
Begränsad delning

Lecture 7
Hash Tables

Department of Computer Science
Hofstra University

Begränsad delning

Lecture Goals
 Describe why hash tables are valuable
 Describe the role of a hash function and the hash code
 Describe Java’s Hash Code Conventions
 Describe Java’s implementations of hash code
 Describe alternative methods for handling collisions in a Hash

Table
 Identify other challenges associated with Hash Tables
 Explain the difference between a Hash Set, Hash Map and

Hash Table

Begränsad delning

Motivation

Jan Tim Mia Sam Leo Ted Bea Lou Ada Max Zoe

0 1091 2 3 4 5 6 7 8

Find Ada

Ada

Option 1: brute force linear search Take long time for big array

What if we happen to know the index of the value?

Ada -> 8 myData = Array[8]

Very fast If you know where in memory the array starts, you can easily
determine the address of any element using the index. Accessing
an address is an O(1) operation, and independent of array size.

How can you know which elements of the array
contains the value you are looking for?

Ada

?

Option 2: hash table

Each index number can be calculated using the
value itself. So the index number is in some way
related to the data

Hash tables in 4 minutes
https://www.youtube.com/watch?v=knV86FlSXJ8
Hashing | Set 1 (Introduction) | GeeksforGeeks
https://www.youtube.com/watch?v=wWgIAphfn2U

https://www.youtube.com/watch?v=knV86FlSXJ8
https://www.youtube.com/watch?v=wWgIAphfn2U

Begränsad delning

Hash Table
Save items in a key-indexed table (index is a function of the key).

Hash function is the method for computing array index from key.

Ada

0 1091 2 3 4 5 6 7 8

Ada

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

JanTim MiaSamLeo TedBea Lou MaxZoe Ada

Let’s repopulate the array to be a hash table with following hash function:

Index number = sum Unicodes Mod array size

Mia M 77 i 105 a 97 279 4

Zoe Z 90 o 111 e 101 302 5

Leo L 76 e 101 o 111 288 2

Tim T 84 i 105 m 109 298 1
Bea B 66 e 101 a 97 264 0

Jan J 74 a 97 n 110 281 6
Ada A 65 d 100 a 97 262 9

Sam S 83 a 97 m 109 289 3
Lou L 76 o 111 u 117 304 7
Max M 77 a 97 x 120 294 8
Ted T 84 e 101 d 100 285 10

K mod N is a common
hash function

key # of elements in array

Begränsad delning

Hash Funtion

Hash Table (Contd.)

Ada

0 1091 2 3 4 5 6 7 8

AdaJanTim MiaSamLeo TedBea Lou MaxZoe Ada

Index number = sum Unicodes Mod array size

Find Ada

Ada = (65 + 100 + 97) = 262

myData = Array[9]

262 Mod 11 = 9

Hash
CodeKey Hash

Algorithm

AdaAdaAdaJan
10/12/1990
Philosopher

Tim
11/02/1986

Inventor

Mia
04/09/1977
Physicist

Sam
10/12/1951

Biologist

Leo
05/12/1966
Philosopher

Ted
12/06/1998

Actress

Bea
10/12/1955
Astronomer

Lou
02/13/1943

Biologist

Max
06/24/1971

Scientist

Zoe
10/12/1965

Inventor

Ada
03/27/1969

Inventor

Key
Value

Ada
03/27/1969

Inventor

Hash tables are often used to store <key, value> pairs, which
can be the objects in java. Key is just one of the object’s property

Mod Array
Index

Begränsad delning

Hash Function

Idealistic goal: Scramble the keys uniformly to produce a table index.

Practical challenge: need different approach for each key type.

Each table index equally likely for each key. Hash
Function

key

table index

Efficiently computable.

Calculation applied to a key to transform it into an address (array/table index).

 For numeric keys, divide the key by the number of available addresses, n, and take
the remainder.

address = key Mod n
 For alphanumeric keys, divide the sum of Unicodes in a key by the number of

available addresses, n, and take the remainder.
 Folding method divides key into equal parts then adds the parts together

 The telephone number 5164635712 becomes 51+64+63+57+12 = 247
 Depending on size of table, may then divide by some constant and take remainder
 ensures that all the digits contribute to the hash code

Ex. Phone numbers.

 Bad: first three digits.

 Better: last three digits.

But actually, in most cases, you want

to find the way to use all the data

Begränsad delning

Java’s Hash Code Conventions
All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

 Default implementation. Memory address of x.

 Legal (but poor) implementation. Always return 17.

 Customized implementations. Integer, Double, String, File, URL, Date, …

 User-defined types. Users are on their own.

x

x.hashCode()

y

y.hashCode()
Meets the two requirements for Java. But it doesn’t meet the
idea that every table position should be equally likely
mapped from the keys.

collision

collision

Note that it is generally necessary to override
the hashCode method whenever this method is overridden, so
as to maintain the general contract for the hashCode method,
which states that equal objects must have equal hash codes.

