);
foreach(c ∈ node.UnvisitedNeighbors) {

preOrderTraversal(c);}
}

}

function postOrderTraversal(node) {
if (node !== null) {

foreach(c ∈ node.UnvisitedNeighbors) {
postOrderTraversal(c);}

visitNode(node);
}
}

Recall: Binary Tree traversal with DFS: pre-order, post-order

The traversal algorithms works for both undirected and directed graphs. The only difference is how
to get neighbors of node v, as each undirected edge is treated as two directed edges in both
directions.

31

Resolving Ambiguities

● As There are typically multiple possible traversals of the
same graph. In the lecture and exams, we often use the
following rule to resolve any ambiguities:

● “When there are multiple possible orders of visiting the next
node, select the next node in alphabetical or numerical
order.”

32

DFS Traversal Example I
● Start from node 0

● Visit nodes 0->1->4. Since 4 has no successors, backtrack to 0.
○ Pre-order: (0, 1, 4); post-order: (4, 1)

● Visit node 2. Since 2 has no successors, backtrack to 0
○ Pre-order: (0, 1, 4, 2); post-order: (4, 1, 2)

● Visit node 5. Since 5’s successor 2 has been visited, backtrack to 0. Since all
of node 0’s successors have been visited, we visit it in post-order
○ Pre-order: (0, 1, 4, 2, 5); post-order: (4, 1, 2, 5, 0)

● Restart from node 3, visit its successor 6, then backtrack. Since all of node
3’s successors have been visited, we visit it in post-order
○ Pre-order: (0, 1, 4, 2, 5, 3, 6); post-order: (4, 1, 2, 5, 0, 6, 3)

● All nodes and their successors have been visited, so the algorithm
terminates. A topological sort corresponding to this post-order is (3, 6, 0, 5,
2, 1, 4)

● A BFS traversal: (0, 2, 5, 1, 4, 3, 6)

● This is one of many possible traversals, e.g., if we start from node 3, then
we have the traversals: pre-order: (3, 2, 4, 5, 6, 0, 1); post-order: (2, 4, 5, 1,
0, 6, 3); Topological sort: (3, 6, 0, 1, 5, 4, 2); BFS: (3, 2, 4, 5, 6, 0, 1)

0

1

4

52

6

3

0

33

DFS Traversal Example II
● Starting from node 5:

○ Pre-order traversal: (5, 2, 3, 1, 0, 4)
○ Post-order traversal: (1, 3, 2, 0, 5, 4)
○ Topological sort: (4, 5, 0, 2, 3, 1)
○ BFS traversal: (5, 0, 2, 3, 1, 4)

● Starting from node 4:
○ Pre-order traversal: (4, 0, 1, 5, 2, 3)
○ Post-order traversal: (0, 1, 4, 3, 2, 5)
○ Topological sort: (5, 2, 3, 4, 1, 0)
○ BFS traversal: (4, 0, 1, 5, 2, 3)

● Starting from node 0:
○ Pre-order traversal: (0, 5, 2, 3, 1, 4)
○ Post-order traversal: (0, 1, 3, 2, 5, 4)
○ Topological sort: (4, 5, 2, 3, 1, 0)
○ BFS traversal: (0, 5, 2, 3, 1, 4)

● You may try starting from any other node.

34

DFS Traversal Example III
● Starting from node A:

● Pre-order traversal: (A, B, F, I, J, K, E, C, G,
D, H)

● Post-order traversal: (I, K, J, F, E, B, G, C,
H, D, A)

● Topological sort: (A, D, H, C, G, B, E, F, J, K,
I)

● BFS traversal: (A, B, C, D, E, F, G, H, I, J, K)

● Starting from a different node will give a
different topological sort, but all of them
must start with A, since it is the only node
without any predecessors (i.e., it must
precede all the other nodes based on the
DAG)

● Any post-order traversal must visit A last,
since all of A’s sucessors must be visited
before visiting A

Topological Sort Visualized and Explained
https://www.youtube.com/watch?v=7J3GadLzydI

https://www.youtube.com/watch?v=7J3GadLzydI

35

Kahn’s algorithm for Topological Sort

● The algorithm works by repeatedly finding nodes with no incoming
edges, removing them from the graph, and updating the incoming
edges of the remaining nodes. This process continues until all nodes
have been ordered.
○ Add all nodes with in-degree 0 to a queue.
○ While the queue is not empty:

■ Remove a node from the queue.
■ For each outgoing edge from the removed node, decrement the in-degree of the destination node by 1.
■ If the in-degree of a destination node becomes 0, add it to the queue.

○ If the queue is empty and there are still nodes in the graph, the graph contains a
cycle and cannot be topologically sorted.

○ The nodes in the queue represent the topological sort of the graph.

● Time Complexity: O(V+E).
○ The outer for loop will be executed V number of times and the inner for loop will

be executed E number of times.

