
Lecture 8
Binary Search Tree and Trie

Department of Computer Science
Hofstra University

Lecture Goals
 Describe the value of trees and their data structure
 Explain the need to visit data in different orderings
 Perform pre-order, in-order, post-order and level-order traversals
 Define a Binary Search Tree
 Perform search, insert, delete in a Binary Search Tree
 Explain the running time performance to find an item in a BST
 Compare the performance of linked lists and BSTs
 Explain what a trie data structure is

Different Trees in Computer Science
Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Family Trees Decision Trees

Floor
Clean?

Sweep
Floor

Relax

House
cleanNo

Yes

Wash
Windows

No

Yes

Expression Trees

+

3 6

/

45

Evaluate: 45 / (3 + 6)

File System

users/

minnes/

etc/

/

porter/

/user/porter

Why trees?

Dynamic Data Structure

alvarado/

Structure conveys
information

parent

children

children
of children

 Root is most important (Heap)

 Organized by character
frequency (Huffman Tree)

 Organized by node ordering
(Search Trees)

 Etc…

Different Organizations
→ Different Trees

Defining Trees
Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Family Trees

parent

child

leaf

root What defines a tree?
 Single root
 Each node can have only one parent

(except for root)
 No cycles in a tree

A B C D E

Which are trees?

✓

✓ ✓ ✗ ✗

only has one parent

has no parent node

nodes without children

root

3 children (all leaves)

root root

leaf
two
parents

Cycle: two different paths
between a pair of nodes

two roots

two
parents

Binary Trees

Tywin

Cersei Jaime

Myrcella Joffrey Tommen

Tyrion

Generic Tree

Any Parent can have
any number of children

Tywin

Tyrion Cersei

Joffrey Tommen

Binary Tree Any Parent can have
at most two children

Like Linked Lists, Trees
have a "Linked Structure"

How do we construct a tree?

Each node needs:
1. A value
2. A parent
3. A left child
4. A right child

A tree just needs a root node root

How would a general
tree node differ?

A general tree
would just have a

list for children

like the head and tail for linked list

nodes are connected by references

Write Code for Binary Tree
public class BinaryTree<E> {
 TreeNode<E> root;
 // more methods
}

public class TreeNode<E> {
 private E value;
 private TreeNode<E> parent;
 private TreeNode<E> left;
 private TreeNode<E> right;
 public TreeNode(E val, TreeNode<E> par) {
 this.value = val;
 this.parent = par;
 this.left = null;
 this.right = null;
 }
 public TreeNode<E> addLeftChild(E val) {
 this.left = new TreeNode<E>(val, this);
 return this.left;
 }
}

A

root

A

Let's write a constructor
together

Next Step is to able to
set/get children

For root: TreeNode(val, null)

Height of a Tree

 The height of a tree is defined as the number of
edges in the longest path from the root node to a
leaf node.

 For a tree with only a root node, the height is 0.
 For the tree below, the height is 2.

1

4

2 8

1

Full Binary Tree
 A full binary tree with height h has a total number of nodes given by

the formula: n = 2h+1−1
 This formula arises because, in a full binary tree, each level is

completely filled. The number of nodes at each level l is 2l.
Therefore, the total number of nodes is the sum of nodes at all levels
from 0 to h, which is a geometric series: n=1+2+4+…+2h=2h+1-1

 This means that for a full binary tree, the total number of nodes
grows exponentially with the height of the tree

 h=0: n=21−1=1
 h=1: n=22−1=3
 h=2: n=23−1=7

1

4

2 8

1

4

2 8

4

2 8

h=0 h=1 h=2

Height of a Binary Tree

 For a binary tree with n nodes, the height h is bounded by:
⌈log₂(n+1)⌉ - 1 ≤ h ≤ n - 1
 ⌈⌉ is the ceiling operator. The lower bound represents a perfectly

balanced tree, and the upper bound represents a degenerate tree
(essentially a linked list).

 The height of a tree is equivalent to the maximum depth of any node in
the tree.

