
CSC 017: Fundamentals of Computer Science III: Advanced Data 
Structures and Object-Oriented Programming

Midterm Exam Spring 2025

Department of Computer Science, 

Hofstra University



2

Q1. Multiple-choice (15 pts)
1. Consider the following functions from positives integers to real numbers (√n 
denotes SquareRoot(n)): 10, √n, n, log₂n, 100/n.
The correct arrangement of the above functions in increasing order of asymptotic 
complexity is:
(A) log₂n, 100/n, 10, √n, n
(B) 100/n, 10, log₂n, √n, n
(C) 10, 100/n, √n, log₂n, n
(D) 100/n, log₂n, 10, √n, n
ANS: B

2. Consider the following three functions:
f₁ = 10ⁿ
f₂ = n^(log n)
f₃ = n^(√n)
Which one of the following options arranges the functions in the increasing 
order of asymptotic complexity?
(A) f₃, f₂, f₁
(B) f₂, f₁, f₃
(C) f₁, f₂, f₃
(D) f₂, f₃, f₁
ANS: D

3. What is the time complexity of function f1(n) and function f2(n), respectively?
void f1(n){

for (int i = 0; i < n; i+=5) {
// O(1)

}
}
void f2(n){

for (int i = 1; i < n; i*=5) {
// O(1)

}
}

A) O(\log n), O(\log n)
B) O(\log n), O(n)
C) O(n), O(\log n)
D) O(n), O(n)
Answer: C

4. What does the regular expression pattern ^[0-9]+$ match?
A) A string containing at least one digit
B) A string starting with a digit
C) A string ending with a digit
D) A string containing only digits
Answer: A or D

5. Which of the following regular expressions matches exactly three consecutive lowercase 
letters?
A) [a-z]{3}
B) [a-z]{1,3}
C) [a-z]{3,}
D) [a-z]{0,3}
Answer: A

6. What does the regular expression [^abc] match?
A) Either a, b, or c
B) Any character that is not a, b, or c
C) The beginning of a string followed by a, b, or c
D) The characters 'a', 'b', and 'c' only when they appear together
Answer: B

7. Which regular expression correctly matches a valid email address format 
(username@domain.com)?
A) [a-zA-Z0-9]+@[a-zA-Z0-9]+.[a-zA-Z]{2,}
B) [a-zA-Z0-9]@[a-zA-Z0-9].[a-zA-Z]
C) [a-zA-Z0-9]@[a-zA-Z0-9].[a-zA-Z]*
D) .+@.+..+
Answer: A

8. Which regular expression matches a string that contains either "cat" or "dog"?
A) cat|dog
B) (cat)(dog)
C) cat+dog
D) [cat|dog]
Answer: A

9. Which of the following would match a string containing at least one digit?
A) \d+
B) \d{1,}
C) \d?
D) Both A and B
Answer: D

10. What does the regular expression \b[A-Z][a-z]*\b match?
A) Any capitalized word (a word that starts with an uppercase letter followed by zero or more 
lowercase letters)
B) Any word containing at least one uppercase letter in it
C) Any word written entirely in uppercase
D) Any word with exactly one uppercase letter in it
Answer: A



3

Q1. Multiple-choice (15 pts)
11. Primary clustering in linear probing occurs because:

A) Hash functions produce sequential indices

B) Collisions form long contiguous blocks

C) Table size is a prime number

D) Keys are not uniformly distributed

Answer: B

12. Quadratic probing uses which probe sequence?

A) h+1, h+2, h+3,...

B) h+1², h+2², h+3²,...

C) h+hash2(key), 2*hash2(key),...

D) Random permutation

Answer: B

13. Which of the following is NOT a method to mitigate primary clustering?

A) Better-designed hash function

B) Alternative probing methods

C) Resizing the hash table

D) Using a binary search tree

Answer: D

14. Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty Binary Search Tree. What is the in-order traversal of the resultant tree?

A) 7 5 1 0 3 2 4 6 8 9

B) 0 2 4 3 1 6 5 9 8 7

C) 0 1 2 3 4 5 6 7 8 9

D) 9 8 6 4 2 3 0 1 5 7

ANS: C

15. A full binary tree with height 3 has how many nodes?

 A) 7

 B) 15

 C) 31

 D) 8

Answer: B 15 [Formula: n=2^(h+1)−1 for h=3]



4

Q1 Multiple-choice questions: enter your answer keys here:

1 2 3 4 5 6 7 8 9 10

B D C
A 

or D
A B A A D A

11 12 13 14 15

B B D C B



5

Q2 Lecture 3-inheritance and polymorphism 

• a) (1 pts) What does the main method of MyClass Tester print?

