
1

Lecture 11

Heaps

Department of Computer Science

Hofstra University

Acknowledgement: Lecture slides based on UofW Course on Data Structures

2

Priority Queue ADT
Binary Heap
Binary Heap Methods

3

Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the
element with the smallest
priority, removes it from the
collection

state

behavior

Set of comparable values
- Ordered based on
“priority”

peekMin() – find, but do
not remove the element
with the smallest priority
add(value) – add a new
element to the collection

Max Priority Queue ADT

removeMax() – returns the
element with the largest
priority, removes it from
the collection

state

behavior

Set of comparable values
- Ordered based on
“priority”

peekMax() – find, but do
not remove the element
with the largest priority
add(value) – add a new
element to the collection

Priority Queues are commonly used for sorting

If a Queue is “First-In-First-Out” (FIFO) Priority
Queues are “Most-Important-Out-First”

Items in Priority Queue must be comparable –
The data structure will maintain some amount of
internal sorting, in a sort of similar way to
BSTs/AVLs

4

Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array O(1) O(n) O(n)

Linked List (sorted) O(n) O(1) O(1)

AVL Tree O(log n) O(log n) O(log n)

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.

5

Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array O(1) O(n) O(n)
O(1)

Linked List (sorted) O(n) O(1) O(1)

AVL Tree O(log n) O(log n) O(log n)
O(1)

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

Add a field to keep track of the min.
Update on every insert or remove.

AVL Trees are our baseline – let’s look at what computer
scientists came up with as an alternative, analyze that, and
then come back to AVL Tree as an option later

6

Priority Queue ADT
Binary Heap
Binary Heap Methods

7

Heaps

In a BST, we organized the data to find anything quickly. (go left or
right to find a value deeper in the tree)

Now we just want to find the smallest item fast, so let’s write a
different invariant:

Heap invariant
Every node is less than or equal to both of its children.

6

8 9

4

5

6

7

In particular, the smallest node is at the root!

Do we need more invariants?

4

5

7

8

Heaps

We want to avoid degenerate trees (linear linked lists).

The heap invariant is less strict (looser) than the BST invariant, so we can impose
stricter invariants on tree structure

4

5

6

7

a degenerate tree

…

▪ A BST is an ordered, or sorted, binary tree,

with the following invariants:

▪ For every node with key k:

▪ The left subtree has only keys smaller than k

▪ The right subtree has only keys greater than k

▪ This invariant applies recursively throughout tree

Recall: BST Invariant

9

Heaps

A tree is complete if:
● Every row, except potentially the last, is completely full
● The last row is filled from left to right (no “gap”)

Heap structure invariant:
A heap is always a complete tree.

2

78

6

9

5

4

helps to avoid degenerate trees

2

78

6 5

4

complete not complete

10

Complete Binary Tree or Not?

Above: complete binary trees

Below: not complete binary trees

Leaf level is not filled from left to right.
Non-leaf level is not
completely filled.

11

Binary Heap invariants

8

9 1

0

2

4 5

3

6 7

1

2

2

3

6

47

2

4

8 9 1

0

3

1

5

A binary heap satisfies the following invariants:

1. Binary Tree: every node has at most 2 children
2. Heap invariant: every node is smaller than (or equal to) its children
3. Heap structure invariant: each level is “complete” meaning it has no

“gaps”
a. Heaps are filled up left to right

Valid heap Valid heap Invalid heap

12

Quiz - Are these valid heaps?

Binary Heap
Invariants:
1. Binary Tree
2. Heap
3. Complete

2

3

5

7 8

4

9 11 10

7

9 8

5

6

4

3

7

1

6

Invalid Invalid Valid

13

Quiz - Are these valid heaps?

8

9 10

3

9 11

5

4 7

2

22

36 47

2

4

8 9 10

3

1

5

Valid Invalid Invalid

Binary Heap
Invariants:
1. Binary Tree
2. Heap
3. Complete

14

Heap heights

A binary heap bounds our height at O(log(n)) because it’s complete. This means
the runtime to traverse from root to leaf or leaf to root will be log(n) time.

4

5 8

7

10

2

9

11 13

15

Priority Queue ADT
Binary Heap
Binary Heap Methods

16

Implementing peekMin()

4

5 8

7

10

2

9

11 13

17

Implementing removeMin()

4

5 8

7

10

2

9

11 13

4

5 8

7

10

13

9

11

Structure invariant restored
Heap invariant broken

1. Return min

2. Replace with bottom level right-most node

18

Implementing removeMin() - percolateDown

4

5 8

7

10

13

9

11

.4.

13.5.

13

13

11

Structure invariant restored
Heap invariant restored

What’s the worst-case running time?

Have to:
● Find last element
● Move it to top spot
● Swap until invariant restored
● Number of swaps is O(TreeHeight)

Hence we want to keep tree
height small, as tree height (BST,
AVL, heaps) directly correlates
with worst-case runtimes

1. Return min
2. Replace with bottom level right-most node
3. percolateDown()

Recursively swap parent with smallest child until
parent is smaller than both children
(or we’re at a leaf).