 For a binary search tree, the minimum height with n nodes is
⌈log₂(n+1)⌉ - 1, which occurs in the most balanced configuration, where
⌈⌉ is the ceiling operator, e.g., ⌈1.0⌉=1, ⌈1.3⌉=2

 The maximum height of a binary tree with n nodes is n-1, which occurs
in the case of a skewed tree (essentially a linked list)

Tree Traversal - Motivation

start

finish

Imagine this is a hedge maze

Mazes benefit from "Depth First Traversals"

What's my next step?

Maze Traversal A
E

F

B

C D

you

Social Network

How closely are you connected with D?

Suppose you have a list of your friends and
each of your friends have lists

What's my next step?

This problem benefits from "Breadth First Traversals"

Bottom line: Order we visit
matters and we'll make
choices based on our needs

Warning: These first examples are really graphs. We'll visit graphs in
detail in the next course. Here they are used as motivating examples

Strategy: go until
hit a dead end,
then retrace
steps and try
again

Strategy: look at all of your friends
first, and then branch out.

BFS vs. DFS
 Breadth-First Search (BFS) and Depth-First Search (DFS) are two

fundamental algorithms used for traversing or searching graphs and trees
 BFS traversal explores all the neighboring nodes at the present depth prior to

moving on to the nodes at the next depth level.
 DFS uses backtracking. The deepest node is visited and then backtracks to its parent

node if no sibling of that node exists

Breadth First Search (BFS) Animations
https://www.youtube.com/watch?v=QUfEOCOEKkc
Depth First Search (DFS) Animations
https://www.youtube.com/watch?v=3_NMDJkmvLo

Tree Traversal Algos // Michael Sambol
https://www.youtube.com/watch?v=iaBEKo5sM7w

https://www.youtube.com/watch?v=QUfEOCOEKkc
https://www.youtube.com/watch?v=3_NMDJkmvLo
https://www.youtube.com/watch?v=iaBEKo5sM7w

Traversal Order for Binary Trees

 Breadth First Traversal with BFS
 Level Order Traversal

 Depth First Traversals with DFS
 Pre-order Traversal (Root-Left-Right)
 In-order Traversal (Left-Root-Right)
 Post-order Traversal (Left-Right-Root)

Graph traversal with BFS: Level-order
Traversal

s

sod sipsob sit

so si

 You've typed "s" What
words should we suggest?

 Most frequent?
 How about "closest"?

"Breadth First Traversal"

A

E FD G

B C

Visit:
A B C D E F G

Level-order is
"Breadth First Traversal”

Pre/In/Post Order are:
"Depth First Traversals"

Level-order

Graph traversal with BFS: Level-order
Traversal (Contd.)

A

E FD G

B C
Challenging: When we finish B,
how do we go to C next?

Idea: Keep a list and keep adding
to it and removing from start.

Visit:
A B C D E F G

Visit: A B C D E F G

List: A B C D E F G

We used this list like a "Queue"

 Add to the end
 Remove from the front
 First-In, First-Out (FIFO)

look at the first element

Level-order Traversal Implementation
public class BinaryTree<E> {
 TreeNode<E> root;
 public void levelOrder() {
 Queue<TreeNode<E>> q = new LinkedList<TreeNode<E>>();
 q.add(root);
 while(!q.isEmpty()) {
 TreeNode<E> curr = q.remove();
 if(curr != null) {
 curr.visit();
 q.add(curr.getLeftChild());
 q.add(curr.getRightChild());
 }
 }
 }

}

Could also check for null
children before adding

Linkedlist implements both
list and queue interfaces

Graph traversal with DFS: pre-order, in-
order, post-order

function inOrderTraversal(node) {
 if (node !== null) {
 inOrderTraversal(node.left);
 visitNode(node);
 inOrderTraversal(node.right);
 }
}

function preOrderTraversal(node) {
 if (node !== null) {
 visitNode(node);
 preOrderTraversal(node.left);
 preOrderTraversal(node.right);
 }
}

function postOrderTraversal(node) {
 if (node !== null) {
 postOrderTraversal(node.left);
 postOrderTraversal(node.right);
 visitNode(node);
 }
}

cbdaefabcdef cdbfea
Preorder Traversal in Binary Tree Animations
https://www.youtube.com/watch?v=gLx7Px7IE
zg

Inorder Traversal in Binary Tree Animations
https://www.youtube.com/watch?v=ne5o
OmYdWGw

