
Lecture 10
2-3 Trees B Trees

Department of Computer Science
Hofstra University

2−3 Trees
Allow 1 or 2 keys per node
 2-node: one key, two children.
 3-node: two keys, three children.

Perfect balance: Every path from root to leaf has same length.

Symmetric order: In-order traversal yields keys in ascending order.

between E and J

larger than Jsmaller than E

S XA C PH

R

L

E J

3-node 2-nodeM
Search
 Compare search key against keys in node.
 Find interval containing search key.
 Follow associated link (recursively).

Search for H
H is less than M (go left)
H is between E and J (go middle)

Search hit

Search for B

B is less than M (go left)
B is less than E (go left)
B is between A and C (go middle)

Search miss

Link is null 2

Insert in 2−3 Trees
Insertion into a 2-node at bottom.
 Search for key, as usual
 Add new key to 2-node to create a 3-node.

S XA C PH

R

L

E J

M

Insert K

K is less than M (go left)
K is larger than J (go right)

K is less than L

Search ends here and replace 2-node with 3-node containing K

K L

Insertion into a 3-node at bottom.
 Add new key to 3-node to create temporary 4-node.
 Move middle key in 4-node into parent.

Insert Z

Z is larger than M (go right)
Z is larger than R (go right)

Z is larger than X

Search ends here
Replace 3-node with temporary 4-node containing Z
Split 4-node into two 2-nodes (pass middle key to parent)

S X ZS ZZ

R X

S

3

Insert in 2−3 Trees (Contd.)
Insertion into a 3-node at bottom.
 Add new key to 3-node to create temporary 4-node.
 Move middle key in 4-node into parent.
 Repeat up the tree, as necessary.
 If you reach the root and it's a 4-node, split it into

three 2-nodes.

Insert L

L is between E and R (go middle)

Search ends here
Replace 3-node with temporary 4-node containing LE R

A C H P S XH L P

E R

A C S XH P

E L R

A C S XH P

E R

L
Split 4-node (move L to parent)

Split 4-node (move L to parent)

Height of tree increases by 1

4

2−3 Trees Construction
Insert S

Convert 3-node into 4-node

Insert E

Insert A

Split 4-node into two 2-nodes (move E to parent)

E

Convert 2-node into 3-node

Create 2-node in the empty tree

E SA E S

Convert 2-node into 3-nodeInsert R
Convert 2-node into 3-node

R S

Insert C

A C

Convert 3-node into 4-nodeInsert H
Split 4-node into two 2-nodes (move R to parent)

H R SH S

E R

A C

E R

Convert 2-node into 3-nodeInsert X

S X

Convert 2-node into 3-nodeInsert P

H P

Convert 3-node into 4-nodeInsert L

Split 4-node into two 2-nodes (move L to parent)
Split 4-node into two 2-nodes (move L to parent)

H L P

A C

E R

S X

E L R

E L R

H P

H P

A C S XH P

E R

L

Create a new root
node, and height of
the tree grows by one

5

Local Transformations in a 2-3 Tree

a e

b c d

between
aand b

less
than a

between
band c

between
dand e

greater
than e

between
cand d

between
aand b

less
than a

between
band c

between
dand e

greater
than e

between
cand d

b d

a c e

These operations maintain
tree balance.

Converting a 2-node to a 3-node

Converting a three to a four, and then splitting and passing a node up

local transformation: constant
number of operations.

Only involves changing a
constant number of links, and
is independent of the tree
size.

6

Global Properties in a 2-3 Tree
Invariants. Maintains symmetric order and perfect balance.

right

middle

left

c d e

a b

b c d

a e

a b d

a c e

a b c

d e b d e

right

b c d

a ca

d b d

parent is a 2-node: split and
parent turns into a 3-node

b
a b c

root

left
a b c

Proof. Each transformation maintains symmetric order and perfect balance.