== tests for reference equality (whether they are the same object).

.equals() tests for value equality (whether they are logically "equal").

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Begränsad delning

Implementing Hash Code: Integers, Booleans

public final class Boolean {

private final boolean value;

...

public int hashCode() {

if (value) return 1231;
else return 1237;

}

}

public final class Integer {

private final int value;

...

public int hashCode(){

 return value;

}

}

Two large prime numbers

1. avoid collision
(e.g., better than 1000 and 2000.)

1000 mod 8 = 2000 mod 8
1000 mod 10 = 2000 mod 10
1000 mod 20 = 2000 mod 20

class InterviewCandidate {
 String candidateName;
 Boolean isSelected;

}

To write the hashcode for this class, typically you
will find hashcode for candidateName, hashcode
for isSelected, multiply them with some prime
number and then add them up

2. larger impact on the hash code of a
composite object (e.g., better than 0 and 1)

Java library implementation

Begränsad delning

Implementing Hash Code: Doubles
public final class Double {

 private final double value;

 ...

 public int hashCode() {

 long bits = doubleToLongBits(value);

 return (int) (bits ^ (bits >>> 32));

 }

}

XOR is a binary operation, it stands for "exclusive
or", that is to say the resulting bit evaluates to one if
only exactly one of the bits is set.

a b a^b

0 0 0

0 1 1

1 0 1

1 1 0

1. convert to IEEE 64-bit
representation.

2. xor most significant 32-bits with
least significant 32-bits.

10.24 01000000 00100100 01111010 11100001 01000111 10101110 00010100 01111011

01000000 00100100 01111010 11100001
01000111 10101110 00010100 01111011XOR

00000111 10001010 01101110 10011010

 return 126512794
 all the digits contribute to the

hash code

Java library implementation

Begränsad delning

public final class String {
 private final char[] s;
 ...

 public int hashCode() {

 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
}

Implementing Hash Code: Strings

 Horner's method to hash string of length n: n multiplies/adds.
 Equivalent to h = s[0] · 31n–1 + … + s[n – 3] · 312 + s[n – 2] · 311 + s[n – 1] · 310.

Ex. 3045982 = 99·313 + 97·312 + 108·311 + 108·310

= 108 + 31· (108 + 31 · (97 + 31 · (99)))
(Horner's method)

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

 return 3045982
 It involves all the characters of the string in computing the hash function.

Java library implementation

Begränsad delning

Implementing Hash Code: Strings (Contd.)
Java library implementation

public final class String {
 private final char[] s;
 private int hash = 0;
 ...

 public int hashCode() {

 int h = hash;
 if (h != 0) return h;
 for (int i = 0; i < length(); i++)
 h = s[i] + (31 * h);
 hash = h;
 return h;
 }
}

return cached value

cache of hash code

store cache of hash code

 Performance optimization.
 Cache the hash value in an instance variable.
 Return cached value.

Begränsad delning

Implementing Hash Code: User-defined Types
Java library implementation

public final class Transaction {
 private final String who;
 private final Date when;
 private final double amount;

 public int hashCode() {

 int hash = 17;
 hash = 31 * hash + who.hashCode();
 hash = 31 * hash + when.hashCode();
 hash = 31 * hash + ((Double) amount).hashCode();
 return hash;
 }
}

typically a small prime

nonzero constant

for primitive types,
use hashCode() of
wrapper type

for reference types,
use hashCode()

 31 is a prime number. The product of a prime with any other number
has the best chance of being unique. The value was chosen for better
distribution.

 A nice property of 31 is that the multiplication can be replaced by a
shift and a subtraction for better performance: 31 * i == (i << 5) - i.

 Using primes is an old technique.

"Standard" recipe for user-defined types. (works well and used in java libraries)
 Combine each significant field using the 31x + y rule.
 If field is a primitive type, use wrapper type hashCode().
 If field is null, return 0.
 If field is a reference type, use hashCode().
 If field is an array, apply to each entry.
Basic rule. Need to use the whole key to compute hash code;

or use Arrays.deepHashCode()

applies rule recursively

Begränsad delning

Modular Hashing
Hash code: an int between -231 and 231 - 1.

private int hash(Key key) {

 return key.hashCode() % M;

}

bug

private int hash(Key key) {

 return Math.abs(key.hashCode()) % M;

}

private int hash(Key key) {

 return (key.hashCode() & 0x7fffffff) % M;

}

correct

1-in-a-billion bug

M is the size of the array, which is
typically a prime or power of 2

Hash function: an int between 0 and M - 1 (for use as array index).