Postorder Traversal in Binary Tree Animations
https://www.youtube.com/watch?v=a8kmbu
Nm8Uo

https://www.youtube.com/watch?v=gLx7Px7IEzg
https://www.youtube.com/watch?v=gLx7Px7IEzg
https://www.youtube.com/watch?v=ne5oOmYdWGw
https://www.youtube.com/watch?v=ne5oOmYdWGw
https://www.youtube.com/watch?v=a8kmbuNm8Uo
https://www.youtube.com/watch?v=a8kmbuNm8Uo

Graph traversal with DFS: pre-order, in-
order, post-order

 Pre-order Traversal Algorithm | Tree Traversal | Visualization,
Code, Example
 https://www.youtube.com/watch?v=8xue-ZBlTKQ

 In-order Traversal Algorithm | Tree Traversal | Visualization,
Code, Example
 https://www.youtube.com/watch?v=4_UDUj1j1KQ

 Post-order Traversal Algorithm | Tree Traversal | Visualization,
Code, Example
 https://www.youtube.com/watch?v=4Xo-GtBiQN0

https://www.youtube.com/watch?v=8xue-ZBlTKQ
https://www.youtube.com/watch?v=4_UDUj1j1KQ
https://www.youtube.com/watch?v=4Xo-GtBiQN0

Pre-order Traversal (Recursively)
A

E FD G

B C

Idea:
 Visit yourself
 Then visit all your left subtree
 Then visit all your right subtree

Visited:
A B D

Recursion will
help us do this!

E C F G
public class BinaryTree<E> {
 TreeNode<E> root;
 private void preOrder(TreeNode<E> node) {
 if(node!= null) {
 node.visit();
 preOrder(node.getLeftChild());
 preOrder(node.getRightChild());
 }
 }
 public void preOrder() {
 this.preOrder(root);
 }
}

What’s the order in
which you think the

nodes will be visited?

This is a recursive
process!

This can be done iteratively

Pre-order Traversal (Iteratively)
A

E FD G

B C

Challenging: When we finish D,
how do we go to E and C next?

Idea: Keep a list and keep adding
to it and removing from end.

Visit: A B D E C F G

List: A C B E D G F
We used this list like a ”Stack"

 Add to the top
 Remove from the top
 Last-In, First-Out (LIFO)

push pop

stack top
stack top

PREORDER TRAVERSAL USING A STACK
https://www.youtube.com/watch?v=zvleLiQn-_I

Iterative
algorithm not

covered in
exam

https://www.youtube.com/watch?v=zvleLiQn-_I

Pre-order Traversal (Iteratively)
public class BinaryTree<E> {
 TreeNode<E> root;

 void iterativePreorder(TreeNode<E> par) {
 if (par == null) { return; }
 Stack<TreeNode<E>> nodeStack = new Stack<TreeNode<E>>();
 nodeStack.push(par);

 while (nodeStack.empty() == false) {
 TreeNode<E> node = nodeStack.peek();
 node.visit();
 nodeStack.pop();
 if (node.right != null) {

 nodeStack.push(node.right);
 }
 if (node.left != null) {
 nodeStack.push(node.left);
 }
 }
 }
 void iterativePreorder() {
 iterativePreorder(root);
 }
}

1) Create an empty stack nodeStack and push
root node to stack.
2) Do following while nodeStack is not empty.
….a) Pop an item from stack and print it.
….b) Push right child of popped item to stack
….c) Push left child of popped item to stack
Right child is pushed before left child to make
sure that left subtree is processed first.

In-order Traversal (Recursively and Iteratively)
1) Create an empty stack S.
2) Initialize current node as root
3) If current is not NULL, push the current node to S and set
current = current->left. Repeat until current is NULL
4) If current is NULL and stack is not empty then
….a) Pop the top item from stack.
….b) Print the popped item, set current = popped_item->right
….c) Go to step 3.
5) If current is NULL and stack is empty then we are done.