Splitting a 4-node

If it is perfect balance before, it is perfect balance afterwards

parent is a 3-node: split and
parent turns into a 4-node; parent
splits again (omitted in figures)

7

EXAMPLE PROBLEM ON 2-3 TREE INSERTION

 EXAMPLE PROBLEM ON 2-3 TREE INSERTION, DIVVELA SRINIVASA RAO
 https://www.youtube.com/watch?v=2S5Ld-FQ2dM

https://www.youtube.com/watch?v=2S5Ld-FQ2dM

Motivation for B-tree: File system model
Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data

within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

slow fast

9

B-Trees 10

Motivation for B-Trees

 Index structures for large datasets cannot be stored in main
memory, hence must be stored on disk

 Time required to access disk is much larger than time to access
main memory

 Goal: access data with minimum number of probes.

10

Motivation (cont.)

 Assume that we use an AVL tree to store about 20 million
records

 We end up with a very deep binary tree with lots of different
disk accesses, e.g., log2 20,000,000 is about 24

 We know we cannot improve on the log n lower bound on
search for a binary tree

 But we can use more branches and thus reduce the height of
the tree!
 As branching increases, depth decreases

11

Definition of a B-tree
 A B-tree of order M is an M-way tree (also called “of order M”):

1. It is a search tree: number of keys in each non-leaf node is one less than the number of its
children, and these keys partition the keys in the children in sorted order

2. Each node has at most M children (contains at most 𝑀𝑀– 1 keys)
3. Each non-leaf node (except the root) has at least ⌈𝑀𝑀/2⌉ children (contains at least 𝑀𝑀/2 −

1 keys) (i.e., must be at least “half-full”)
4. The root has at least 2 children (contains at least 1 key)
5. All leaf nodes are at the same level (always balanced)

 Special cases:
 M = 3: 2-3 tree (each non-leaf node has 2--3 children, contains 1--2 keys)
 M = 4: 2-4 tree (each non-leaf node has 2--4 children, contains 1--3 keys)
 M = 5: 3-5 tree (each non-leaf node has 3--5 children, contains 2--4 keys)

12

3 7 12 21

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

B-trees Example I

51 6242

6 12

26

55 60 7064 9045

1 2 4 7 8 13 15 18 25

27 29 46 48 53

All leaves are at the same level 3

Generalization of 2-3 trees
 At least 2 children at root
 At least M / 2 children in other nodes

A B-tree of order 5 (M = 5)

13

B-trees Example II

A B-tree of order 4 (M = 4)

All leaves are at the same level 3

Generalization of 2-3 trees
 At least 2 children at root
 At least M / 2 children in other nodes

14

Searching for 120 in the given B-Tree 15

Inserting into a B-Tree
 Attempt to insert the new key into a leaf
 If this would result in that leaf becoming too big, split the leaf into two,

promoting the middle key to the leaf’s parent
 If this would result in the parent becoming too big, split the parent into two,

promoting the middle key
 This strategy might have to be repeated all the way to the top
 If necessary, the root is split in two and the middle key is promoted to a

new root, making the tree one level higher

16

 Suppose we start with an empty B-tree and keys arrive in the
following order:1 12 8 2 25 5 14 28 17 7 52 16 48 68
3 26 29 53 55 45

 We want to construct a B-tree of order 5
 The first four keys go into the root:

 To put the fifth key in the root would violate condition 5
 Therefore, when 25 arrives, promote the middle key to make a

new root

Constructing a B-tree

1 2 8 12

17

Constructing a B-tree (contd.)

1 2

8

12 25

6, 14, 28 get added to the leaf nodes:

1 2

8

12 146 25 28

18

Constructing a B-tree (contd.)

Adding 17 to the right leaf node would over-fill it, so we take the
middle key, promote it (to the root) and split the leaf

8 17

12 14 25 281 2 6

7, 52, 16, 48 get added to the leaf nodes
8 17

12 14 25 281 2 6 16 48 527

19

Constructing a B-tree (contd.)
Adding 68 causes us to split the right most leaf, promoting 48 to the
root, and adding 3 causes us to split the left most leaf, promoting 3
to the root

3 8 17 48

52 6825 281 2 6 7 12 14 16

26, 29, 53, 55 then go into the leaves
3 8 17 48

52 53 55 6825 26 28 291 2 6 7 12 14 16

20

Constructing a B-tree (contd.)