Since our goal is an array index, not a 32-bit integer, we
combine hashCode() with modular hashing produce integers
between 0 and M-1, which is used as an array/table index.

the absolute value of Integer.MIN_VALUE is itself!
Famously, hashCode() of "polygenelubricants" is -231

The % operator returns a non-positive integer
if its first argument is negative, and this would
create an array index out-of-bounds error.

The code masks off the sign bit (to turn the 32-bit
integer into a 31-bit nonnegative integer) and then
computing the remainder when dividing by M

Hash
Funtion

Hash
Code

Key Hash
Algorithm

Mod

Array
Index

Begränsad delning

Absolute value of Integer.MIN_VALUE is
itself

 Integer representation: In Java, integers are stored using 32 bits in
two's complement format.

 Range of int: The range of int in Java is from -2^31 to 2^31 - 1,
which is -2,147,483,648 to 2,147,483,647.

 Integer.MIN_VALUE: This constant represents the minimum value
an int can hold, which is -2,147,483,648.

 No positive counterpart: There is no positive 32-bit integer that can
represent 2,147,483,648 (which would be the absolute value of -
2,147,483,648).

 The Math.abs() Function
 When you try to get the absolute value of Integer.MIN_VALUE using

Math.abs(), here's what happens:
 int minValue = Integer.MIN_VALUE;
 int absValue = Math.abs(minValue);
 System.out.println(minValue == absValue); // This prints true

Begränsad delning

Collision and Resolution: Open Addressing

Collision: two distinct keys hashing to same index.

0 1 2 3 4 5 6 7 8 9 10 11

M = 12

I MX FL GR
insert L hash(L) = 4

insert I hash(I) = 1

insert M hash(M) = 5

insert E hash(E) = 8

insert X hash(X) = 4

insert F hash(F) = 10

insert G hash(G) = 11

insert R hash(R) = 10

E

Collision!

Idea: Just put it in the next open spot Solution: Linear probing

Search E hash(E) = 8

Search X hash(X) = 4

Search Y hash(Y) = 5

Search miss
(return null)
Search hit

(return corresponding value)

Idea for search: Search the hashed table index, and
if occupied but no match, try the next spot until the
next spot is empty or is the hashed table index (i.e.,
loops back and the table is full).

Begränsad delning

Primary Clustering and Secondary
Clustering

 Primary clustering is the tendency for a collision resolution scheme such as linear
probing to create long runs of filled slots near the hash position of keys.
 If the primary hash index is x, subsequent probes go to x+1, x+2, x+3 and so on, this results in

Primary Clustering.
 Once the primary cluster forms, the bigger the cluster gets, the faster it grows. And it reduces the

performance.
 Secondary clustering is the tendency for a collision resolution scheme such as quadratic

probing to create long runs of filled slots away from the hash position of keys.
 If the primary hash index is x, probes go to x+1, x+4, x+9, x+16, x+25 and so on, this results in

Secondary Clustering.

Primary clustering Secondary clustering

Begränsad delning

Linear Probing: Primary Clustering

24

What is the probability of next key going in each slot?

Hash(k) = k mod 7 All keys equally likely

Observation. New keys likely to hash
into middle of big clusters.

Cluster is a contiguous block of items.

0 1 2 3 4 5 6

1/7 1/7 1/7 1/7 1/71/7 1/7

0 1 2 3 4 5 6

0 1/7+1/72/7

24

0 1 2 3 4 5 6

0

1/7+1/7
+1/7+

1/74/7
4 12

001/7 1/7 1/7 1/7 1/71/7 1/7

1/7 1/7 1/7 1/7 1/71/7 1/7

Higher insert and search costs - O(n)

Begränsad delning

Linear Probing: Primary Clustering
Explanations

 Case 1: Probability of placing
into position 4 = prob(hashing
into 3) + prob(hashing into 4)
= 1/7+1/7 = 2/7

 Case 2: Probability of placing
into position 6 = prob(hashing
into 3) + prob(hashing into 4)
+ prob(hashing into 5) +
prob(hashing into 6) =
1/7+1/7+1/7+1/7=4/7

Case 1

Case 2

Begränsad delning

Linear Probing: Primary Clustering (Contd.)
Three methods to mitigate the problem

1. Better-designed hash function 3. Resize the hash table when it’s “full”

Load factor =
Total number of items stored

Size of the array

Repopulate the items into a larger
array, when load factor > 70%

2. Alternative probing methods

Open addressing
 linear probing

 try next open spot
 Plus 3 rehash

 skip 3 spots, not just next open spot
 Quadratic probing

 skip (failed attempts)2 spots, i.e, 12,
22, 32

 Double hashing
 apply a second hash function to key when

a collision occurs

Begränsad delning

Linear Probing: Delete

0 1 2 3 4 5 6 7 8 9 10 11

M = 12 I M X FL GR E

How to delete item from a hash table?

