
Begränsad delning

Lecture 5
Algorithm Performance Analysis

Department of Computer Science
Hofstra University

Begränsad delning

Lecture Goals
 Calculate the big-O class of complicated code snippets.

 Define worst case, average case, and best case performance and
describe why each of these is used.

 State and justify the asymptotic performance for linear search,
binary search, selection sort, insertion sort, merge sort, and quick
sort.

 Recognize and avoid some common pitfalls in asymptotic analysis.

 Use Java timing libraries to measure execution time.

 Use runtimes from a real system to reason about performance.

 Identify components of real systems which impact execution time.

Begränsad delning

Motivation

There is hereby imposed on the taxable income of every individual (other than a surviving
spouse as defined in section 2(a) or the head of a household as defined in section 2(b)) who
is not a married individual (as defined in section 7703) a tax determined in accordance with
the following table:

If you are single, never lost your spouse, and not the head of a household, you pay taxes
according to the following table:

Use flesch score to measure of text readability

Performance: how good that strategy is.

Algorithm: a strategy for solving a problem.

Problem with just looking at the
“stopwatch” time.

 different computers
 different compilers
 different

libraries/optimizations

Is NOT a good representation of how good our algorithm is.
The time for running the
specific code on a specific
machine on a specific input

Algorithm with good performance can answer
very hard questions in very short amount of
time. We need to have a sense of how good our
algorithm is without just running it.

Begränsad delning

Performance Analysis Overview
 What an algorithm can control?

The number of operations

#1: Count operations instead of time

Start at first index of array/list
While current index is less than length:
 count syllables

 large input, more operations
 small input, less operations

#2: Focus on how performance scales
If list is twice as long,
how much more time does it take to search it?

Is data size all that matters?

#3: Go beyond input size

We'd like our performance analysis to be
able to capture not just the size of the input
but also what might happen because of
internal structure to the input.

Asymptotic Performance Analysis

Worst, Best, and Average
Performance Analysis

Begränsad delning

Count Operations

Search for the letter “a”
in the word “Happy”

Linear search
public static boolean hasLetter(String word, char letter)
{
 for (int i = 0; i < word.length(); i++) {
 if (word.charAt(i) == letter) {
 return true;
 }
 }
 return false;
}

How many operations
get executed?

H a p p y

0 1 2 3 4

Total operations so far: 1

Search for the letter “x”
in the word “Happy”

Total operations: 18

Total iterations: 5

Each iteration(in the middle of the
algorithm) contains 3 operations

234567

Is the number of operations the same every time we run
hasLetter(String word, char letter)?

hasLetter("happy", ”a");

hasLetter("happy", "x");

hasLetter("apple", "a");

NO

initial step final check

Begränsad delning

Introduction to Asymptotic Analysis

 What counts as an operation?

Basic unit that doesn’t
change as the input changes

 We don’t need to worry about
anything irrelative to input size

Implementations of specific operations

Initialization time

 Focus on how performance scale with
the increase of input size

If input is twice as big,
how many more operations do we need?

if (word.charAt(i) == letter) {
return true;

}

input Constant time

int count = 0;
for (int i = 0; i < word.length(); i++) {
 count++;
}

input of size n

Linear time

111

1

n times 1 + (1 + 3n + 1)
count i n

3n + 3

irrelative to
the input size

relative to the input size

Begränsad delning

Asymptotic Analysis

 Asymptotic analysis examines how functions behave as their
input grows arbitrarily large. It focuses on the "tail behavior"
or limiting behavior of functions rather than their exact values
for specific inputs.
 runtime as input size n gets large.
 rate of growth determined by the dominating highest-order term.
 leading coefficient and lower-order terms fell away.
 e.g. we don’t care if the algorithm runs for 10 ms vs. 2 s with small

input size n; we care if it runs for 100 s vs. 100 hours/days/years for
very large n.

Big-O notation in 5 minutes
https://www.youtube.com/watch?v=__vX2sjlpXU

Big-O Notation in 3 Minutes
https://www.youtube.com/watch?v=x2CRZaN2xgM

https://www.youtube.com/watch?v=__vX2sjlpXU
https://www.youtube.com/watch?v=x2CRZaN2xgM

Begränsad delning

Big-O Classes

f(n) = O(g(n))

f(n) is big-O of g(n) and they grow
in same way as their input grows

means

 We use big-O classes as a tool to phrase how algorithm performance scale.
 Two functions are in the same big-O class if they have the same rate of growth.
 Other notations represent a finer-grained asymptotic analysis, such as lower

and upper bound. We focus on big-O for the tightest upper bound.

Asymptotic comparison operator Numeric comparison operator
Our algorithm is o(something) A number is < something
Our algorithm is O(something) A number is ≤ something
Our algorithm is Θ(something) A number is = something
Our algorithm is Ω(something) A number is ≥ something
Our algorithm is ω(something) A number is > something

Keep only dominant term

Drop constants

 How to compute big O?