17

3 8 28 48

1 2 6 7 12 14 16 52 53 55 6825 26 29 45

Adding 45 causes a split of 25 26 28 29

and promoting 28 to the root then causes the root to split

21

Deletion from a B-tree

 (B-tree deletion will NOT be covered in exam)
 During insertion, the key always goes into a leaf. For deletion

we wish to remove from a leaf. There are three possible ways
we can do this:

 1 - If the key is already in a leaf node, and removing it doesn’t
cause that leaf node to have too few keys, then simply remove
the key to be deleted.

 2 - If the key is not in a leaf then it is guaranteed (by the nature
of a B-tree) that its predecessor or successor will be in a leaf --
in this case we can delete the key and promote the predecessor
or successor key to the non-leaf deleted key’s position.

22

Explanations: why a key’s predecessor or
successor is guaranteed to be in a leaf

 Definition of Predecessor and Successor:
 The predecessor of a key in an internal node is the largest key in its left subtree.
 The successor is the smallest key in its right subtree

 Traversal to Leaves:
 To find the predecessor, you follow the rightmost path from the left child of the

key's node. Similarly, to find the successor, you follow the leftmost path from the
right child. These paths always terminate at a leaf because B-trees are structured
such that all keys in any subtree are stored in its leaves or internal nodes, and
traversal through children eventually reaches leaves

 Key Replacement During Deletion:
 When deleting a key from an internal node, it is replaced by either its predecessor or

successor. This ensures that the B-tree remains balanced and satisfies its properties.
Since predecessors and successors are located in leaf nodes, their removal does not
disrupt the tree's structure beyond localized adjustments

 Ref. Slide 28, “Deletion from a BST” in Lecture 8-Binary Search Tree.

23

Deletion from a B-tree (2)

 If (1) or (2) lead to a leaf node containing less than the
minimum number of keys then we look at the siblings
immediately adjacent to the leaf in question:
 3: if one of them has more than the min. number of keys then we can

promote one of its keys to the parent and take the parent key into our
lacking leaf

 4: if neither of them has more than the min. number of keys then the
lacking leaf and one of its neighbours can be combined with their
shared parent (the opposite of promoting a key) and the new leaf will
have the correct number of keys; if this step leave the parent with too
few keys then we repeat the process up to the root itself, if required

24

Type #1: Simple leaf deletion

12 29 52

2 7 9 15 22 56 69 7231 43

Delete 2: Since there are enough
keys in the node, just delete it

Assuming a 5-way
B-Tree, as before...

25

Type #2: Simple non-leaf deletion

12 29 52

7 9 15 22 56 69 7231 43

Delete 52

Borrow the predecessor
or (in this case) successor

56

26

Type #4: Too few keys in node and its
siblings

12 29 56

7 9 15 22 69 7231 43

Delete 72

Too few keys!
Apply Case 4

Join back together

27

Type #4: Too few keys in node and its
siblings

12 29

7 9 15 22 695631 43

28

Type #3: Enough siblings

12 29

7 9 15 22 695631 43

Delete 22

Demote root key and
promote leaf key

29

Type #3: Enough siblings

12

297 9 15

31

695643

30

Analysis of B-Trees I
 For an M-way B-tree:

 Each node has at most M children ⇒ the maximum branching factor is 𝑀𝑀
 Each non-leaf node (except the root) has at least ⌈𝑀𝑀/2⌉ children ⇒ the minimum

branching factor is ⌈𝑀𝑀/2⌉
 Maximum number of keys in an M-way B-tree with height h: This occurs when

the tree is as full as possible (each non-leaf node has 𝑀𝑀 children, with 𝑀𝑀 − 1 keys
per node)

keys in root (level 0): 𝑀𝑀 – 1, with 1 node, 𝑀𝑀 – 1 keys per node
keys at level 1: 𝑀𝑀(𝑀𝑀 – 1), with 𝑀𝑀 nodes, 𝑀𝑀 – 1 keys per node
keys at level 2: 𝑀𝑀2(𝑀𝑀 – 1), with 𝑀𝑀2 nodes, 𝑀𝑀 – 1 keys per node
. . .
keys at level ℎ: 𝑀𝑀ℎ(𝑀𝑀 – 1), with 𝑀𝑀ℎnodes, 𝑀𝑀 – 1 keys per node