• ANS: true, since both c2 and c3 have member variables a=30 and 
b=29.7



6

Q2 Lecture 3-inheritance and polymorphism 

• b) (4 pts) Consider the following class 
definitions:

• b1) What does the following program print? 
Explain why.

• ANS: Infinite recursive calling of method1() to 
print “Student 1” repeatedly. Since the actual 
object type is Undergrad, but method1() is 
not defined in class Undergrad, so the 
method1() defined its parent class will be 
called to print “Student 1” in an infinite 
recursion.

• b2) What does the following program print? 
Explain why.

• ANS: It prints “Undergrad 2”. Since the actual 
object type is Undergrad, the method2() 
defined in class Undergrad will be  called to 
print “Undergrad 2”.

Person u = new Undergrad();

u.method1();

Person u = new Undergrad();

u.method2();



7

Q3. Lecture 5-algorithm performance analysis (10 pts)

For each function f(n) below, give an asymptotic upper bound using big-O notation. You should give the tightest 
bound possible (so giving O(2n) for every question is unlikely to result in many points).

(a) f(n) = 1000000

(b) f(n) = n4 +100n3 +14n2

(c) f(n) = 2n +100n3 +14n2

(d) f(n) = 100n3 + 14n2

(e) f(n) = 7n2 + 14n

(f) f(n) = log(7n2)

(g) f(n) = 5loglogn + 4log(n)*log(n)

(h) f(n) = .001n + 100*2n

(i) f(n) = n3(1 + 6n + 2014n2)

(j) f(n) = (logn)(n + n2)

(a) O(1)

(b) O(n4)

(c) O(2n)

(d) O(n3)

(e) O(n2)

(f) O(logn)

(g) O(log2 n)

(h) O(2n)

(i) O(n5)

(j) O(n2 logn)



8

Q4. Lecture 7-hash table (20 pts)

Insert the following six keys in this order: 19, 48, 8, 27, 97, 7 into a hash table of size 10, where the hash 
function is modulo table size (%10). 
a) (1 pts) What is the load factor? 
ANS: Load factor = number of keys / size of hash table = 6/10 = 0.6

b) (3 pts) Fill in the table, resolving hash collisions with linear probing. (Fill in the table without detailed 
steps.)
ANS: 
• 19 (insert at index 9)
• 48 (insert at index 8)
• 8 (collision with 48). Insert at index 0
• 27 (insert at index 7)
• 97 (collision with 27). Insert at index 1
• 7 (collision with 27). Insert at index 2

0 1 2 3 4 5 6 7 8 9

8 97 7 27 48 19



9

Q4. Lecture 7-hash table (20 pts)

c) (4 pts) Fill in the table, resolving hash collisions with quadratic probing. (Show the probe sequence 
for resolving collisions.)

ANS:

• 19 (insert at index 9)

• 48 (insert at index 8)

• 8 (collision with 48 at index 8)
– (8 + 1^2) % 10 = 9 (collision with 19)

– (8 + 2^2) % 10 = 2. Insert at index 2

• 27 (insert at index 7)

• 97 (collision with 27 at index 7)
– (7 + 1^2) % 10 = 8 (collision with 48)

– (7 + 2^2) % 10 = 1 (empty). Insert at index 1

• 7 (collision with 27 at index 7)
– (7 + 1^2) % 10 = 8 (collision with 48)

– (7 + 2^2) % 10 = 1 (collision with 97)

– (7 + 3^2) % 10 = 6 (empty). Insert at index 6

0 1 2 3 4 5 6 7 8 9

97 8 7 27 48 19



10

Q4. Lecture 7-hash table (20 pts)

d) (8 pts) Fill in the table, resolving hash collisions with double hashing with two hash functions:
h1(k)=x%10 (primary hash), h2(k)=1+(x%7) (secondary hash), Probing formula:
Probe(k, i)=(h1(k)+i⋅h2(k))%10, i=0, 1, 2… (Show the probe sequence for resolving collisions.)
• 19 (insert at index 9)
• 48 (insert at index 8)
• 8 (collision with 48 at index 8)

– h₂(8)=1+(8%7)=2. Next probe: (8 + 1·2)%10 = 0 (insert at index 0)

• 27 (insert at index 7)
• 97 (collision with 27 at index 7)

– h₂(97)=1+(97%7)=7. Next probe: (7 + 1·7)%10 = 4 (insert at index 4)