3n+3 = O(3n) = O(n)

10000000 = O(1)

Example: initialization cost,
whose number of steps doesn’t
change with input size n

Fastest growing

there are constants N and c so
that for each n > N, f(n) ≤ C g(n)

Linear -- O(n)
Quadratic -- O(n2)
Cubic -- O(n3)
Logarithmic -- O(log n)
Exponential -- O(2n)
Square root -- O(sqrt n)

FORMAL

The goal is to look at the code and pick
up its big-O classes. Don’t worry about
the formal definition too much.

Begränsad delning

Big-O Complexity Chart

 O(1) < O(logn) < O(n) < O(nlogn) < O(n²) < O(2") < O(n!)

https://www.bigocheatsheet.com/

Begränsad delning

Quiz

 1. Suppose algorithm running time for input size 𝑛𝑛 is 𝑔𝑔 𝑛𝑛 = 2𝑛𝑛 +
𝑛𝑛2 + 100, what is its complexity in big-O notation?

 ANS: 𝑂𝑂(2𝑛𝑛)
 For 𝑔𝑔 𝑛𝑛 = 3𝑛𝑛 log𝑛𝑛 + 4 log𝑛𝑛 + 𝑛𝑛2 + 𝑛𝑛,
 ANS: 𝑂𝑂(𝑛𝑛2)
 For 𝑔𝑔 𝑛𝑛 = 3𝑛𝑛 log𝑛𝑛 + 4 log𝑛𝑛 + 𝑛𝑛,
 ANS: 𝑂𝑂(𝑛𝑛 log𝑛𝑛)
 2. If Algorithm 1 has complexity 𝑂𝑂 log𝑛𝑛 , Algorithm 2 has

complexity 𝑂𝑂(𝑛𝑛2), will Algorithm 1 always have fewer operations
(shorter running time) than Algorithm 2?

 ANS: No. If Algorithm 1 has running time 100000 ∗ log𝑛𝑛,
Algorithm 2 has running time 3𝑛𝑛2, then 100000 ∗ log𝑛𝑛 > 3𝑛𝑛2 for
small 𝑛𝑛.

Begränsad delning

Quiz Con’t

 3. Suppose algorithm running time for input size 𝑛𝑛 is
 𝑛𝑛2 + 𝑛𝑛 + log𝑛𝑛
 𝑛𝑛 ∗ 𝑛𝑛 − 𝑖𝑖 + 𝑛𝑛 + log𝑛𝑛 (𝑖𝑖 is a loop iteration variable within 1 to 𝑛𝑛)
 0.001 ∗ 𝑛𝑛2 + 1000 ∗ 𝑛𝑛 + 10000 ∗ log𝑛𝑛
 (𝑛𝑛 + 100)2+(100 ∗ 𝑛𝑛 + 100000) + 100 ∗ log𝑛𝑛
What is the big O notation for the algorithm complexity in each case?

 ANS: 𝑂𝑂(𝑛𝑛2)
 Ignore all the constants, whether multiplied or added, and take the

dominating term that grows the fastest

 What is the answer if 2n is added to each term?
 ANS: 𝑂𝑂(2n)

Begränsad delning

Compute Big O for Consecutive Code

public static void reduce (int[] vals) {

 int minIndex =0;

 for (int i=0; i < vals.length; i++) {

 if (vals[i] < vals[minIndex]){

 minIndex = i;

 }}

 int minVal = vals[minIndex];

for (int i=0; i < vals.length; i++){

 vals[i] = vals[i] - minVal;

 }

}

[1,2,5,3] -> [0,1,4,2]

The first for loop finds the minimum
value of the array. The second for
loop reduces each value in the array
by the minimum value.

O(1)

 Run times are independent
 These doesn’t depend on

the input size(n)
 How the operations depend

on the size of the input?
 There will be n loop

iterations
 Each iteration will take

constant time

O(1)

O(n)

O(n)

+

+

+

+

Total: O(n)

1 + n + 1 + n = 2n + 2 = 2n + 2

Linear Algorithm

Begränsad delning

Compute Big O with Nested Operations

public static int maxDifference (int[] vals) {

 int max = 0;

 for (int i=0; i < vals.length; i++) {

 for (int j=0; j < vals.length; j++) {

 if (vals[i] – vals[j] > max) {

 max = vals[i] – vals[j];

 }

 }

 }

 return max;

}

[1,7,2,4,6,8] -> 7

The nested for loops look for the
maximum difference between any
two array elements. This biggest
difference will be between 1 and 8.