 So, the maximum total number of keys is 𝑀𝑀ℎ+1– 1
 (1 + 𝑀𝑀 + 𝑀𝑀2 + ⋯+ 𝑀𝑀ℎ)(𝑀𝑀– 1) = [(𝑀𝑀ℎ+1– 1)/(𝑀𝑀 – 1)](𝑀𝑀– 1) = 𝑀𝑀ℎ+1– 1

31

Analysis of B-Trees II

 Minimum number of keys in an M-way B-tree with height h: This occurs when the
tree is as sparse as possible (root node has 2 children, with 1 key; each non-leaf
node (except the root) has ⌈𝑀𝑀/2⌉ children, with 𝑀𝑀/2 − 1 keys per node). Let 𝑡𝑡 =
⌈𝑀𝑀/2⌉ for brevity

keys in root (level 0): 1, with 1 node, 1 key per node
keys at level 1: 2(𝑡𝑡 − 1), with 2 nodes, 𝑡𝑡 − 1 keys per node
keys at level 2: 2𝑡𝑡(𝑡𝑡 − 1), with 2𝑡𝑡 nodes, 𝑡𝑡 − 1 keys per node
. . .
keys at level ℎ: 2𝑡𝑡ℎ−1(𝑡𝑡 − 1), with 2𝑡𝑡ℎ−1nodes, 𝑡𝑡 − 1 keys per node

 So, the minimum total number of keys is 2⌈𝑀𝑀/2⌉ℎ−1
 1 + 2 𝑡𝑡 − 1 + 2𝑡𝑡 𝑡𝑡 − 1 + ⋯+ 2𝑡𝑡ℎ−1 𝑡𝑡 − 1 = 1 + 2[𝑡𝑡ℎ − 1 /(𝑡𝑡 – 1)](𝑡𝑡 – 1) = 2𝑡𝑡ℎ − 1

• Examples:
• For 𝑀𝑀 = 3,ℎ = 2: Max: 3^3 − 1 = 26 keys; Min: 2 ⋅ 22 − 1 = 7 keys
• For 𝑀𝑀 = 4,ℎ = 1: Max: 4^2 − 1 = 15 keys; Min: 2 ⋅ 21 − 1 = 3 keys

Recall: Height of a Binary Tree

 A binary tree with height ℎ has maximum total number of
nodes: 𝑛𝑛 = 2ℎ+1 − 1

 For a binary tree with n nodes, the height h is bounded by:
⌈log₂(𝑛𝑛 + 1)⌉ − 1 ≤ ℎ ≤ 𝑛𝑛 − 1
 The lower bound represents a perfectly balanced tree, and the upper

bound represents a degenerate tree (essentially a linked list).
 The minimum height of a binary tree with 𝑛𝑛 nodes is ⌈log₂(𝑛𝑛 + 1)⌉ −

 1, which occurs in the most balanced configuration
 The maximum height of a binary tree with n nodes is 𝑛𝑛 − 1, which

occurs in the case of a skewed tree (a linear chain or linked list).

33

Height of an M-way B Tree

 Perfect balance: Every path from root to leaf has same length.
 Minimum tree height ℎ𝑚𝑚𝑚𝑚𝑚𝑚

 This occurs when the tree is as full as possible
 Maximum total number of keys 𝑛𝑛 = 𝑀𝑀ℎ+1– 1
 Minimum tree height ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = ⌈log𝑀𝑀(𝑛𝑛 + 1)⌉ − 1

 Maximum tree height ℎ𝑚𝑚𝑚𝑚𝑚𝑚
 This occurs when the tree is as sparse as possible
 Maximum total number of keys 𝑛𝑛 = 2⌈𝑀𝑀/2⌉ℎ−1
 Minimum tree height ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = ⌈log 𝑀𝑀

2
(𝑚𝑚+1

2
) ⌉

 It is not possible to have a linear chain since each non-leaf node must be at least “half-
full” (with 𝑀𝑀/2 − 1 keys)

 In big-O notation, tree height is O(log n)
 All operations (search, insert and delete) have cost proportional to the tree

height, with complexity O(log n)

Best
case

Averag
e case

Worst
case

BST O(1) O(log n) O(n)

BTree O(1) O(log n) O(log n)

