
CSC 017: Fundamentals of Computer Science III: Advanced Data
Structures and Object-Oriented Programming

Final Exam Sample Questions Spring 2025

Department of Computer Science,

Hofstra University

2

L10 2-3 Trees

• Insert keys 12 and 13 into the following 2-3 tree. Show the detailed
steps after inserting each item

15 18

8

6 14

3 7 10

16

3

L11 Heaps

• Consider the following sequence of numbers: 4, 3, 2, 1. Build a binary
min-heap with these numbers in two ways.

• (a) Use Floyd’s build-heap to build the heap. Draw the heap before
and after each percolation. At the end, draw the array representation
of the final heap.

• (b) Build the heap using repeated insertions (in the order given: 4, 3,
2, 1) - draw the heap after each insertion. At the end, draw the array
representation of the final heap.

4

L13 Dijkstra’s Algorithm

• Given this directed graph, run Dijkstra’s Algo to find shortest paths
starting from source node A. Give the node visit order, and fill in this
table of SN (Shortest Distance) and PN (Previous Node), crossing out
old SD and PN as you find a shortcut path with smaller SD.

Node SD PN

A

B

C

D

E

F

5

L13 Johnson’s algorithm

Consider the following weighted digraph. As part of Johnson’s algorithm for All-pairs Shortest Paths, add
a dummy source node d, and edges with weight 0 from d to all vertices of G. Let the modified graph be
G’.
a) Compute the shortest distances from dummy source node d to each node in G’ by hand: h[0], h[1], ..
h[V-1], then reweight the edges of the original graph to make the edge weights greater than or equal to
0. Draw the reweighted graph G’ (without the dummy node d).
b) For the reweighted graph G’: run Dijkstra’s Algo to find shortest paths starting from source node 1,
and compute the shortest paths for the graph with updated positive or zero weights. (Do not show the
intermediate steps.)
c) For the original graph G: compute the shortest paths starting from source node 1 with negative
weights.

Node SD PN

1 0 /

2

3

4

Shortest paths starting
from source node 1 in
reweighted graph

Node SD PN

1 0 /

2

3

4

Shortest paths starting
from source node 1 in
original graph

1 2

3 4

Reweighted graph

1 2

3

-2

4
-1

-11

Original graph

Node h()

1

2

3

4

Shortest paths
starting from
dummy node

6

L15 MST Prim’s

• Run Prim’s algorithm starting from node A. Fill in the table with the
order in which each edge is added, and its weight. Break ties in
alphabetical or numerical order. Draw the final MST. For an
undirected edge, write the nodes in alphabetical order, e.g., (E, F)
instead of (F, E).

Order
added

Edge Edge
Weight

1

2

3

4

5

7

L15 MST Kruskal’s

• Run Kruskal’s algorithm. Fill in the table with the order in which each
edge is added, and its weight. Break ties in alphabetical or numerical
order. Draw the final MST. For an undirected edge, write the nodes in
alphabetical order, e.g., (E, F) instead of (F, E).

Order
added

Edge Edge
Weight

1

2

3

4

5

8

L15 MST

• (a) Run Prim’s algorithm starting from node S to find the
MST. Fill in the table with the order in which each edge is
added, and its weight. Break ties in alphabetical or
numerical order. Draw the final MST. For an undirected
edge, write the nodes in alphabetical order, e.g., (E, F)
instead of (F, E).

• (b) Run Kruskal’s algorithm to find the MST.

• (c) Run Dijkstra’s algorithm starting from node S to find the
shortest paths from node S. Draw the shortest path tree.

Order
added

Edge Edge
Weight

1

2

S

A2

B

1

4

Order
added

Edge Edge
Weight

1

2

Prim’s algorithm Kruskal’s algorithm

Node SD PN

S 0 /

A

B

Dijkstra’s algorithm

	Slide 1: CSC 017: Fundamentals of Computer Science III: Advanced Data Structures and Object-Oriented Programming Final Exam Sample Questions Spring 2025
	Slide 2: L10 2-3 Trees
	Slide 3: L11 Heaps
	Slide 4: L13 Dijkstra’s Algorithm
	Slide 5: L13 Johnson’s algorithm
	Slide 6: L15 MST Prim’s
	Slide 7: L15 MST Kruskal’s
	Slide 8: L15 MST

