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Lecture 12

Graphs

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures 
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Inter-data Relationships

● Elements only store 
pure data, no 
connection info

● Only relationship 
between data is order

0 1 2

A B C

Arrays

● Elements store data 
and connection info

● Directional 
relationships between 
nodes; limited 
connections

Trees

● Elements AND 
connections can store 
data

● Relationships dictate 
structure; huge 
freedom with 
connections

B

A C

B

A

C

Graphs
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Applications
Physical Maps
● Airline maps

○ nodes are airports, edges are flight paths

● Traffic
○ nodes are addresses, edges are streets

Relationships
● Social media graphs

○ nodes are accounts, edges are follower 
relationships

● Traffic
○ nodes are classes, edges are usage

Influence
● Biology

○ nodes are cancer cell desinations, edges are 
migration paths

Related topics
● Web Page Ranking

○ nodes are web pages, edges are 
hyperlinks

● Wikipedia
○ nodes are articles, edges are links

And so many more!!

www.allthingsgraphed.com

http://www.allthingsgraphed.com/
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Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where…

● V is a set of nodes
○ A node or “node” is a data entity
○ V = { A, B, C, D, E, F, G, H }

● E is a set of edges
○ An edge is a connection between two nodes

○ E = { (A, B), (A, C), (A, D), (A, H), 
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}
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Graph Terminology

Graph Direction
● Undirected graph – edges have no direction and are two-way

○ V = { Karen, Jim, Pam }
○ E = { (Jim, Pam), (Jim, Karen) } inferred (Karen, Jim) and (Pam, Jim)

● Directed graphs – edges have direction and are thus one-way
○ V = { Gunther, Rachel, Ross }
○ E = { (Gunther, Rachel), (Rachel, Ross), (Ross, Rachel) }

Degree of a Node
● Degree – the number of edges connected to that node

○ Karen : 1, Jim : 2, Pam : 1
● In-degree – the number of directed edges that point to a node

○ Gunther : 0, Rachel : 2, Ross : 1
● Out-degree – the number of directed edges that start at a node

○ Gunther : 1, Rachel : 1, Ross : 1

Karen Jim

Pam

Gunther

Rachel

Ross

Undirected Graph:

Directed Graph:
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More Graph Terminology
Two nodes are connected if there is a path between 
them
● If all the nodes are connected, we say the graph is 

connected
○ A directed graph is weakly connected if replacing 

every directed edge with an undirected edge 
results in a connected graph

○ A directed graph is strongly connected if a directed 
path exists between every pair of nodes

● The number of edges leaving a node is its degree

A path is a sequence of nodes connected by edges
● A simple path is a path without repeated nodes
● A cycle is a path whose first and last nodes are the same

○ A graph with a cycle is cyclic
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Directed vs Undirected; Acyclic vs Cyclic

a
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c
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Acyclic:

Cyclic:

Directed: Undirected:
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Node & Edge Labels

Labeled and Weighted Graphs

Edge Labels

a

b

c

d

Node Labels
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Numeric Edge Labels
(Edge Weights)
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Multi-Variable Analysis
● So far, we thought of everything as being in terms of some single 

argument “n” 
● With graphs, we need to consider:

○ n (or |V|): total number of nodes (sometimes written as V)
○ m (or |E|): total number of edges (sometimes written as E)
○ deg(u): degree of node u (how many outgoing edges it has)
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Adjacency Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0

6
2 3

4

5

0 1

In an adjacency matrix a[u][v] is 1 if 
there is an edge (u,v), and 0 
otherwise.
Worst-case Time Complexity 
(|V| = n, |E| = m):

Add Edge: 
Remove Edge: 
Check edge exists from (u,v): 
Get out-neighbors of u: 
Get in-neighbors of u:

Space Complexity:
More suitable for dense graphs

O(1)

O(1)

O(1)

O(n)

O(n)

O(n2) For an undirected graph, adjacency matrix is 
symmetric w.r.t diagonal line. A node u’s out-
neighbors are the same as its in-neighbors
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In an adjacency matrix a[u][v] is 1 if 
there is an edge (u,v), and 0 
otherwise.
Worst-case Time Complexity 
(|V| = n, |E| = m):

Add Edge: 
Remove Edge: 
Check edge exists from (u,v): 
Get outneighbors of u: 
Get inneighbors of u:

Space Complexity:
More suitable for sparse graphs

Adjacency List
A

B

C

D

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D

O(1)

O(deg(u))

O(deg (u))

