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2−3 Trees
Allow 1 or 2 keys per node
 2-node: one key, two children.
 3-node: two keys, three children.

Perfect balance: Every path from root to leaf has same length.

Symmetric order: In-order traversal yields keys in ascending order.  

between E and J

larger than Jsmaller than E
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3-node 2-nodeM
Search
 Compare search key against keys in node.
 Find interval containing search key.
 Follow associated link (recursively).

Search for H
H is less than M (go left)
H is between E and J (go middle)

Search hit

Search for B

B is less than M (go left)
B is less than E (go left)
B is between A and C (go middle)

Search miss

Link is null 2



Insert in 2−3 Trees
Insertion into a 2-node at bottom.
 Search for key, as usual
 Add new key to 2-node to create a 3-node.

S XA C PH

R

L

E J

M

Insert K

K is less than M (go left)
K is larger than J (go right)

K is less than L

Search ends here and replace 2-node with 3-node containing K

K L

Insertion into a 3-node at bottom.
 Add new key to 3-node to create temporary 4-node.
 Move middle key in 4-node into parent.

Insert Z

Z is larger than M (go right)
Z is larger than R (go right)

Z is larger than X

Search ends here
Replace 3-node with temporary 4-node containing Z
Split 4-node into two 2-nodes (pass middle key to parent)

S X ZS ZZ

R X

S
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Insert in 2−3 Trees (Contd.)
Insertion into a 3-node at bottom.
 Add new key to 3-node to create temporary 4-node.
 Move middle key in 4-node into parent.
 Repeat up the tree, as necessary.
 If you reach the root and it's a 4-node, split it into 

three 2-nodes.

Insert L

L is between E and R (go middle)

Search ends here
Replace 3-node with temporary 4-node containing LE R

A C H P S XH L P

E R

A C S XH P

E L R

A C S XH P

E R

L
Split 4-node (move L to parent)

Split 4-node (move L to parent)

Height of tree increases by 1
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2−3 Trees Construction
Insert S

Convert 3-node into 4-node

Insert E

Insert A

Split 4-node into two 2-nodes (move E to parent)

E

Convert 2-node into 3-node

Create 2-node in the empty tree

E SA E S

Convert 2-node into 3-nodeInsert R
Convert 2-node into 3-node

R S

Insert C

A C

Convert 3-node into 4-nodeInsert H
Split 4-node into two 2-nodes (move R to parent)

H R SH S

E R

A C

E R

Convert 2-node into 3-nodeInsert X

S X

Convert 2-node into 3-nodeInsert P

H P

Convert 3-node into 4-nodeInsert L

Split 4-node into two 2-nodes (move L to parent)
Split 4-node into two 2-nodes (move L to parent)

H L P

A C

E R

S X

E L R

E L R

H P

H P

A C S XH P

E R

L

Create a new root 
node, and height of 
the tree grows by one
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Local Transformations in a 2-3 Tree

a e

b c d
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between
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between
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a c e

These operations maintain 
tree balance.

Converting a 2-node to a 3-node

Converting a three to a four, and then splitting and passing a node up

local transformation: constant 
number of operations.

Only involves changing a 
constant number of links, and 
is independent of the tree 
size.
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Global Properties in a 2-3 Tree
Invariants. Maintains symmetric order and perfect balance.

right

middle

left

c d e

a b

b  c d

a e

a b d

a c e

a   b c

d e b d e

right

b c d

a ca

d b d

parent is a 2-node: split and 
parent turns into a 3-node

b
a b c

root

left
a b c

Proof. Each transformation maintains symmetric order and perfect  balance.

Splitting a 4-node

If it is perfect balance before, it is perfect balance afterwards

parent is a 3-node: split and 
parent turns into a 4-node; parent 
splits again (omitted in figures)
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EXAMPLE PROBLEM ON 2-3 TREE INSERTION

 EXAMPLE PROBLEM ON 2-3 TREE INSERTION, DIVVELA SRINIVASA RAO
 https://www.youtube.com/watch?v=2S5Ld-FQ2dM 

https://www.youtube.com/watch?v=2S5Ld-FQ2dM


Motivation for B-tree: File system model
Page.   Contiguous block of data (e.g., a file or 4,096-byte chunk). 

