
Lecture 9
Red-Black Trees

Department of Computer Science
Hofstra University

Binary Search Trees
 Ordered, or sorted, binary trees.
 Each node can have 2 subtrees.
 Items to the left of a given node are smaller.
 Items to the right of a given node are larger.
 Balanced search trees have guaranteed height of O(log n) for n items

 Red-Black Tree is a type of balanced search tree

Red-Black Tree
 1. Node Color: A node is either

red or black.
 2. Root Property: The root and

leaves (NIL) are black.
 3. Red Property: If a node is red,

then its children are black.
 4. Black Property: All paths from

a node to its NIL descendants
contain the same number of
black nodes.
 Path length excludes root node

itself, so here each path contains 1
black node

Example

 Tree on the left:
Incorrect Red Black
Tree.
 Two red nodes are

adjacent to each other.
 One of the paths to a

leaf node has zero
black nodes, whereas
the other two paths
contain 1 black node
each.

Red-Black tree ensures balancing

 A chain of 3 nodes is not possible in a Red-Black tree

Additional Properties

 Balanced search tree: the longest
path (root to farthest NIL) is no
more than twice the length of the
shortest path (root to nearest
NIL).
 Shortest path: all black nodes (=2)
 Longest path: alternating red and

black (=4)
 Operations: search, insert,

remove, each with time
complexity O(log(n)).
 Insert and remove may result in

violation of red-black tree
properties, use rotations to fix it

Rotations

 Alters the structure of
a tree by rearranging
subtrees

 Goal is to decrease
the height of the tree
to maximum height of
O(log n)
 Larger subtrees up,

smaller subtrees down

 Does not affect the
order of elements

 Time complexity O(1)

Before Rotation:

 x
 \
 y
 / \
 a b

After Left Rotation:

 y
 / \
 x b
 \
 a

Before Rotation:

 x
 /
 y
 / \
 a b

After Right Rotation:

 y
 / \
 a x
 /
 b

Rotations Examples

Insertion

 Inserting a new node in a Red-Black Tree involves a
two-step process: performing a standard binary search
tree (BST) insertion, followed by fixing any violations of
Red-Black properties.

 Insertion Steps
1. BST Insert: Insert the new node into BST and color it

red.
2. Fix Violations:

2. If the parent of the new node is black, no properties are
violated.

3. If the parent is red, the tree might violate the Red Property,
requiring fixes.

Insertions

 Step 1. Insert Z and color it red
 Step 2. Recolor and rotate nodes to fix violations
 4 scenarios after inserting node Z
 Case 0. Z = root

 Color Z black

 Case 1. Z.uncle = red
 Recolor Z’s parents and grandparent

 Case 2. Z.uncle = black (triangle)
 Rotate Z.parent, turns into Case 3

 Case 3. Z.uncle = black (line)
 Rotate Z.grandparent & Recolor Z’s parents and grandparent

Case 0. Z = root

 Color Z black

Color Z
black

Case 1. Z.uncle = red

 Recolor Z’s parents and grandparent

Recolor
Parents &
grandparents

Case 2. Z.uncle = black (triangle)

Case 2. Z.uncle = black (triangle)

 Rotate Z.parent
 Turns into Case 3

rotate
Z.parent

Case 3 Z.uncle = black (line)

Case 3 Z.uncle = black (line)
 Rotate Z.grandparent

rotate
Z.grandparent

recolor
Parents &
grandparents

Example 1

insert 15 insert 5

insert 1

Case 1.
Z.uncle = red
recolor

insert 10

Case 2.
Z.uncle =
black
right rotate
on 15

Z

Z.uncle

Z.uncle

Z

Example 2

Z
Z.uncle

Example 2 Con’t

Z
Z.uncle

Case 2.
Z.uncle =
black
left rotate
on 8 &
recolor

Another Example

Red Black Tree – Insertion
https://www.youtube.com/watch?v=9ubIKipLpRU

https://www.youtube.com/watch?v=9ubIKipLpRU

Time Complexity

 1. Insert : O(log(n))
 maximum height of red-black trees

 2. Color red : O(1)
 3. Fix violations :
 Constant # of:
 a. Recolor : O(1)
 b. Rotation: O(1)

 Overall time complexity: O(log(n))

Applications
 Red–black trees are widely used as system symbol tables.

 Java: java.util.TreeMap, java.util.TreeSet.
 C++ STL: map, multimap, multiset.
 Linux kernel: completely fair scheduler, linux/rbtree.h.
 Emacs: conservative stack scanning.

Video Tutorials

 Red-Black Trees // Michael Sambol
 https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgz

bqahCUmUEin
 Lecture slides based in this video series

 Red Black Tree – Insertion
 https://www.youtube.com/watch?v=9ubIKipLpRU

 Introduction to Red-Black Tree
 https://www.geeksforgeeks.org/introduction-to-red-black-tree/

https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/watch?v=9ubIKipLpRU
https://www.geeksforgeeks.org/introduction-to-red-black-tree/

	Lecture 9�Red-Black Trees
	Binary Search Trees
	Red-Black Tree
	Example
	Red-Black tree ensures balancing
	Additional Properties
	Rotations
	Rotations Examples
	Insertion
	Insertions
	Case 0. Z = root
	Case 1. Z.uncle = red
	Case 2. Z.uncle = black (triangle)
	Case 2. Z.uncle = black (triangle)
	Case 3 Z.uncle = black (line)
	Case 3 Z.uncle = black (line)
	Example 1
	Slide Number 18
	Example 2 Con’t
	Another Example
	Time Complexity
	Applications
	Video Tutorials