O(deg(u))

O(n + m)

O(n + m)
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0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Adjacency List
A

B

C

D

Hash Tables

0

1

2

3

A

B

C

D

C

D

A

B

B

In an adjacency matrix a[u][v] is 1 if 
there is an edge (u,v), and 0 
otherwise.
Worst-case Time Complexity 
(assuming a good hash function so 
all hash table operations are O(1)) 
(|V| = n, |E| = m):

Add Edge: 
Remove Edge: 
Check edge exists from (u,v): 
Get outneighbors of u: 
Get inneighbors of u:

Space Complexity:

O(1)

O(1)

O(1)

O(deg(u) )

O(n)

O(n + m)
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2-Hop Neighbors (through Matrix Multiplication)

● Matrix multiplication for finding two-hop neighbors

1

2 3

0

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

2

=

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

=

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

Node 3 is a two-hop 

neighbor of node 0 along 

two different paths

A graph and its adjacency 

matrix representation

0 1 2 3

0 0 1 1 0

1 0 0 0 1

2 0 1 0 1

3 0 0 0 0

0 1 2 3

0 0 1 0 2

1 0 0 0 0

2 0 0 0 1

3 0 0 0 0

Node 3 is a two-hop 

neighbor of node 2 along 1 

path

The adjacency 

matrix representation

The adjacency matrix representation for 

two-hop neighbors, obtained by matrix-

matrix product of the adjacency matrix 
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2-Hop Neighbors (through Matrix Multiplication)

● Consider the multiplication of the first row of the left matrix wit the 
last column of the right matrix:  
○ 0*0 + 1*1 + 1*1 + 0*0 = 2. 

● This means that there are two 2-hop paths from 1 to 3:
○ Path 0→1→ 3 consisting of two edges 0→1 & 1→ 3, corresponding to the first term of 

1*1
○ Path 0→2→ 3 consisting of two edges 0→2 &2→ 3, corresponding to the second term 

of 1*1

1

2 3

00 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

=

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

Path 0→1→ 3

Path 0→2→ 3
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BFS & DFS for Trees
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This is our goal, but how do we translate into code?
• Use a data structure to ”queue up” children…

Breadth-First Search (BFS)
BFS: Explore nodes “layer by layer”; like level-order traversal of a tree, 
now generalized to any graph; visit 1-hop neighbors, then 2-hop 
neighbors, …, until all nodes have been visited

1
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7

8

s

VISITED

9

for (Node n : s.neighbors) {

0

1

2

3

4
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BFS Implementation
bfs(Graph graph, Node start) {

A queue keeps track of “outer 
edge” of nodes still to explore

Kick off the algorithm by 
adding start to perimeter

1

2

3

4

5
6

7

8

9start

Grab one element at a time 
from the perimeter

Look at all that 
element’s unvisited 

children

Add new ones to 
perimeter!

Queue<Node> perimeter = new Queue<>();

Set<Node> visited = new Set<>();  

perimeter.add(start);

visited.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

perimeter.add(to);

visited.add(to);

}

}

}

}
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BFS Implementation: In Action
PERIMETER bfs(Graph graph, Node start) {

Queue<Node> perimeter = new Queue<>();

Set<Node> visited = new Set<>();  

perimeter.add(start);

visited.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

perimeter.add(to);

visited.add(to);

}

}

}

}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7
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0

1

2

3

4

BFS Intuition: Why Does it Work?
PERIMETER bfs(Graph graph, Node start) {

Queue<Node> perimeter = new Queue<>();

Set<Node> visited = new Set<>();  

perimeter.add(start);

visited.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

perimeter.add(to);

visited.add(to);

}

}

}

}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

• Using FIFO queue means we explore an entire 
layer before moving on to the next layer

• Keep going until perimeter is empty
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BFS Application: Multiple-Source Shortest Paths 
Problem
● Given a digraph and a set of source nodes, 

find shortest path from any node in the set 
to every other node, assuming all edges 
have weight 1.
○ e.g., S = { 1, 7, 10 }.
○ Shortest path to 4 is 7 → 6 → 4.
○ Shortest path to 5 is 7 → 6 → 0 → 5.
○ Shortest path to 12 is 10 → 12.