Probe.   First access to a page (e.g., from disk to memory).

Property.   Time required for a probe is much larger than time to access  data 

within a page.

Cost model.   Number of probes.

Goal.   Access data using minimum number of probes.

slow fast
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B-Trees 10

Motivation for B-Trees

 Index structures for large datasets cannot be stored in main 
memory, hence must be stored on disk

 Time required to access disk is much larger than time to access 
main memory

 Goal: access data with minimum number of probes.
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Motivation (cont.)

 Assume that we use an AVL tree to store about 20 million 
records

 We end up with a very deep binary tree with lots of different 
disk accesses, e.g., log2 20,000,000 is about 24

 We know we cannot improve on the log n lower bound on 
search for a binary tree

 But we can use more branches and thus reduce the height of 
the tree!
 As branching increases, depth decreases
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Definition of a B-tree
 A B-tree of order M is an M-way tree (also called “of order M”):

1. It is a search tree: number of keys in each non-leaf node is one less than the number of its 
children, and these keys partition the keys in the children in sorted order

2. Each node has at most M children (contains at most 𝑀𝑀– 1 keys)
3. Each non-leaf node (except the root) has at least ⌈𝑀𝑀/2⌉ children (contains at least 𝑀𝑀/2 −

1 keys) (i.e., must be at least “half-full”)
4. The root has at least 2 children (contains at least 1 key)
5. All leaf nodes are at the same level (always balanced)

 Special cases:
 M = 3: 2-3 tree (each non-leaf node has 2--3 children, contains 1--2 keys)
 M = 4: 2-4 tree (each non-leaf node has 2--4 children, contains 1--3 keys)
 M = 5: 3-5 tree (each non-leaf node has 3--5 children, contains 2--4 keys)
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B-trees Example I

51 6242

6 12

26

55 60 7064 9045

1 2 4 7 8 13 15 18 25

27 29 46 48 53

All leaves are at the same level 3

Generalization of 2-3 trees
 At least 2 children at root
 At least M / 2 children in other nodes

A B-tree of order 5 (M = 5)
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B-trees Example II

A B-tree of order 4 (M = 4)

All leaves are at the same level 3

Generalization of 2-3 trees
 At least 2 children at root
 At least M / 2 children in other nodes
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Searching for 120 in the given B-Tree 15



Inserting into a B-Tree
 Attempt to insert the new key into a leaf
 If this would result in that leaf becoming too big, split the leaf into two, 

promoting the middle key to the leaf’s parent
 If this would result in the parent becoming too big, split the parent into two, 

promoting the middle key
 This strategy might have to be repeated all the way to the top
 If necessary, the root is split in two and the middle key is promoted to a 

new root, making the tree one level higher
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 Suppose we start with an empty B-tree and keys arrive in the 
following order:1  12  8  2  25  5  14  28  17  7  52  16  48  68  
3  26  29  53  55  45

 We want to construct a B-tree of order 5
 The first four keys go into the root:

 To put the fifth key in the root would violate condition 5
 Therefore, when 25 arrives, promote the middle key to make a 

new root

Constructing a B-tree

1 2 8 12
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Constructing a B-tree (contd.)

1 2

8

12 25

6, 14, 28 get added to the leaf nodes:

1 2

8

12 146 25 28
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Constructing a B-tree (contd.)