36

37

38

Graph Traversals

● Give one DFS pre-order, in-order and post-order traversal of the
following graph, and a topological sort.

● Starting from node 4:
○ Pre-order traversal: (4, 5, 1, 2, 3, 0)
○ Post-order traversal: (3, 2, 1, 5, 4, 0)
○ Topological Sort: (0, 4, 5, 1, 2, 3)
○ BFS: (4, 5, 1, 2, 3, 0)

● Starting from node 0:
○ Pre-order traversal: (0, 1, 2, 3, 4, 5)
○ Post-order traversal: (3, 2, 1, 0, 5, 4)
○ Topological Sort: (4, 5, 0, 1, 2, 3)
○ BFS: (0, 1, 2, 3, 4, 5)

39

References

● Breadth-first search in 4 minutes (for a tree)
○ https://www.youtube.com/watch?v=HZ5YTanv5QE

● Depth-first search in 4 minutes (for a tree)
○ https://www.youtube.com/watch?v=Urx87-NMm6c

● Graph Traversals - Breadth First and Depth First (for an undirected graph)
○ https://www.youtube.com/watch?v=bIA8HEEUxZI

● Breadth-First Search Visualized and Explained
○ https://www.youtube.com/watch?v=N6wicLpEmHY&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&i

ndex=5

● Depth-First Search Visualized and Explained
○ https://www.youtube.com/watch?v=5GcSvYDgiSo&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&in

dex=6

● Topological Sort Visualized and Explained
○ https://www.youtube.com/watch?v=7J3GadLzydI&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&ind

ex=7

● Graph Algorithms, Programming and Math Tutorials (Playlist)
○ https://www.youtube.com/playlist?list=PLj8W7XIvO93oxLOZTi8JFghuRcKieIZU-

https://www.youtube.com/watch?v=HZ5YTanv5QE
https://www.youtube.com/watch?v=Urx87-NMm6c
https://www.youtube.com/watch?v=bIA8HEEUxZI
https://www.youtube.com/watch?v=N6wicLpEmHY&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=5
https://www.youtube.com/watch?v=N6wicLpEmHY&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=5
https://www.youtube.com/watch?v=5GcSvYDgiSo&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=6
https://www.youtube.com/watch?v=5GcSvYDgiSo&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=6
https://www.youtube.com/watch?v=7J3GadLzydI&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=7
https://www.youtube.com/watch?v=7J3GadLzydI&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=7
https://www.youtube.com/playlist?list=PLj8W7XIvO93oxLOZTi8JFghuRcKieIZU-

40

Full-Length Lectures

● [CSE 373 WI24] Lecture 14: Graph Traversals
○ https://www.youtube.com/watch?v=1IJUv3ljqyU&list=PLEcoVsAaONjd5n69

K84sSmAuvTrTQT_Nl&index=13

https://www.youtube.com/watch?v=1IJUv3ljqyU&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=13
https://www.youtube.com/watch?v=1IJUv3ljqyU&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=13

	Slide 1
	Slide 2: Inter-data Relationships
	Slide 3: Applications
	Slide 4: Graph: Formal Definition
	Slide 5: Graph Terminology
	Slide 6: More Graph Terminology
	Slide 7: Directed vs Undirected; Acyclic vs Cyclic
	Slide 8: Labeled and Weighted Graphs
	Slide 9: Multi-Variable Analysis
	Slide 10: Adjacency Matrix
	Slide 11: Adjacency List
	Slide 12: Adjacency List
	Slide 13: 2-Hop Neighbors (through Matrix Multiplication)
	Slide 14: 2-Hop Neighbors (through Matrix Multiplication)
	Slide 15: BFS & DFS for Trees
	Slide 16: Breadth-First Search (BFS)
	Slide 17: BFS Implementation
	Slide 18: BFS Implementation: In Action
	Slide 19: BFS Intuition: Why Does it Work?
	Slide 20: BFS Application: Multiple-Source Shortest Paths Problem
	Slide 21
	Slide 22: DFS w/ Stack vs. BFS w/ Queue
	Slide 23: Recap: Graph Traversals
	Slide 24: Topological Sort
	Slide 25: Cycles and Undirected Edges
	Slide 26: Topological Sort Example I
	Slide 27: Topological Sort Example II
	Slide 28: Topological Sort Example III
	Slide 29: DFS Traversals and Topological Sort
	Slide 30: DFS Traversal of Graphs: Pre-order, Post-order
	Slide 31: Resolving Ambiguities
	Slide 32: DFS Traversal Example I
	Slide 33: DFS Traversal Example II
	Slide 34: DFS Traversal Example III
	Slide 35: Kahn’s algorithm for Topological Sort
	Slide 36
	Slide 37
	Slide 38: Graph Traversals
	Slide 39: References
	Slide 40: Full-Length Lectures