Search X hash(X) = 4

Delete M hash(M) = 5

Search stops

deleted

Search hit
(return corresponding value)

deleted deleteddeleteddeleted

Method 1: mark the spot as “empty but deleted”.
Probing is continued when encountering such spot.
An add operation can store data in such spot.

Table pollution issue: These deleted flags may
bridge together otherwise unrelated data (different
hashcodes). In the worst case, search is linear
time.

The only solution is to repopulate the key-value
pairs into a new table, and discard the old one.

Method 2:
1.Find and remove the desired element
2.Go to the next spot
3.If the spot is empty, quit
4.If the spot is full, delete the element in that spot and re-
add it to the hash table using the normal means. The item
must be removed before re-adding, because it is likely
that the item could be added back into its original spot.
5.Repeat step 2.

X

This technique keeps your table tidy at the expense of
slightly slower deletions.

Begränsad delning

Closed Addressing: Separate Chaining

0

1

2

3

4

5

6

7

8

9

10

11

M = 12

I

M

X

F

L

G

R

E

insert L hash(L) = 4

insert I hash(I) = 1

insert M hash(M) = 5

insert E hash(E) = 8

insert X hash(X) = 4

insert F hash(F) = 10

insert G hash(G) = 11

insert R hash(R) = 10

Use an array of M linked lists.

Search E hash(E) = 8

Search X hash(X) = 4

Search Y hash(Y) = 5

Insert: put in the end of hashed chain

Search: need to search only hashed chain
The size of the array can be
smaller than the stored number.

Hashing | Set 2 (Separate Chaining) | GeeksforGeeks
https://www.youtube.com/watch?v=_xA8UvfOGgU

https://www.youtube.com/watch?v=_xA8UvfOGgU

Begränsad delning

Separate Chaining vs Linear Probing

 Separate chaining.

 Easier to implement delete.

 Performance degrades gracefully.

 less sensitive to poorly-designed hash function

 Linear probing.

 Less wasted space.

 Better cache performance

“In practice, linear probing is typically significantly
faster than chaining due to locality of reference,
although it has the primary clustering problem. It's
faster to access a series of elements in an array than it
is to follow pointers in a linked list, so linear probing
tends to outperform chaining even if it has to
investigate more elements. Another win in chaining is
that the insertions into a linear probing hash table
don't require any new allocations.”

“With a bad choice of hash function, primary
clustering can cause the performance of the
table to degrade significantly. While chaining
can still suffer from bad hash functions, it's
less sensitive to elements with nearby hash
codes, which don't adversely impact the
runtime.”

With linear probing, an array occupies
contiguous memory locations; with
separate chaining, a linked list occupies
non-contiguous memory locations.

Begränsad delning

Hashing Tutorial Videos

 Hashing | Set 2 (Separate Chaining) | GeeksforGeeks
 https://www.youtube.com/watch?v=_xA8UvfOGgU

 Hashing | Set 3 (Open Addressing) | GeeksforGeeks
 https://www.youtube.com/watch?v=Dk57JonwKNk

 Hashing Animations | Data Structure | Visual How
 https://www.youtube.com/watch?v=VeYKEMY2F9k

 Linear Probing in Hashing Animations | Data Structure | Visual How
 https://www.youtube.com/watch?v=98Y0UDZ9vvs

 Quadratic Probing Hashing Animations | Data Structure | Visual
How
 https://www.youtube.com/watch?v=0CFJAkpnhBg

 Separate Chaining in Hashing Animations | Data Structure | Visual
How
 https://www.youtube.com/watch?v=LRtKQdsJC3o

https://www.youtube.com/watch?v=_xA8UvfOGgU
https://www.youtube.com/watch?v=Dk57JonwKNk
https://www.youtube.com/watch?v=VeYKEMY2F9k
https://www.youtube.com/watch?v=98Y0UDZ9vvs
https://www.youtube.com/watch?v=0CFJAkpnhBg
https://www.youtube.com/watch?v=LRtKQdsJC3o

	Lecture 7�Hash Tables
	Lecture Goals
	Motivation
	Hash Table
	Hash Table (Contd.)
	Hash Function
	Java’s Hash Code Conventions
	Implementing Hash Code: Integers, Booleans
	Implementing Hash Code: Doubles
	Implementing Hash Code: Strings
	Implementing Hash Code: Strings (Contd.)
	Implementing Hash Code: User-defined Types
	Modular Hashing
	Absolute value of Integer.MIN_VALUE is itself
	Collision and Resolution: Open Addressing
	Primary Clustering and Secondary Clustering
	Linear Probing: Primary Clustering
	Linear Probing: Primary Clustering Explanations
	Linear Probing: Primary Clustering (Contd.)
	Linear Probing: Delete
	Closed Addressing: Separate Chaining
	Separate Chaining vs Linear Probing
	Hashing Tutorial Videos