● Can be done with BFS, and initialize by 
enqueuing all source nodes

dist = 1

(1-hop 

neighbors)

dist = 0

1

7

10

6

9

12

0

8

4

11

5

2

3

dist = 2

(2-hop 

neighbors)

dist = 3

(3-hop 

neighbors)
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Set<Node> visited; // assume global

connected(Node s, Node t) {
if (s == t) {
return true;

} else {
visited.add(s);
for (Node n : s.neighbors) {
if (!visited.contains(n)) {
if (connected(n, t)) {
return true;

}
}

}
return false;

}
}

Depth-First Search (DFS) (Recursive Algorithm)
• DFS explores one branch “all the way down” before coming back to try other branches
• Depending on the order of visiting branches, many possible orderings: e.g., {1, 2, 5, 6, 9, 7, 

8, 4, 3}, {1, 4, 3, 2, 5, 8, 6, 7, 9}, etc.

1

2

3

4

5
6

7

8

s

VISITED

9
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DFS w/ Stack vs. BFS w/ Queue
bfs(Graph graph, Node start) {

Queue<Node> perimeter = new Queue<>();

Set<Node> visited = new Set<>();  

perimeter.add(start);

visited.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

for (Edge edge : graph.edgesFrom(from)) {

Node to = edge.to();

if (!visited.contains(to)) {

perimeter.add(to);

visited.add(to);

}

}

}

}

dfs(Graph graph, Node start) {

Stack<Node> perimeter = new Stack<>();

Set<Node> visited = new Set<>();  

perimeter.add(start);

while (!perimeter.isEmpty()) {

Node from = perimeter.remove();

if (!visted.contains(from)) {

for (Edge edge:graph.edgesFrom(from)) {

Node to = edge.to();

perimeter.add(to)

}

visited.add(from);

}

}

}
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Recap: Graph Traversals

BFS
(Iterative)

• Explore layer-by-layer: examine every node at 
a certain distance from start, then examine 
nodes that are one level farther 

• Uses a queue!

DFS
(Iterative)

• Follow a “choice” all the way to the end, then 
come back to revisit other choices

• Uses a stack!

DFS
(Recursive) On huge graphs, might overflow the call stack
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Topological Sort

A Directed Acyclic Graph (DAG) : A directed 
graph (digraph) without any cycles

A DAG encodes a “dependency graph”
○An edge (u, v) means u must precede v
○A topological sort or topological ordering of a DAG 

gives a total node ordering that respects dependencies

Applications:
○Compiling multiple Java files
○Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological Sort:

With original edges for 
reference:

A B C

Given a DAG

A

B

C

C before A

B before C

A before B

Not a DAG. No possible topological sort
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Cycles and Undirected Edges 

● Why is topological sort not possible for digraphs 
containing cycles?
○ Imagine a graph with 3 nodes and edges = {1 to 2 , 2 to 3, 3 to 1} 

forming a cycle. Now if we try to topologically sort this graph 
starting from any node, it will always create a contradiction to our 
definition. All the nodes in a cycle are indirectly dependent on each 
other hence topological sortfails

● Why is topological sort not possible for graphs with 
undirected edges?
○ Special case of a cycle. An undirected edge between two nodes u 

and v means, there is an edge from u to v as well as from v to u. 
Because of this both the nodes u and v depend upon each other 
and none of them can appear before the other in the topological 
sort without creating a contradiction

a digraph with a directed cycle

A

B

C
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Topological Sort
Example I
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Topological Sort Example II
Give all possible topological orderings of this DAG

A

B

C

E

D

By observation, we can get (A, C, B, D, E), (A, C, B, E, D)
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Topological Sort Example III

Give all possible topological orderings of this DAG

A

B

C

E

D

E

By observation, we can get: all possible interleavings with (AB) or (BA) 
before C, (DEF) or (DFE) or (EFD) after C. e.g., ABCDEF, BACEDF, etc.
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DFS Traversals and Topological Sort 
● DFS pre-order traversal 

○ Visit a node during DFS forward traversal before visiting all its unvisited neighbors
○ .Pre-order traversal is obtained in the order that nodes are pushed onto the stack, or when the 

recursive function call goes forward in the call stack
○ Upon finishing traversal starting from one node, restart from another unvisited node

● DFS post-order traversal 
○ Visit a node during DFS backtracking after visiting all its unvisited neighbors, i.e., after reaching a 

deadend. 
○ Post-order traversal is obtained in the order that the nodes are popped off the stack, or when the 

recursive function call returns from the call stack
○ Upon finishing traversal starting from one node, restart from another unvisited node
○ Any post-order traversal of a graph must end with a node with incoming edges (no predecessors), 

hence any topological sort must start with a node with no predecessors
■ Tree traversal is a special case: any post-order traversal of a tree must end with the root