A

E FD G

B C

Visit: D B E A F C G

Stack: A B D E C F G

public class BinaryTree<E> {
 TreeNode<E> root;

 public void Inorder(TreeNode<E> node) {
 if (node == null)
 return;

 Inorder(node.left);
 node.visit();
 Inorder(node.right);
 }
 void Inorder() { Inorder(root); }

}

Recursive

public class BinaryTree<E> {
 TreeNode<E> root;

 public void iterativeInorder() {
 if (root == null)
 return;

 Stack<TreeNode<E>> s = new Stack<TreeNode<E>>();
 TreeNode<E> curr = root;

 while (curr != null || s.empty() == false) {
 while (curr != null) {
 s.push(curr);
 curr = curr.left;
 }
 curr = s.pop();
 curr.visit();
 curr = curr.right;
 }
 }

}

Iterative

Iterative
algorithm not

covered in
exam

Post-order and In-order Traversal

REARRANGE:
? Visit yourself
? Visit all your left subtree
? Visit all your right subtree

Visit:
D E B

A

E FD G

B C

F G C A

What does this do?
 Visit all your left subtree
 Visit yourself
 Visit all your right subtree

Visit:
D B E A F C G___________________________

Fill in the Blank:
A. A B C D E F G
B. D B E A F C G
C. D B A E F C G

Post-order

In-order

 Visit all your left subtree
 Visit all your right subtree
 Visit yourself

Recursion will
help us do these!

They can also be
done iteratively
with Stack.

Post-order Traversal (Recursively and Iteratively)

1. Push root to first stack.
2. Loop while first stack is not empty
….2.1 Pop a node from first stack and push it to second stack
….2.2 Push left and right children of the popped node to first stack
3. Visit contents of second stack

A

E FD G

B C

public class BinaryTree<E> {
 TreeNode<E> root;

 public void Postorder(TreeNode<E> node) {
 if (node == null)
 return;

 Postorder(node.left);
 Postorder(node.right);

 node.visit();
 }
 void Posterorder() {Postorder(root); }

}

Recursive

Stack 2: A C G F B E D

Stack 1: A B C F G D E

Visit: D E B F G C A

For iterative version, the idea is to push reverse postorder traversal to a
stack. Then, we can just pop all items one by one from the stack and
visit them. To get reversed postorder elements in a stack – the second
stack is used for this purpose. We can observe that this sequence is very
similar to the preorder traversal. The only difference is that the right
child is visited before left child.

public class BinaryTree<E> {
 TreeNode<E> root;
 public void iterativePostorder() {
 Stack<TreeNode<E>> s1 = new Stack<TreeNode<E>>();
 Stack<TreeNode<E>> s2 = new Stack<TreeNode<E>>();
 if (root == null)
 return;
 s1.push(root);
 while (!s1.isEmpty()) {
 TreeNode<E> temp = s1.pop();
 s2.push(temp);

 if (temp.left != null)
 s1.push(temp.left);
 if (temp.right != null)
 s1.push(temp.right);
 }
 while (!s2.isEmpty()) {
 TreeNode<E> temp = s2.pop();
 temp.visit();
 }
 }

}

Iterative

visit all elements of second stack

Iterative
algorithm not

covered in
exam

Geeks for Geeks Tutorials

 https://www.geeksforgeeks.org/preorder-traversal-of-binary-
tree/

 https://www.geeksforgeeks.org/inorder-traversal-of-binary-
tree/

 https://www.geeksforgeeks.org/postorder-traversal-of-binary-
tree/

 Running Example

https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/
https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/
https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/
https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/
https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/
https://www.geeksforgeeks.org/postorder-traversal-of-binary-tree/

Pre-order traversal of nodes is 1 -> 2 ->
4 -> 5 -> 3 -> 6

In-order traversal of nodes is 4 -> 2 -> 5 -> 1
-> 3 -> 6.

Post-order traversal of nodes is 4 -> 5 -> 2 -
> 6 -> 3 -> 1

Summary of Traversals

 Pre-order traversal:
 Begins at the root, ends at the right-most node

 In-order traversal:
 Begins at the left-most node, ends at the rightmost node

 Post-order traversal:
 Begins with the left-most node, ends with the root

Motivation for Binary Search Tree

Agra Beijing Chicago Essen Lagos Montreal Quito

toFind Chicago
Sorted arrays are good for search,

but bad for insertion/removal

Binary Search - O(logn) search:
get rid of half each time

Agra

Beijing

Chicago

Essen

Lagos

Montreal

Quito

root So now we can do the same kind of fast
searching we did within an array, but we
can also get the benefit of a fast insert
and a fast removal that a tree provides.