19

Practice: removeMin()

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

1.) Remove min node
2.) replace with bottom level right-most
node
3.) percolateDown - Recursively swap
parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

20

percolateDown()

Why does percolateDown swap with the smallest child instead of
just any child?

4

5 8

7

10

13

9

11

If we swap 13 and 7, the heap invariant isn’t restored!

7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.

21

Implementing add()

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent
is smaller than you (or you’re the root).

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the
worst-case runtime is O(log(n))

22

Practice: Building a minHeap
Construct a Min Binary Heap by adding the following values in
this order:

● 5, 10, 15, 20, 7, 2

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely

filling each level before creating a new one

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent is smaller than you (or you’re the root).

23

minHeap runtimes

removeMin():
● remove root node
● find last node in tree and swap to top level
● percolate down to fix heap invariant

add()
● insert new node into next available spot
● percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in O(log n) time on complete trees, with some extra class variants

24

Implementing add()

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent
is smaller than you (or you’re the root).

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the
worst-case runtime is O(log(n))

25

Quiz: Building a minHeap
Construct a Min Binary Heap by adding the following values in
this order:

● 5, 10, 15, 20, 7, 2

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely

filling each level before creating a new one

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent is smaller than you (or you’re the root).

26

minHeap runtimes

removeMin():
● remove root node
● find last node in tree and swap to top level
● percolate down to fix heap invariant

add()
● insert new node into next available spot
● percolate up to fix heap invariant

Finding the last node/next available spot takes O(log n) time on complete trees

But there’s a better way

27

Heap Array Implementation
More Priority Queue Operations

28

Implement Heaps with an array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

We map our binary-tree
representation of a heap into an
array implementation where you fill
in the array in level-order from left
to right.

The implementation of a heap is an
array, but the tree drawing is how
to think of it conceptually.

29

Implement Heaps with an array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum
node?

How do we find the last node?

How do we find the next open
space?

How do we find a node’s left child?

How do we find a node’s right
child?

How do we find a node’s parent?

30

Heap Implementation Runtimes

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

Implementation add removeMin Peek

Array-based heap worst-case:
O(log n)

Worst-case:
O(log n)

O(1)

31

Binary Heap vs. Binary Search Tree

● Binary Heap: the min-heap property
○ Value of each node is less than or equal to the value of its parent, with

the maximum-value element at the root.
○ A heap is not a sorted data structure and can be regarded as partially

ordered.

● BST: Ordered, or sorted, binary trees
○ Items to the left of a given node are smaller.
○ Items to the right of a given node are larger.

● Both structures offer O(log n) time complexity for certain
operations, they are used in different scenarios.
○ Heapsort is used for efficient sorting and simple priority queue

implementations
○ BST can also be used for sorting, by insertions followed by in-order

traversal, with O(n log(n)) average-case complexity

9

58

6 2 1

8

5

1 7 9

Binary Heap
In-order traversal does not
give sorted list [6, 8, 2, 9,
5, 1]

Binary Search Tree
In-order traversal gives
sorted list [1, 5, 7, 8, 9,
10]

10

32

Heap Array Implementation
More Priority Queue Operations

33

BuildHeap

BuildHeap(elements e₁, …, eₙ)

Given n elements, create a heap containing exactly those n elements.

Try 1: Just call insert n times.
● n calls, each with worst-case complexity O(log n), so overall worst-case complexity

is O(n log n)
● Worst-case input: if we insert elements in decreasing order, every node will have to

percolate all the way up to the root.
● Can we do better?

34

Can We Do Better?

● What’s causing the n add strategy to take so long?
○ Most nodes are near the bottom, and might need to percolate all

the way up

● Idea 2: Dump everything in the array, and percolate things down until
the heap invariant is satisfied
○ The bottom two levels of the tree have O(n) nodes, the top two

have 3 nodes
○ Maybe we can make “most of the nodes” at the bottom go only a

constant distance

35

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

1. Add all values to back of array1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4

36

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3

10

.7.

37

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

10

.7. 11

.2.

11

.6.

.3.

5..4.

5.

38

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

10

.7. 11

.2.

11

.6.

.3.

5..4.

5.

12

.2.

.6.

12

12

.11.

39

Floyd’s buildHeap runs in O(n) time
percolateDown() has worst case log(n) in general, but for most of these nodes,
it has a much smaller worst case!
● n/2 nodes in the tree are leaves, have 0 levels to travel
● n/4 nodes have at most 1 level to travel
● n/8 nodes have at most 2 levels to travel
● etc…

worst-case-work(n) ≈

Intuition: Even though there are log(n) levels, each level does a smaller and
smaller amount of work. Even with infinite levels, as we sum smaller and
smaller values (think 1/2ⁱ) we converge to a constant factor of n.

