Lecture 9
Red-Black Trees

Department of Computer Science
Hofstra University

Binary Search Trees

Ordered, or sorted, binary trees.
Each node can have 2 subtrees.
Items to the left of a given node are smaller.
Items to the right of a given node are larger.

Balanced search trees have guaranteed height of O(log n) for n items
Red-Black Tree is a type of balanced search tree

Red-Black Tree

1. Node Color: A node 1s either
red or black.

2. Root Property: The root and
leaves (NIL) are black.

3. Red Property: If a node 1s red,
then its children are black.

4. Black Property: All paths from "
a node to 1ts NIL descendants
contain the same number of

black nodes.

Path length excludes root node nil - nil nil nil nil nil
itself, so here each path contains 1
black node

Example

Tree on the left: o6
Incorrect Red Black Example of Red-black Tree

Tree. -
Two red nodes are /
adjacent to each other. o
One of the paths to a
leaf node has zero /
black nodes, whereas
the other two paths =

contain 1 black node

each. A inorrect Red-black Tree A correct Red-black Tree

Red-Black tree ensures balancing

A chain of 3 nodes 1s not possible in a Red-Black tree

Following are NOT possible Following are possible
3-noded Red-Black Trees Red-Black Trees with 3 nodes

NIL NIL
NIL NIL
Violates Violates Violates NIL NILNIL NIL
Property 4 Property 4 Property 3

All Possible Structure of a 3-noded Red-Black Tree

Additional Properties

Balanced search tree: the longest
path (root to farthest NIL) is no
more than twice the length of the
shortest path (root to nearest
NIL).

Shortest path: all black nodes (=2)

Longest path: alternating red and nil
black (=4)

Operations: search, insert,

remove, each with time

complexity O(log(n)).
Insert and remove may result in

violation of red-black tree
properties, use rotations to fix it

nil nil nil nil nil nil

Alters the structure of
a tree by rearranging
subtrees

Goal 1s to decrease
the height of the tree
to maximum height of
O(log n)
Larger subtrees up,
smaller subtrees down

Does not affect the
order of elements

Time complexity O(1)

Rotations

Before Rotation:

After Left Rotation:

Before Rotation:

After Right Rotation:

Y
/\
a X

/
b

Rotations Examples

left-rotate right-rotate
(2) (1)

Insertion

Inserting a new node in a Red-Black Tree involves a
two-step process: performing a standard binary search
tree (BST) insertion, followed by fixing any violations of
Red-Black properties.

Insertion Steps

BST Insert: Insert the new node into BST and color it
red.

Fix Violations:

If the parent of the new node is black, no properties are
violated.

If the parent is red, the tree might violate the Red Property,
requiring fixes.

Insertions

Step 1. Insert Z and color 1t red
Step 2. Recolor and rotate nodes to fix violations
4 scenarios after inserting node Z

Case 0. Z = root
Color Z black

Case 1. Z.uncle = red

Recolor Z’s parents and grandparent

grandparent —> (3]

uncle parent

Case 2. Z.uncle = black (triangle)

Rotate Z.parent, turns into Case 3

Case 3. Z.uncle = black (line)
Rotate Z.grandparent & Recolor Z’s parents and grandparent

Case 0. Z =root

Color Z black

Color zZ

black
00

Case 1. Z.uncle = red

Recolor Z’s parents and grandparent

Recolor
Parents &
grandparents

~ uncle

Case 2. Z.uncle = black (triangle)

case 2 : Z.uncle = black (triangle)

Case 2. Z.uncle = black (triangle)

Rotate Z.parent
Turns into Case 3

/\ rotate

Z.parent

Case 3 Z.uncle = black (line)

case 3 : Z.uncle = black (line)

Case 3 Z.uncle = black (line)

Rotate Z.grandparent

rotate
Z.grandparent

ey

recolor &

Parents &
grandparents

Example 1

insert 25 @ insert 5

Case 0: Z = root —> color black

.
nil

Case 3: Z.uncle = black (line) ->
\ rotate Z.grandparent & recolor

insert 1

insert 10

Z.uncle

Case 2.
Z.uncle =
black
right rotate
on 15

—y

Case 1.
Z.uncle = red

recoIoE

Example 2 Con't

Case 2.
Z.uncle =
black

left rotate
on 8 &

recolor;

2red

Another Example

2.1:8 ;6 8, 240 QL‘S_ZW\:“‘H\:W
LE

LL} _ l w}ah‘}q
e

Tree

Red Black Tree — Insertion
https://www.youtube.com/watch?v=9ubIKipLpRU

https://www.youtube.com/watch?v=9ubIKipLpRU

Time Complexity

1. Insert : O(log(n))

maximum height of red-black trees
2. Color red : O(1)

3. Fix violations :
Constant # of:
a. Recolor : O(1)
b. Rotation: O(1)

Overall time complexity: O(log(n))

Applications

Red-black trees are widely used as system symbol tables.
Java: java.util. TreeMap, java.util. TreeSet.
C++ STL: map, multimap, multiset.
Linux kernel: completely fair scheduler, linux/rbtree.h.

Emacs: conservative stack scanning.

Video Tutorials

Red-Black Trees // Michael Sambol

https://www.youtube.com/playlist?list=PL.9xmBV_5Y0ZNgDI8qfOZgz
bgahCUmUEin

Lecture slides based in this video series

Red Black Tree — Insertion
https://www.youtube.com/watch?v=9ublKipl_.pRU

Introduction to Red-Black Tree

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/watch?v=9ubIKipLpRU
https://www.geeksforgeeks.org/introduction-to-red-black-tree/

	Lecture 9�Red-Black Trees
	Binary Search Trees
	Red-Black Tree
	Example
	Red-Black tree ensures balancing
	Additional Properties
	Rotations
	Rotations Examples
	Insertion
	Insertions
	Case 0. Z = root
	Case 1. Z.uncle = red
	Case 2. Z.uncle = black (triangle)
	Case 2. Z.uncle = black (triangle)
	Case 3 Z.uncle = black (line)
	Case 3 Z.uncle = black (line)
	Example 1
	Slide Number 18
	Example 2 Con’t
	Another Example
	Time Complexity
	Applications
	Video Tutorials