Binary Search Trees
E

C LA Q

B M

• Ordered, or sorted, binary trees.
• Each node can have 2 subtrees.
• Items to the left of a given node

are smaller.
• Items to the right of a given node

are larger.

Left subtree’s values
must be lesser

Right subtree’s values
must be greater

42

12

32

A

✓

42

12 32

B 42

12 65

C

30 38

32

42

65

D

12 45

32

Which of these are binary search trees?

✗
✗

✗

Binary Search Tree Animations | Data Structure | Visual How
https://www.youtube.com/watch?v=ymGjUOiR8Jg

https://www.youtube.com/watch?v=ymGjUOiR8Jg

BST Video Tutorials

 Binary Search Tree : Overview
 https://www.youtube.com/watch?v=6I3evyt9ApA

 Binary Search Tree : Insert Overview
 https://www.youtube.com/watch?v=KkEnuK-2Ymc

 Binary Search Tree: Deletion Overview
 https://www.youtube.com/watch?v=DkOswl0k7s4

https://www.youtube.com/watch?v=6I3evyt9ApA
https://www.youtube.com/watch?v=KkEnuK-2Ymc
https://www.youtube.com/watch?v=DkOswl0k7s4

Searching a BST
E

C LA Q

B M

Same fundamental idea as
binary search of an array

toFind C

Compare: E and C

Compare: B and C

Compare: C and C

Found it!

toFind P

Compare: E and P

Compare: M and P

Compare: Q and P

Not Found!

Node is null

You could solve this with recursion.

You could also solve it with iteration by
keeping track of your current node.

How to implement this?

Searching a BST Iteratively
public class BinaryTree<E> {
 TreeNode<E> root;
 public boolean search(E toSearch) {
 TreeNode<E> curr = root;

 while (curr != null) {
 if (toSearch < curr.getValue())
 curr = curr.getLeftChild();

 else if (toSearch > curr.getValue())
 curr = curr.getRightChild();
 else
 return true;
 }

 return false;
}

}

E

C LA Q

B M

root t.search(’L’)

Traverse down tree until:
a) end is reached
b) element is found

curr

Do NOT change root pointer!

<E extends Comparable<? super E>> {

 while (curr != null) {
 int comp = toSearch.compareTo(curr.getValue());

 if (comp < 0)
 curr = curr.getLeftChild();

 else if (comp > 0)
 curr = curr.getRightChild();
 else // comp = 0
 return true;
 }

We need to do
this over and over

if not found

Are we done? if calling object is greater than parameter,
compareTo returns a value > 0

if calling object is less than parameter,
compareTo returns a value < 0

if calling object is equal to parameter,
compareTo returns 0

Doesn’t work
with objects

It means that either the
class E itself or one of its super
classes implements Comparable

public class BinaryTree<E extends Comparable<? super E>> {
 TreeNode<E> root;

 private boolean search(TreeNode<E> p, E toSearch) {
 if (p == null)
 return false;
 int comp = toSearch.compareTo(p.getValue());
 if (comp == 0)
 return true;
 else if (comp < 0)
 return search(p.left, toSearch);
 else // comp > 0
 return search(p.right, toSearch);
 }
 public boolean search(E toSearch) {
 return search(root, toSearch);
 }
}

Searching a BST Recursively

E

C LA Q

B M

root p

Tree is empty

Found it!

look left

look right

t.search(’L’)

Root of the tree we look at

Inserting into a BST
20

30

5 25

10

Where should we insert 7?

Option A

Option B
Option C

Option D: Either Option
A or Option B are fine.

✗✗

✗

✓7

Insert 27?

27

Insert 8?

8

Deleting from a BST

20

30

5 25

10

Delete 7

7

If leaf node: Delete parent’s link 7

Replace deleted element with
it

✗

Delete 5

15✗ If only one child, hoist child

12

Delete 10

When a deleted node has two children, this gets tricky.

Find smallest value in right subtree

12

Then delet right subtree duplicate (12)

✗

For the smallest value in a
node's right subtree, its left
child is null.
For the largest value in a
node’s left subtree, its right
child is null.