Reasons for using B-Trees

 B-Trees are always balanced, i.e., all leaf nodes are at the same
level

 The cost of each disk read is high but does not depend much
on the amount of data transferred, if consecutive keys are
transferred and they fit within a memory page
 e.g., M=101 and h = 3  1014 – 1 (~100 million)
 A B-tree of order M=101 and height 3 can hold ~100 million keys, and

any key can be accessed with 3 disk reads (assuming each node fits
within one memory page)

35

Comparing Trees

 Binary trees
 Can become unbalanced and lose their good time complexity (big O)
 AVL trees are self-balancing BSTs
 Heaps are balanced but only prioritise (not order) the keys

 Multi-way trees
 B-Trees can be M-way
 2-3 tree is 3-way B-Tree. It approximates a balanced BST, replacing the

AVL tree’s balancing operations with insertion and (more complex)
deletion operations

36

Balanced Trees in the Wild
 Red–black trees are widely used as system symbol tables, as data

structure stored in main memory.
 Java: java.util.TreeMap, java.util.TreeSet.
 C++ STL: map, multimap, multiset.
 Linux kernel: completely fair scheduler, linux/rbtree.h.
 Emacs: conservative stack scanning.

 B-tree variants. B+ tree, B*tree, B# tree, …

 B-trees (and variants) are widely used for file systems and databases,
as data structure stored on disk.

 Windows: NTFS.
 Mac: HFS, HFS+.
 Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS.
 Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

37

References

 Understanding B-Trees: The Data Structure Behind Modern
Databases, Spanning Tree
 https://www.youtube.com/watch?v=K1a2Bk8NrYQ
 The example is a 3-5 tree

 The Most Elegant Search Structure | (a,b)-trees, Tom S
 https://www.youtube.com/watch?v=lifFgyB77zc
 (a,b)-tree: a= M / 2 , b=M>=2a-1=2 M / 2-1
 The example is a 2-4 tree

 B Tree tutorials
 https://spetriuk.github.io/algorithms/B-Tree.%201.%20Introduction/
 https://spetriuk.github.io/algorithms/B-

Tree.%202.%20Insert%20Operation/

38

https://www.youtube.com/watch?v=K1a2Bk8NrYQ
https://www.youtube.com/watch?v=lifFgyB77zc
https://spetriuk.github.io/algorithms/B-Tree.%203.%20Delete%20Operation/
https://spetriuk.github.io/algorithms/B-Tree.%203.%20Delete%20Operation/
https://spetriuk.github.io/algorithms/B-Tree.%203.%20Delete%20Operation/

Data Structure Visualizations

 AVL Tree
 https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

 Red/Black Tree
 https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

 B Tree
 https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/%7Egalles/visualization/AVLtree.html
https://www.cs.usfca.edu/%7Egalles/visualization/RedBlack.html
https://www.cs.usfca.edu/%7Egalles/visualization/BTree.html

	Lecture 10�2-3 Trees B Trees
	2−3 Trees
	Insert in 2−3 Trees
	Insert in 2−3 Trees (Contd.)
	2−3 Trees Construction
	Local Transformations in a 2-3 Tree
	Global Properties in a 2-3 Tree
	EXAMPLE PROBLEM ON 2-3 TREE INSERTION
	Motivation for B-tree: File system model
	Motivation for B-Trees
	Motivation (cont.)
	Definition of a B-tree
	B-trees Example I
	B-trees Example II
	Slide Number 15
	Inserting into a B-Tree
	Constructing a B-tree
	Constructing a B-tree (contd.)
	Constructing a B-tree (contd.)
	Constructing a B-tree (contd.)
	Constructing a B-tree (contd.)
	Deletion from a B-tree
	 Explanations: why a key’s predecessor or successor is guaranteed to be in a leaf
	Deletion from a B-tree (2)
	Type #1: Simple leaf deletion
	Type #2: Simple non-leaf deletion
	Type #4: Too few keys in node and its siblings
	Type #4: Too few keys in node and its siblings
	Type #3: Enough siblings
	Type #3: Enough siblings
	Analysis of B-Trees I
	Analysis of B-Trees II
	Recall: Height of a Binary Tree
	Height of an M-way B Tree
	Reasons for using B-Trees
	Comparing Trees
	Balanced Trees in the Wild
	References
	Data Structure Visualizations