Adding 17 to the right leaf node would over-fill it, so we take the 
middle key, promote it (to the root) and split the leaf

8 17

12 14 25 281 2 6

7, 52, 16, 48 get added to the leaf nodes
8 17

12 14 25 281 2 6 16 48 527
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Constructing a B-tree (contd.)
Adding 68 causes us to split the right most leaf, promoting 48 to the 
root, and adding 3 causes us to split the left most leaf, promoting 3 
to the root

3 8 17 48

52 6825 281 2 6 7 12 14 16

26, 29, 53, 55 then go into the leaves
3 8 17 48

52 53 55 6825 26 28 291 2 6 7 12 14 16
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Constructing a B-tree (contd.)

17

3 8 28 48

1 2 6 7 12 14 16 52 53 55 6825 26 29 45

Adding 45 causes a split of 25 26 28 29

and promoting 28 to the root then causes the root to split
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Deletion from a B-tree

 (B-tree deletion will NOT be covered in exam)
 During insertion, the key always goes into a leaf.  For deletion 

we wish to remove from a leaf.  There are three possible ways 
we can do this:

 1 - If the key is already in a leaf node, and removing it doesn’t 
cause that leaf node to have too few keys, then simply remove 
the key to be deleted.

 2 - If the key is not in a leaf then it is guaranteed (by the nature 
of a B-tree) that its predecessor or successor will be in a leaf -- 
in this case we can delete the key and promote the predecessor 
or successor key to the non-leaf deleted key’s position.
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Explanations: why a key’s predecessor or 
successor is guaranteed to be in a leaf 

 Definition of Predecessor and Successor:
 The predecessor of a key in an internal node is the largest key in its left subtree.
 The successor is the smallest key in its right subtree

 Traversal to Leaves:
 To find the predecessor, you follow the rightmost path from the left child of the 

key's node. Similarly, to find the successor, you follow the leftmost path from the 
right child. These paths always terminate at a leaf because B-trees are structured 
such that all keys in any subtree are stored in its leaves or internal nodes, and 
traversal through children eventually reaches leaves

 Key Replacement During Deletion:
 When deleting a key from an internal node, it is replaced by either its predecessor or 

successor. This ensures that the B-tree remains balanced and satisfies its properties. 
Since predecessors and successors are located in leaf nodes, their removal does not 
disrupt the tree's structure beyond localized adjustments

 Ref. Slide 28, “Deletion from a BST” in Lecture 8-Binary Search Tree.
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Deletion from a B-tree (2)

 If (1) or (2) lead to a leaf node containing less than the 
minimum number of keys then we look at the siblings 
immediately adjacent to the leaf in question:  
 3: if one of them has more than the min. number of keys then we can 

promote one of its keys to the parent and take the parent key into our 
lacking leaf 

 4: if neither of them has more than the min. number of keys then the 
lacking leaf and one of its neighbours can be combined with their 
shared parent (the opposite of promoting a key) and the new leaf will 
have the correct number of keys; if this step leave the parent with too 
few keys then we repeat the process up to the root itself, if required 
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Type #1: Simple leaf deletion

12 29 52

2 7 9 15 22 56 69 7231 43

Delete 2:  Since there are enough
keys in the node, just delete it

Assuming a 5-way
B-Tree, as before...
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Type #2: Simple non-leaf deletion

12 29 52

7 9 15 22 56 69 7231 43

Delete 52

Borrow the predecessor
or (in this case) successor

56
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Type #4: Too few keys in node and its 
siblings

12 29 56

7 9 15 22 69 7231 43

Delete 72

Too few keys! 
Apply Case 4

Join back together
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Type #4: Too few keys in node and its 
siblings

12 29

7 9 15 22 695631 43
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Type #3: Enough siblings

12 29

7 9 15 22 695631 43

Delete 22

Demote root key and
promote leaf key
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Type #3: Enough siblings

12

297 9 15

31

695643
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Analysis of B-Trees I
 For an M-way B-tree:

 Each node has at most M children ⇒ the maximum branching factor is 𝑀𝑀
 Each non-leaf node (except the root) has at least ⌈𝑀𝑀/2⌉ children ⇒ the minimum 

branching factor is ⌈𝑀𝑀/2⌉
 Maximum number of keys in an M-way B-tree with height h: This occurs when 

the tree is as full as possible (each non-leaf node has 𝑀𝑀 children, with 𝑀𝑀 − 1 keys 
per node)