● Topological sort: 
○ Perform DFS post-order traversal starting from any node (often, but not necessarily, a node with no 

predecessors, to reduce the number of restarts) to get an ordered list of nodes, then reverse the 
node order to get a topological sort (one of multiple possible) 

○ Intuition: DFS post-order traversal outputs nodes from the deepest (farthest away from the starting 
node) to the starting mode, hence the reverse order is a topological sort from the starting node
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DFS Traversal of Graphs: Pre-order, Post-order
function preOrderTraversal(node) {
if (node !== null) {
visitNode(node);
preOrderTraversal(node.left);
preOrderTraversal(node.right);

}
}

function postOrderTraversal(node) {
if (node !== null) {
postOrderTraversal(node.left);
postOrderTraversal(node.right);
visitNode(node);

}
}

function preOrderTraversal(node) {
if (node !== null) {
visitNode(node);
foreach(c ∈ node.UnvisitedNeighbors) {   

preOrderTraversal(c);}
}

}

function postOrderTraversal(node) {
if (node !== null) {

foreach(c ∈ node.UnvisitedNeighbors) {   
postOrderTraversal(c);}

visitNode(node);   
}
}

Recall: Binary Tree traversal with DFS: pre-order, post-order 

The traversal algorithms works for both undirected and directed graphs. The only difference is how 
to get neighbors of node v, as each undirected edge is treated as two directed edges in both 
directions. 
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Resolving Ambiguities

● As There are typically multiple possible traversals of the 
same graph. In the lecture and exams, we often use the 
following rule to resolve any ambiguities:

● “When there are multiple possible orders of visiting the next 
node, select the next node in alphabetical or numerical 
order.”
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DFS Traversal Example I
● Start from node 0

● Visit nodes 0->1->4. Since 4 has no successors, backtrack to 0. 
○ Pre-order: (0, 1, 4); post-order: (4, 1)

● Visit node 2. Since 2 has no successors, backtrack to 0
○ Pre-order: (0, 1, 4, 2); post-order: (4, 1, 2)

● Visit node 5. Since 5’s successor 2 has been visited, backtrack to 0. Since all 
of node 0’s successors have been visited, we visit it in post-order
○ Pre-order: (0, 1, 4, 2, 5); post-order: (4, 1, 2, 5, 0)

● Restart from node 3, visit its successor 6, then backtrack. Since all of node 
3’s successors have been visited, we visit it in post-order
○ Pre-order: (0, 1, 4, 2, 5, 3, 6); post-order: (4, 1, 2, 5, 0, 6, 3)

● All nodes and their successors have been visited, so the algorithm 
terminates. A topological sort corresponding to this post-order is (3, 6, 0, 5, 
2, 1, 4)

● A BFS traversal: (0, 2, 5, 1, 4, 3, 6)

● This is one of many possible traversals, e.g., if we start from node 3, then 
we have the traversals: pre-order: (3, 2, 4, 5, 6, 0, 1); post-order: (2, 4, 5, 1, 
0, 6, 3); Topological sort: (3, 6, 0, 1, 5, 4, 2); BFS: (3, 2, 4, 5, 6, 0, 1)

0

1

4

52

6

3

0
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DFS Traversal Example II
● Starting from node 5:

○ Pre-order traversal: (5, 2, 3, 1, 0, 4) 
○ Post-order traversal: (1, 3, 2, 0, 5, 4) 
○ Topological sort: (4, 5, 0, 2, 3, 1)
○ BFS traversal: (5, 0, 2, 3, 1, 4)

● Starting from node 4:
○ Pre-order traversal: (4, 0, 1, 5, 2, 3)
○ Post-order traversal: (0, 1, 4, 3, 2, 5) 
○ Topological sort: (5, 2, 3, 4, 1, 0)
○ BFS traversal: (4, 0, 1, 5, 2, 3)

● Starting from node 0:
○ Pre-order traversal: (0, 5, 2, 3, 1, 4)
○ Post-order traversal: (0, 1, 3, 2, 5, 4)
○ Topological sort: (4, 5, 2, 3, 1, 0)
○ BFS traversal: (0, 5, 2, 3, 1, 4)

● You may try starting from any other node.
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DFS Traversal Example III
● Starting from node A: 

● Pre-order traversal: (A, B, F, I, J, K, E,  C, G, 
D, H)

● Post-order traversal: (I, K, J, F, E, B, G, C, 
H, D, A)