• 7 (collision with 27 at index 7)
– h₂(7)=1+(7%7)=1. Next probes:
– i=1: (7 + 1·1)%10 = 8 (collision with 48)
– i=2: (7 + 2·1)%10 = 9 (collision with 19)
– i=3: (7 + 3·1)%10 = 0 (collision with 8)
– i=4: (7 + 4·1)%10 = 1 (insert at index 1)

0 1 2 3 4 5 6 7 8 9

8 7 97 27 48 19



11

Q4. Lecture 7-hash table (20 pts) (with typo)

(The exam paper had a typo Probe(k, i)=(h1(k)+i⋅h2(k))%7. Despite this typo, it is still a valid hash 
function and you can still solve this problem based on this probe function. Students who give either 
solution is given full credit.)
d) (8 pts) Fill in the table, resolving hash collisions with double hashing with two hash functions:
h1(k)=x%10 (primary hash), h2(k)=1+(x%7) (secondary hash), Probing formula:
Probe(k, i)=(h1(k)+i⋅h2(k))%7, i=0, 1, 2… (Show the probe sequence for resolving collisions.)
• 19 (insert at index 9)
• 48 (insert at index 8)
• 8 (collision with 48 at index 8)

– h₂(8)=1+(8%7)=2. Next probe: (8 + 1·2)%7 = 3 (insert at index 3)

• 27 (insert at index 7)
• 97 (collision with 27 at index 7)

– h₂(97)=1+(97%7)=7. Next probe: (7 + 1·7)%7 = 0 (insert at index 0)

• 7 (collision with 27 at index 7)
– h₂(7)=1+(7%7)=1. Next probe: (7 + 1·1)%7 = 1 (insert at index 1)

0 1 2 3 4 5 6 7 8 9

97 7 8 27 48 19



12

Q4: Separate Chaining

• e) (2 pts) Fill in the table, resolving hash collisions with separate chaining into a sorted linked list (with the 
smallest element at the head of the list). (Fill in the table without detailed steps.)

• ANS: Upon hash collision, put the item into a sorted linked list in the index.

0 1 2 3 4 5 6 7 8 9

7,27,9

7

8,48 19



13

Q5. Lecture 8-binary search tree (40 pts)

• a) (15 pts) The Pre-order traversal sequence of a Binary Search Tree is 
30, 20, 10, 15, 25, 23, 39, 35, 42. Construct the tree and give its in-
order and post-order traversals. Show the detailed steps.

• ANS: Given:

• Pre-order: 30 20 10 15 25 23 39 35 42

• In-order: 10 15 20 23 25 30 35 39 42

• We can construct the tree and derive the post-order

• Post-order: 15 10 23 25 20 35 42 39 30



14

Q5. Lecture 8-binary search tree (40 pts)
• a) Explanations:
• Pre-order: 30 20 10 15 25 23 39 35 42
• In-order: 10 15 20 23 25 30 35 39 42
• 1. Root Identification: The first element in pre-order (30) is the root.
• 2. Subtree Division:
•    - In in-order traversal, elements before 30 (10 15 20 23 25) form the left 

subtree, and elements after (35 39 42) form the right subtree.
• 3. Left Subtree Construction:
•    - Pre-order segment for left: 20 10 15 25 23
•    - Root is 20 (first in pre-order). In in-order (10 15 20 23 25), left of 20 is (10 

15) and right is (23 25).
•    - Pre-order segment (10 15): root is 10, and 15 is its right child
•    - Pre-order segment (25 23): root is 25, and 23 is its left child
• 4. Right Subtree Construction:
•    - Pre-order segment for right: (39 35 42)
•    - Root is 39 (first in pre-order). In in-order (35 39 42), 39 has a left child 35 

and right child 42.
• We can draw the tree now and derive the post order traversal 15 10 23 25 

20 35 42 39 30.



15

Q5. Lecture 8-binary search tree (40 pts)

• b) (5 pts) Given this Binary Search Tree, draw the resulting Binary 
Search Tree after deleting node 15. There are two possible results, 
and please draw both of them.