# keys in root (level 0): 𝑀𝑀 –  1, with 1 node, 𝑀𝑀 –  1 keys per node
# keys at level 1: 𝑀𝑀(𝑀𝑀 –  1), with 𝑀𝑀 nodes, 𝑀𝑀 –  1 keys per node
# keys at level 2: 𝑀𝑀2(𝑀𝑀 –  1), with 𝑀𝑀2 nodes, 𝑀𝑀 –  1 keys per node
.  .  . 
# keys at level ℎ: 𝑀𝑀ℎ(𝑀𝑀 –  1), with 𝑀𝑀ℎnodes, 𝑀𝑀 –  1 keys per node

 So, the maximum total number of keys is 𝑀𝑀ℎ+1– 1
 (1 + 𝑀𝑀 + 𝑀𝑀2 + ⋯+ 𝑀𝑀ℎ)(𝑀𝑀– 1) = [(𝑀𝑀ℎ+1– 1)/(𝑀𝑀 – 1)](𝑀𝑀– 1) = 𝑀𝑀ℎ+1– 1
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Analysis of B-Trees II

 Minimum number of keys in an M-way B-tree with height h: This occurs when the 
tree is as sparse as possible (root node has 2 children, with 1 key; each non-leaf 
node (except the root) has ⌈𝑀𝑀/2⌉ children, with 𝑀𝑀/2 − 1 keys per node). Let 𝑡𝑡 =
⌈𝑀𝑀/2⌉ for brevity

# keys in root (level 0): 1, with 1 node, 1 key per node
# keys at level 1: 2(𝑡𝑡 − 1), with 2 nodes, 𝑡𝑡 − 1 keys per node
# keys at level 2: 2𝑡𝑡(𝑡𝑡 − 1), with 2𝑡𝑡 nodes, 𝑡𝑡 − 1 keys per node
.  .  . 
# keys at level ℎ: 2𝑡𝑡ℎ−1(𝑡𝑡 − 1), with 2𝑡𝑡ℎ−1nodes, 𝑡𝑡 − 1 keys per node

 So, the minimum total number of keys is 2⌈𝑀𝑀/2⌉ℎ−1
 1 + 2 𝑡𝑡 − 1 + 2𝑡𝑡 𝑡𝑡 − 1 + ⋯+ 2𝑡𝑡ℎ−1 𝑡𝑡 − 1 = 1 + 2[ 𝑡𝑡ℎ − 1 /(𝑡𝑡 – 1)](𝑡𝑡 – 1) = 2𝑡𝑡ℎ − 1

• Examples: 
• For 𝑀𝑀 = 3,ℎ = 2: Max: 3^3 − 1 = 26 keys; Min: 2 ⋅ 22 − 1 = 7 keys
• For 𝑀𝑀 = 4,ℎ = 1: Max: 4^2 − 1 = 15 keys; Min: 2 ⋅ 21 − 1 = 3 keys



Recall: Height of a Binary Tree

 A binary tree with height ℎ has maximum total number of 
nodes: 𝑛𝑛 = 2ℎ+1 − 1

 For a binary tree with n nodes, the height h is bounded by: 
⌈log₂(𝑛𝑛 + 1)⌉ − 1 ≤ ℎ ≤ 𝑛𝑛 − 1
 The lower bound represents a perfectly balanced tree, and the upper 

bound represents a degenerate tree (essentially a linked list).
 The minimum height of a binary tree with 𝑛𝑛 nodes is ⌈log₂(𝑛𝑛 + 1)⌉ −

 1, which occurs in the most balanced configuration
 The maximum height of a binary tree with n nodes is 𝑛𝑛 − 1, which 

occurs in the case of a skewed tree (a linear chain or linked list).
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Height of an M-way B Tree