++
much of
the work

a little
less

a little
less

barely
anything

40

Optional Slide Floyd’s buildHeap Summation

Infinite geometric series

find a pattern -> powers of 2

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

41

References
● What Is a Binary Heap? By Spanning Tree

○ https://www.youtube.com/watch?v=AE5I0xACpZs

● Can we represent a tree with an array? - Inside code
○ https://www.youtube.com/watch?v=EitnYxinKkw

● Min Heap Animations | Data Structure | Visual How
○ https://www.youtube.com/watch?v=AFPzC2RJOMk
○ https://www.youtube.com/@visualhow/videos

● Heaps // Michael Sambol
○ https://www.youtube.com/playlist?list=PL9xmBV_5YoZNsyqgPW-DNwUeT8F8uhWc6

● Binary Min/Max Heap

○ https://www.youtube.com/playlist?list=PLvTjg4siRgU197GA1yFNRWUgsPZnvjuyL

● HEAP SORT | Sorting Algorithms | DSA | GeeksforGeeks
○ https://www.youtube.com/watch?v=MtQL_ll5KhQ

● 2.6.3 Heap - Heap Sort - Heapify - Priority Queues (recommended)
○ https://www.youtube.com/watch?v=HqPJF2L5h9U&list=PLDN4rrl48XKpZkf03iYFl-

O29szjTrs_O&index=32

https://www.youtube.com/watch?v=AE5I0xACpZs
https://www.youtube.com/watch?v=EitnYxinKkw
https://www.youtube.com/watch?v=AFPzC2RJOMk
https://www.youtube.com/@visualhow/videos
https://www.youtube.com/playlist?list=PL9xmBV_5YoZNsyqgPW-DNwUeT8F8uhWc6
https://www.youtube.com/playlist?list=PLvTjg4siRgU197GA1yFNRWUgsPZnvjuyL
https://www.youtube.com/watch?v=MtQL_ll5KhQ
https://www.youtube.com/watch?v=HqPJF2L5h9U&list=PLDN4rrl48XKpZkf03iYFl-O29szjTrs_O&index=32
https://www.youtube.com/watch?v=HqPJF2L5h9U&list=PLDN4rrl48XKpZkf03iYFl-O29szjTrs_O&index=32

42

Full-Length Lectures

● [CSE 373 WI24] Lecture 11: Intro to Heaps
○ https://www.youtube.com/watch?v=oRzWGbkKXFE&list=PLEcoVsAaO

Njd5n69K84sSmAuvTrTQT_Nl&index=10

● [CSE 373 WI24] Lecture 12: Heap Implementation
○ https://www.youtube.com/watch?v=rYBFS2YpWNw&list=PLEcoVsAaO

Njd5n69K84sSmAuvTrTQT_Nl&index=11

https://www.youtube.com/watch?v=oRzWGbkKXFE&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=10
https://www.youtube.com/watch?v=oRzWGbkKXFE&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=10
https://www.youtube.com/watch?v=rYBFS2YpWNw&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=11
https://www.youtube.com/watch?v=rYBFS2YpWNw&list=PLEcoVsAaONjd5n69K84sSmAuvTrTQT_Nl&index=11

	Slide 1
	Slide 2
	Slide 3: Priority Queue ADT
	Slide 4: Implementing Priority Queues: Take I
	Slide 5: Implementing Priority Queues: Take I
	Slide 6
	Slide 7: Heaps
	Slide 8: Heaps
	Slide 9: Heaps
	Slide 10: Complete Binary Tree or Not?
	Slide 11: Binary Heap invariants
	Slide 12: Quiz - Are these valid heaps?
	Slide 13: Quiz - Are these valid heaps?
	Slide 14: Heap heights
	Slide 15
	Slide 16: Implementing peekMin()
	Slide 17: Implementing removeMin()
	Slide 18: Implementing removeMin() - percolateDown
	Slide 19: Practice: removeMin()
	Slide 20: percolateDown()
	Slide 21: Implementing add()
	Slide 22: Practice: Building a minHeap
	Slide 23: minHeap runtimes
	Slide 24: Implementing add()
	Slide 25: Quiz: Building a minHeap
	Slide 26: minHeap runtimes
	Slide 27
	Slide 28: Implement Heaps with an array
	Slide 29: Implement Heaps with an array
	Slide 30: Heap Implementation Runtimes
	Slide 31: Binary Heap vs. Binary Search Tree
	Slide 32
	Slide 33: BuildHeap
	Slide 34: Can We Do Better?
	Slide 35: Floyd’s buildHeap algorithm
	Slide 36: Floyd’s buildHeap algorithm
	Slide 37: Floyd’s buildHeap algorithm
	Slide 38: Floyd’s buildHeap algorithm
	Slide 39: Floyd’s buildHeap runs in O(n) time
	Slide 40: Optional Slide Floyd’s buildHeap Summation
	Slide 41: References
	Slide 42: Full-Length Lectures