Replace deleted element with it

Find largest value in left subtree

Then delete left subtree duplicate (7)

OR

Binary Search Tree Shape
Which of the following Binary Search Trees could be the result of adding
elements: 1, 2, 4, and 8 in some order.

2

4

8

1

A

2

8

4

1

B
1

2

4

8

C

1

4

2 8

D

These are all valid binary search trees!

Binary Search Tree Shape (Contd.)

2

4

8

1

A ✓
Root comes first

Insert nodes as leaves
Inserting a node means making it a child of an existing node

8 needs to be inserted AFTER 4

2

2 4 1 8

2 1 4 8

2 4 8 1

✓

4 needs to be inserted AFTER 8

2

2 8 1 4

2 1 8 4

2 8 4 1

2

8

4

1

B

Root comes first

Binary Search Tree Shape (Contd.)

✓

1

1 2

1 2 4

1 2 4 8

1

1 4

1 4 2 8

1 4 8 2

1

2

4

8

C

1

4

2 8

D ✓

Needs to be inserted AFTER 1

Both 2 and 8 needs to be
inserted AFTER 4

Root comes first

Root comes first

Needs to be inserted AFTER 2

Needs to be inserted AFTER 4

Needs to be inserted AFTER 4

The order in which we put elements into a BST impacts the
shape, and what you‘ll see is that the shape of BST will
have a huge impact on the performance of operations.

Video Tutorial

 Binary Search Trees (BST) Explained in Animated Demo
 https://www.youtube.com/watch?v=mtvbVLK5xDQ

https://www.youtube.com/watch?v=mtvbVLK5xDQ

Traversal of a BST

 When we perform in-order traversal on a binary search tree,
we get the ascending order array.

 Pre-order traversal:
 Traversal sequence: 30, 10, 25, 18, 23,

27, 70, 60, 80
 In-order traversal:
 Traversal Sequence: 10, 18, 23, 25, 27,

30, 60, 70, 80
 Post-order traversal:
 Traversal sequence: 23, 18, 27, 25, 10,

60, 80, 70, 30

Traversal of a BST
 Pre-order traversal:
 Begins at the root (7), ends at the right-

most node (10)
 Traversal sequence: 7, 1, 0, 3, 2, 5, 4, 6, 9,

8, 10
 In-order traversal:
 Begins at the left-most node (0), ends at

the rightmost node (10)
 Traversal Sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8,

9, 10
 Post-order traversal:
 Begins with the left-most node (0), ends

with the root (7)
 Traversal sequence: 0, 2, 4, 6, 5, 3, 1, 8,

10, 9, 7

7

3 80 10

1 9

4 6

52

In-Order Traversal of a BST

 In-order traversal of a BST visits the nodes in ascending order of
their values, i.e., from smallest to largest. Here's why:
 1. **Binary Search Tree Property**: In a BST, for any given node:
 - The values in the left subtree are less than the value of the node.
 - The values in the right subtree are greater than the value of the node.
 2. **In-order Traversal Process**: This traversal method follows a specific

sequence:
 - Traverse the left subtree.
 - Visit the root node.
 - Traverse the right subtree.
 3. **Resulting Order**: By first visiting all nodes in the left subtree (which

are smaller), then the root, and finally all nodes in the right subtree (which
are larger), in-order traversal naturally outputs the nodes in non-decreasing
order.

 This property makes in-order traversal particularly useful for
retrieving data from a BST in sorted order.

am

Performance Analysis of BST
{ am, at, ate, ear, eat, east }

eat

east

ear

ate

at

am

eat

east

ear

ate

at

Storing a dictionary as a BST

am eat

east

ear

ate

at

isWord(String wordToFind)
1. Start at root
2. Compare word to current node

1. If current node is null, return false
2. If wordToFind is less than word at current node,

continue searching in left subtree
3. If wordToFind is greater than word at current

node, continue searching in right subtree
4. If wordToFind is equal to word at current node,

return true

isWord(east)

Structure of a BST depends
on the order of insertion

How does the performance of isWord relate to input size n?