 Perfect balance: Every path from root to leaf has same length.
 Minimum tree height ℎ𝑚𝑚𝑚𝑚𝑚𝑚

 This occurs when the tree is as full as possible
 Maximum total number of keys 𝑛𝑛 = 𝑀𝑀ℎ+1– 1
 Minimum tree height ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = ⌈log𝑀𝑀(𝑛𝑛 + 1)⌉ − 1

 Maximum tree height ℎ𝑚𝑚𝑚𝑚𝑚𝑚
 This occurs when the tree is as sparse as possible
 Maximum total number of keys 𝑛𝑛 = 2⌈𝑀𝑀/2⌉ℎ−1
 Minimum tree height ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = ⌈log 𝑀𝑀

2
(𝑚𝑚+1

2
) ⌉

 It is not possible to have a linear chain since each non-leaf node must be at least “half-
full” (with 𝑀𝑀/2 − 1 keys)

 In big-O notation, tree height is O(log n)
 All operations (search, insert and delete) have cost proportional to the tree 

height, with complexity O(log n)

Best
case

Averag
e case

Worst
case

BST O(1) O(log n) O(n)

BTree O(1) O(log n) O(log n)



Reasons for using B-Trees

 B-Trees are always balanced, i.e., all leaf nodes are at the same 
level

 The cost of each disk read is high but does not depend much 
on the amount of data transferred, if consecutive keys are 
transferred and they fit within a memory page
 e.g., M=101 and h = 3   1014 – 1 (~100 million)
 A B-tree of order M=101 and height 3 can hold ~100 million keys, and 

any key can be accessed with 3 disk reads (assuming each node fits 
within one memory page)
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Comparing Trees

 Binary trees
 Can become unbalanced and lose their good time complexity (big O)
 AVL trees are self-balancing BSTs
 Heaps are balanced but only prioritise (not order) the keys

 Multi-way trees
 B-Trees can be M-way
 2-3 tree is 3-way B-Tree. It approximates a balanced BST, replacing the 

AVL tree’s balancing operations with insertion and (more complex) 
deletion operations
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Balanced Trees in the Wild
 Red–black trees are widely used as system symbol tables, as data 

structure stored in main memory. 
 Java: java.util.TreeMap, java.util.TreeSet. 
 C++ STL: map, multimap, multiset. 
 Linux kernel: completely fair scheduler, linux/rbtree.h. 
 Emacs: conservative stack scanning. 

 B-tree variants. B+ tree, B*tree, B# tree, …

 B-trees (and variants) are widely used for file systems and databases, 
as data structure stored on disk. 

 Windows: NTFS. 
 Mac: HFS, HFS+. 
 Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS. 
 Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.
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References

 Understanding B-Trees: The Data Structure Behind Modern 
Databases, Spanning Tree
 https://www.youtube.com/watch?v=K1a2Bk8NrYQ
 The example is a 3-5 tree

 The Most Elegant Search Structure | (a,b)-trees, Tom S
 https://www.youtube.com/watch?v=lifFgyB77zc
 (a,b)-tree: a= M / 2 , b=M>=2a-1=2 M / 2-1 
 The example is a 2-4 tree

 B Tree tutorials
 https://spetriuk.github.io/algorithms/B-Tree.%201.%20Introduction/
 https://spetriuk.github.io/algorithms/B-

Tree.%202.%20Insert%20Operation/
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Data Structure Visualizations

 AVL Tree
 https://www.cs.usfca.edu/~galles/visualization/AVLtree.html 

 Red/Black Tree
 https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

 B Tree
 https://www.cs.usfca.edu/~galles/visualization/BTree.html 

https://www.cs.usfca.edu/%7Egalles/visualization/AVLtree.html
https://www.cs.usfca.edu/%7Egalles/visualization/RedBlack.html
https://www.cs.usfca.edu/%7Egalles/visualization/BTree.html
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