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L10 2-3 Trees

• Insert keys 12 and 13 into the following 2-3 tree. Show the detailed 
steps after inserting each item
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L11 Heaps

• Consider the following sequence of numbers: 4, 3, 2, 1. Build a binary 
min-heap with these numbers in two ways.

• (a) Use Floyd’s build-heap to build the heap. Draw the heap before 
and after each percolation. At the end, draw the array representation 
of the final heap.

• (b) Build the heap using repeated insertions (in the order given: 4, 3, 
2, 1) - draw the heap after each insertion. At the end, draw the array 
representation of the final heap.
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L13 Dijkstra’s Algorithm

• Given this directed graph, run Dijkstra’s Algo to find shortest paths 
starting from source node A. Give the node visit order, and fill in this 
table of SN (Shortest Distance) and PN (Previous Node), crossing out 
old SD and PN as you find a shortcut path with smaller SD.

Node SD PN

A

B

C

D

E

F
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L13 Johnson’s algorithm

Consider the following weighted digraph. As part of Johnson’s algorithm for All-pairs Shortest Paths, add 
a dummy source node d, and edges with weight 0 from d to all vertices of G. Let the modified graph be 
G’.  
a) Compute the shortest distances from dummy source node d to each node in G’ by hand: h[0], h[1], .. 
h[V-1], then reweight the edges of the original graph to make the edge weights greater than or equal to 
0. Draw the reweighted graph G’ (without the dummy node d).
b) For the reweighted graph G’: run Dijkstra’s Algo to find shortest paths starting from source node 1, 
and compute the shortest paths for the graph with updated positive or zero weights. (Do not show the 
intermediate steps.)
c) For the original graph G: compute the shortest paths starting from source node 1 with negative 
weights.

Node SD PN

1 0 /

2

3

4

Shortest paths starting 
from source node 1 in 
reweighted graph

Node SD PN

1 0 /

2

3

4

Shortest paths starting 
from source node 1 in 
original graph

1 2

3 4

Reweighted graph

1 2
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Node h()
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L15 MST Prim’s

• Run Prim’s algorithm starting from node A. Fill in the table with the 
order in which each edge is added, and its weight. Break ties in 
alphabetical or numerical order. Draw the final MST. For an 
undirected edge, write the nodes in alphabetical order, e.g., (E, F) 
instead of (F, E).

Order 
added

Edge Edge 
Weight

1

2

3

4

5
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L15 MST Kruskal’s

• Run Kruskal’s algorithm. Fill in the table with the order in which each 
edge is added, and its weight. Break ties in alphabetical or numerical 
order. Draw the final MST. For an undirected edge, write the nodes in 
alphabetical order, e.g., (E, F) instead of (F, E).

Order 
added

Edge Edge 
Weight

1

2

3

4

5
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L15 MST

• (a) Run Prim’s algorithm starting from node S to find the 
MST. Fill in the table with the order in which each edge is 
added, and its weight. Break ties in alphabetical or 
numerical order. Draw the final MST. For an undirected 
edge, write the nodes in alphabetical order, e.g., (E, F) 
instead of (F, E).

• (b) Run Kruskal’s algorithm to find the MST. 

• (c) Run Dijkstra’s algorithm starting from node S to find the 
shortest paths from node S. Draw the shortest path tree.

Order 
added

Edge Edge 
Weight

1

2

S

A2

B

1

4

Order 
added

Edge Edge 
Weight

1

2

Prim’s algorithm Kruskal’s algorithm

Node SD PN

S 0 /

A

B

Dijkstra’s algorithm
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