Best case: O(1)

isWord(a)

Compared with 3
out of 7 words

Compared with all
words

isWord(a)

Performance also depends on
the actual structure of the BST

Worst case: O(n)
To optimize the worst case, we can modify the
tree to control the max distance until leaf

4 3

6

height

Balanced BST

node

| LeftHeight – RightHeight | <=1

am

eat

east

ear

ate

at

am

eat

east

ear

ate

at

am eat

east

ear

ate

at

height ≈ log(n)

Best
case

Average
case

Worst
case

Linked List O(1) O(n) O(n)

BST O(1) O(log n) O(n)

Balanced BST O(1) O(log n) O(log n)

isWord(String wordToFind)

Especially if insert to BST in order!

How to keep balanced? TreeSet and TreeMap in Java API

Left
Height

Right
Height

Which is the
Balanced BST?

We want to keep the height down as much as we can
while still maintaining the same number of nodes.

✓

BST vs. Hash Table

 Time Complexity
 Average case:

 Hash Tables generally offer O(1) average time complexity for insertion,
deletion, and search operations.

 BSTs provide O(log n) time complexity for these operations, assuming the tree
is balanced.

 Worst case
 Hash Tables can degrade to O(n) performance in cases of poor hash function

design or many collisions.
 BSTs maintain O(log n) performance even in the worst-case for self-balancing

BST.
 Ordered Operations

 BSTs excel at operations requiring ordered data
 In-order traversal yields sorted elements.
 Efficient range searches and finding closest elements.

 Hash Tables do not inherently maintain order, making these operations
more difficult.

Tree vs. Trie
 Structure and Purpose

 Trees:
 General-purpose data structure for representing hierarchical

relationships
 Each node can contain any type of data
 Nodes typically have a value and references to child nodes

 Tries:
 Specialized tree structure for storing and retrieving strings efficiently
 Also known as a prefix tree
 Optimized for operations on strings or sequences

 Node Content
 Trees:

 Each node stores a value directly
 Tries:

 Nodes typically do not store complete strings
 The path from the root to a node represents a string or prefix
 Characters are stored along the edges between nodes

https://romankurnovskii.com/en/posts/tree-vs-trie-data-structures/

https://romankurnovskii.com/en/posts/tree-vs-trie-data-structures/

Trie Data Structure

a

east

ate

ear

at

eat

Storing a dictionary as a (balanced) BST

BSTs don't take advantage of shared structure

Tries: Use the key to navigate the search
a e r s t

a e r s t

a e r s t

a e r s t

a e r s t

a e r s t

a e r s t

a e r s t

a e r s t

a

at

ate
ear

east

Finding “eat”

a e r s t

eat

Adding “eats”

a e r s t

eats

O(log n)

O(k)

re(TRIE)ve

 Not all nodes represent words
 Nodes can have more than 2 children

log2(250000) ≈ 18
Trie Data Structure (EXPLAINED)
https://www.youtube.com/watch?v=-urNrIAQnNo

https://www.youtube.com/watch?v=-urNrIAQnNo

Additional Resources

 Trees and Binary Search Trees
 https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/ BFS vs DFS for

Binary Tree
 http://www.openbookproject.net/thinkcs/archive/java/english/chap17.ht

m -- explains trees, how to build and traverse it
 http://algs4.cs.princeton.edu/32bst/ -- about binary search trees
 Data structures: Binary Search Tree

 https://www.youtube.com/watch?v=pYT9F8_LFTM

 Tries
 https://www.toptal.com/java/the-trie-a-neglected-data-structure --

explains with solid example
 https://www.topcoder.com/community/data-science/data-science-

tutorials/using-tries/ -- explains as well as providing code

https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/
http://www.openbookproject.net/thinkcs/archive/java/english/chap17.htm
http://www.openbookproject.net/thinkcs/archive/java/english/chap17.htm
http://algs4.cs.princeton.edu/32bst/
https://www.youtube.com/watch?v=pYT9F8_LFTM
https://www.toptal.com/java/the-trie-a-neglected-data-structure
https://www.topcoder.com/community/data-science/data-science-tutorials/using-tries/
https://www.topcoder.com/community/data-science/data-science-tutorials/using-tries/

Quiz

 How many common operations are performed in a binary tree?
 a) 1
 b) 2
 c) 3
 d) 4

ANS: c

Explanation: Three common operations are
performed in a binary tree- they are
insertion, deletion and traversal.