20

15 30

10 17

16122 19

20

12 30

10 17

162 19

20

16 30

10 17

122 19

Delete 15

OR



16

Q5. Lecture 8-binary search tree (40 pts)

• c) (20 pts) Fill in the labels A, B, C in each node in the following Binary 
Trees so they all have:

• either (1) pre-order traversal of ABC

• or (2) In-order traversal of ABC

• or (3) post-order traversal of ABC

• or (4) they are all Binary Search Trees, considering A < B < C



17

(1) pre-order traversal of ABC

A

B

C

A

B

C

A

B C

A

B

C

A

B

C



18

(2) In-order traversal of ABC

C

B

A

A

C

B

B

A C

A

B

C

C

A

B



19

(3) post-order traversal of ABC

C

B

A

C

B

A

C

A B

C

B

A

C

B

A



20

(4) they are all Binary Search Trees, considering A < B < C

C

B

A

A

C

B

B

A C

A

B

C

C

A

B



21

Q6 Lecture 9-self balancing trees (20 pts)

• a) (10 pts) Create an AVL Tree by inserting the sequence: 6, 5, 4, 3, 2, 
1, 0. Draw a new figure whenever you do a rotation. (Do not write 
out the AVL invariant at each step, just draw the tree at each step.) (If 
you run out of space, use back of the paper.)



22

AVL Tree: Inserting the sequence: 6, 5, 4, 3, 2, 1, 0

Insert 6,5,4

5

6

Right rotation

4

5

64Insert 3,2

5

63

4

Right Rotation

2

Insert 1 3

52

6

Right rotation

(5 is lowest 

unbalanced node.)

1 4

6

5

4
3

2
5

63

42

1



23

AVL Tree: Inserting the sequence: 6, 5, 4, 3, 2, 1, 0

3

52

6
1 4

Insert 0

0

Right rotation

(2 is lowest 

unbalanced node.)

3

51

60 42



24

Q6 Lecture 9-self balancing trees (20 pts)

• b) (10 pts) Create a Red-Black Tree by inserting the sequence: 6, 5, 4, 
3, 2, 1, 0. Draw a new figure whenever you do a rotation and/or 
recoloring. (If you run out of space, use back of the paper.)



25

Red-Black Tree: Inserting the sequence: 6, 5, 4, 3, 2, 1, 0

Insert 3

Recolor Recolor Insert 2
Right rotation

Recolor

Insert 6,5,4

6

5

4

5

6

Right rotation

Recolor

4

5

64

3

5

64

3

5

64

3

5

64

3

2

5

63

42



26

Red-Black Tree: Inserting the sequence: 6, 5, 4, 3, 2, 1, 0

Insert 1 Recolor

5

63

42

5

63

42

1

5

63

42

1

Insert 0

5

63

42

1

0

Right rotation

Recolor

5

63

41

0 2

b

b

bb

r

r r

b

br

b

bb

r

r


	Slide 1: CSC 017: Fundamentals of Computer Science III: Advanced Data Structures and Object-Oriented Programming   Midterm Exam Spring 2025
	Slide 2: Q1. Multiple-choice (15 pts)
	Slide 3: Q1. Multiple-choice (15 pts)
	Slide 4: Q1 Multiple-choice questions: enter your answer keys here:
	Slide 5: Q2 Lecture 3-inheritance and polymorphism 
	Slide 6: Q2 Lecture 3-inheritance and polymorphism 
	Slide 7: Q3. Lecture 5-algorithm performance analysis (10 pts)
	Slide 8: Q4. Lecture 7-hash table (20 pts)
	Slide 9: Q4. Lecture 7-hash table (20 pts)
	Slide 10: Q4. Lecture 7-hash table (20 pts)
	Slide 11: Q4. Lecture 7-hash table (20 pts) (with typo)
	Slide 12: Q4: Separate Chaining
	Slide 13: Q5. Lecture 8-binary search tree (40 pts)
	Slide 14: Q5. Lecture 8-binary search tree (40 pts)
	Slide 15: Q5. Lecture 8-binary search tree (40 pts)
	Slide 16: Q5. Lecture 8-binary search tree (40 pts)
	Slide 17: (1) pre-order traversal of ABC
	Slide 18: (2) In-order traversal of ABC
	Slide 19: (3) post-order traversal of ABC
	Slide 20: (4) they are all Binary Search Trees, considering A < B < C
	Slide 21: Q6 Lecture 9-self balancing trees (20 pts)
	Slide 22: AVL Tree: Inserting the sequence: 6, 5, 4, 3, 2, 1, 0
	Slide 23: AVL Tree: Inserting the sequence: 6, 5, 4, 3, 2, 1, 0
	Slide 24: Q6 Lecture 9-self balancing trees (20 pts)
	Slide 25: Red-Black Tree: Inserting the sequence: 6, 5, 4, 3, 2, 1, 0
	Slide 26: Red-Black Tree: Inserting the sequence: 6, 5, 4, 3, 2, 1, 0