● Topological sort: (A, D, H, C, G, B, E, F, J, K, 
I)

● BFS traversal: (A, B, C, D, E, F, G, H, I, J, K)

● Starting from a different node will give a 
different topological sort, but all of them 
must start with A, since it is the only node 
without any predecessors (i.e., it must 
precede all the other nodes based on the 
DAG)

● Any post-order traversal must visit A last, 
since all of A’s sucessors must be visited 
before visiting A

Topological Sort Visualized and Explained
https://www.youtube.com/watch?v=7J3GadLzydI

https://www.youtube.com/watch?v=7J3GadLzydI
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Kahn’s algorithm for Topological Sort

● The algorithm works by repeatedly finding nodes with no incoming 
edges, removing them from the graph, and updating the incoming 
edges of the remaining nodes. This process continues until all nodes 
have been ordered.
○ Add all nodes with in-degree 0 to a queue.
○ While the queue is not empty:

■ Remove a node from the queue.
■ For each outgoing edge from the removed node, decrement the in-degree of the destination node by 1.
■ If the in-degree of a destination node becomes 0, add it to the queue.

○ If the queue is empty and there are still nodes in the graph, the graph contains a 
cycle and cannot be topologically sorted.

○ The nodes in the queue represent the topological sort of the graph.

● Time Complexity: O(V+E). 
○ The outer for loop will be executed V number of times and the inner for loop will 

be executed E number of times.
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Graph Traversals

● Give one DFS pre-order, in-order and post-order traversal of the 
following graph, and a topological sort.

● Starting from node 4:
○ Pre-order traversal: (4, 5, 1, 2, 3, 0)
○ Post-order traversal:  (3, 2, 1, 5, 4, 0)
○ Topological Sort: (0, 4, 5, 1, 2, 3)
○ BFS: (4, 5, 1, 2, 3, 0)

● Starting from node 0:
○ Pre-order traversal: (0, 1, 2, 3, 4, 5)
○ Post-order traversal:  (3, 2, 1, 0, 5, 4)
○ Topological Sort: (4, 5, 0, 1, 2, 3)
○ BFS: (0, 1, 2, 3, 4, 5)
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References

● Breadth-first search in 4 minutes (for a tree)
○ https://www.youtube.com/watch?v=HZ5YTanv5QE

● Depth-first search in 4 minutes (for a tree)
○ https://www.youtube.com/watch?v=Urx87-NMm6c

● Graph Traversals - Breadth First and Depth First (for an undirected graph)
○ https://www.youtube.com/watch?v=bIA8HEEUxZI

● Breadth-First Search Visualized and Explained
○ https://www.youtube.com/watch?v=N6wicLpEmHY&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&i

ndex=5

● Depth-First Search Visualized and Explained
○ https://www.youtube.com/watch?v=5GcSvYDgiSo&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&in

dex=6

● Topological Sort Visualized and Explained
○ https://www.youtube.com/watch?v=7J3GadLzydI&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&ind

ex=7

● Graph Algorithms, Programming and Math Tutorials (Playlist)
○ https://www.youtube.com/playlist?list=PLj8W7XIvO93oxLOZTi8JFghuRcKieIZU-

https://www.youtube.com/watch?v=HZ5YTanv5QE
https://www.youtube.com/watch?v=Urx87-NMm6c
https://www.youtube.com/watch?v=bIA8HEEUxZI
https://www.youtube.com/watch?v=N6wicLpEmHY&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=5
https://www.youtube.com/watch?v=N6wicLpEmHY&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=5
https://www.youtube.com/watch?v=5GcSvYDgiSo&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=6
https://www.youtube.com/watch?v=5GcSvYDgiSo&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=6
https://www.youtube.com/watch?v=7J3GadLzydI&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=7
https://www.youtube.com/watch?v=7J3GadLzydI&list=PLnZHgAO8ocBv6XRqZkqQjrsIJijn82UUC&index=7
https://www.youtube.com/playlist?list=PLj8W7XIvO93oxLOZTi8JFghuRcKieIZU-
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Full-Length Lectures

● [CSE 373 WI24] Lecture 14: Graph Traversals
○ https://www.youtube.com/watch?v=1IJUv3ljqyU&list=PLEcoVsAaONjd5n69

K84sSmAuvTrTQT_Nl&index=13

https://www.youtube.com/watch?v=1IJUv3ljqyU&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=13
https://www.youtube.com/watch?v=1IJUv3ljqyU&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=13
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