Quiz

 The following given tree is an example for?
 a) Binary tree
 b) Binary search tree

ANS: a

Explanation: The given tree is an example for binary tree
since has got two children and the left and right children
do not satisfy binary search tree’s property, Fibonacci and
AVL tree.

Quiz

 1. **What is the sequence of nodes visited in a Preorder traversal?**
 - a) Left, Root, Right
 - b) Root, Left, Right
 - c) Left, Right, Root
 - d) Right, Root, Left

 2. **Which traversal method is used to get nodes of a Binary Search Tree in ascending order?**
 - a) Preorder
 - b) Inorder
 - c) Postorder
 - d) Level order

 3. **In a Postorder traversal, when is the root node visited?**
 - a) First
 - b) After visiting the left subtree
 - c) After visiting both left and right subtrees
 - d) Before visiting any subtree

ANS: b

ANS: b

ANS: c

Quiz

 Pre-order traversal:
 Traversal sequence: 12453
 In-order traversal:
 Traversal Sequence: 42513
 Post-order traversal:
 Traversal sequence: 45231

Quiz

 Pre-order traversal:
 Traversal sequence: 2, 7, 2, 6, 5, 11,

5, 9, 4
 In-order traversal:
 Traversal Sequence: 6, 2, 5, 7, 11, 2, 5,

9, 4
 Post-order traversal:
 Traversal sequence: 6, 5, 2, 11, 7, 4,

9, 5, 2

Quiz
 Given: Pre-order traversal of nodes is 1 -> 2 -> 4 -> 5 -> 3 -> 6; In-

order traversal of nodes is 4 -> 2 -> 5 -> 1 -> 3 -> 6. What is the
post-order traversal of nodes?

 ANS: we know 1 is the tree root from pre-order traversal, so we
know the left subtree has nodes 4,2,5, and right subtree has nodes
3,6, from in-order traversal 4 -> 2 -> 5 -> 1 -> 3 -> 6. We can draw
the tree now and derive the post order traversal 4 -> 5 -> 2 -> 6 -> 3
-> 1

 Pre-order traversal:
 Begins at the root, ends at the

right-most node
 In-order traversal:

 Begins at the left-most node, ends
at the rightmost node

 Post-order traversal:
 Begins with the left-most node,

ends with the root

	Lecture 8�Binary Search Tree and Trie
	Lecture Goals
	Different Trees in Computer Science
	Defining Trees
	Binary Trees
	Write Code for Binary Tree
	Height of a Tree
	Full Binary Tree
	Height of a Binary Tree
	Tree Traversal - Motivation
	BFS vs. DFS
	Traversal Order for Binary Trees
	Graph traversal with BFS: Level-order Traversal
	Graph traversal with BFS: Level-order Traversal (Contd.)
	Level-order Traversal Implementation
	Graph traversal with DFS: pre-order, in-order, post-order
	Graph traversal with DFS: pre-order, in-order, post-order
	Pre-order Traversal (Recursively)
	Pre-order Traversal (Iteratively)
	Pre-order Traversal (Iteratively)
	In-order Traversal (Recursively and Iteratively)
	Post-order and In-order Traversal
	Post-order Traversal (Recursively and Iteratively)
	Geeks for Geeks Tutorials
	Slide Number 25
	In-order traversal of nodes is 4 -> 2 -> 5 -> 1 -> 3 -> 6.
	Post-order traversal of nodes is 4 -> 5 -> 2 -> 6 -> 3 -> 1
	Summary of Traversals
	Motivation for Binary Search Tree
	Binary Search Trees
	BST Video Tutorials
	Searching a BST
	Searching a BST Iteratively
	Searching a BST Recursively
	Inserting into a BST
	Deleting from a BST
	Binary Search Tree Shape
	Binary Search Tree Shape (Contd.)
	Binary Search Tree Shape (Contd.)
	Video Tutorial
	Traversal of a BST
	Traversal of a BST
	In-Order Traversal of a BST
	Performance Analysis of BST
	Balanced BST
	BST vs. Hash Table
	Tree vs. Trie
	Trie Data Structure
	Additional Resources
	Quiz
	Quiz
	Quiz
	Quiz
	Quiz
	Quiz