 Run times are independent
 These doesn’t depend on

the input size(n)
 How the operations depend

on the size of the input?
 Count from inside out
 There will be n inner loop

iterations and each takes
constant time

 There will be n outer loop
iterations and each takes
linear time O(n)

Total: O(n2)

1 + n2 + 1 = n2 + 2

Quadratic Algorithm

O(1)

O(1)

O(1)

O(n2)

+

+ +
Multiplication

O(n) x

Begränsad delning

Short Videos of Sorting Algorithms

 Sort Algos // Michael Sambol Michael Sambol
 https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAP

Iq1BeUf4j20pl

 Merge Sort, Quick Sort, Bubble Sort, Insertion Sort, Selection Sort,
Heap Sort

 10 Sorting Algorithms Easily Explained
 https://www.youtube.com/watch?v=rbbTd-gkajw
 Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort,

Heap Sort, Counting Sort, Shell Sort, Tim Sort, Radix Sort

https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAPIq1BeUf4j20pl
https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAPIq1BeUf4j20pl
https://www.youtube.com/watch?v=rbbTd-gkajw

Begränsad delning

Practice: Analyze Big-O Class of Selection Sort

4 7 2 10 1 8

The idea is to find the smallest value in the remaining
unsorted array and put that at the start. And then just
keep repeating that process over and over.

1 7 2 10 4 8

1 2 7 10 4 8

1 2 4 10 7 8

1 2 4 7 10 8

1 2 4 7 8 10

public static void selectionSort(int[] vals) {

 int indexMin;

 for(int i = 0; i < vals.length-1; i++) {

 indexMin = i;

 for(int j = i + 1; j < vals.length; j++) {

if(vals[j] < vals[indexMin]) {

 indexMin = j ;

 }

 }

 swap (vals, indexMin , i);

 }

}

O(1)

O(1)

O(1)

O(1)

n + (n-1) + (n-2) + … + 1
(Gauss sum)

Total: O(n2)

sorted unsorted

sorted unsorted

unsorted

nested loop

inner loop runs n - (i+1) times

outer loop runs n times

temp = vals[indexMin];
vals[indexMin] = vals[i];
vals[i] = temp;

To swap:

O(n-i)*O(n)?

O(n-i)
O(n-i)

O(n2)

NO

Begränsad delning

Best case, Average case, Worst case
 How does the algorithm behave for all inputs?

public static boolean hasLetter(String word, char letter)
{
 for (int i = 0; i < word.length(); i++) {
 if (word.charAt(i) == letter) {
 return true;
 }
 }
 return false;
}

Algorithm OutputInput

hasLetter("happy", "x");

Best case

Best possible performance
of algorithm for any input
(of fixed size n)

Best case: word
starts with letter O(1)

hasLetter("apple", "a");

hasLetter("happy", ”y");

Worst case : letter at the
end (or missing) O(n)

Worst case

Worst possible performance
of algorithm for any input
(of fixed size n)

≤ Average case

Performance of algorithm
on average, consider all
possible inputs of size n

input

output

- algorithm performance depends on the combination of both inputs

(same input size)

 How can we account for this variability?

when is the least
number of operations

be executed?

- just 1 loop iteration
- special case

when will the largest
amount of operations

be executed?

- n loop iterations

(upper bound)(lower bound) (realistic,but too hard)sandbox

Begränsad delning

Analyze Search Algorithms

Linear Search: Basic Algorithm

Start at the first index in the array

while index < length of the array:
 if toFind matches current value,
 return true
 increment index by 1

return false

Best Case Worst Case

Linear Search

Binary Search*

* Assuming data is sorted

E.g. hasLetter(String word, char letter)

Binary Search: Basic Algorithm

Initialize low = 0, high = length of list

while low <= high:
 mid = (high+low)/2
 if toFind matches value at mid,
 return true
 if toFind < value at mid
 high = mid-1
 else low = mid+1
return false

Worst case: don't find!

times to half size?

first half
second half

Cuts search
base in half
at each
iteration, so
the total #
iterations is
log2(n)

How many times can we divide
by 2 before we get to 1?

sorting cost?

log10(n) = O(log2(n)) since:

O(1) O(n)
O(1) O(log(n))

Binary search in 4 minutes
https://www.youtube.com/watch?v=fDKIpRe8GW4

https://www.youtube.com/watch?v=fDKIpRe8GW4

Begränsad delning

Analyze Sorting Algorithms

Best Case Worst Case

Selection Sort

Insertion Sort

Selection Sort: Basic Algorithm

For each position i from 0 to length-2

Find smallest element in positions i to length-1
Swap it with element in position i

sorted unsorted

Insertion Sort: Basic Algorithm

For each position i from 1 to length-1

Swap successive pairs to put value in position i in
correct location relative to earlier values

sorted unsorted

which next?

i
i

O(n2) O(n2)
O(n) O(n2)*

public static void insertionSort(int[] vals) {
 int currInd;
 for(int pos=1; pos < vals.length; pos++) {
 currInd = pos ;
 while (currInd > 0 &&
 vals[currInd] < vals[currInd-1]) {
 swap(vals, currInd, currInd-1);

 currInd = currInd – 1;
 }
 }
}

when already sorted when in reverse order

1 2 3 4 5 6 6 5 4 3 2 1

1 8 4 3 7 2

1 4 8 3 7 2

1 3 4 8 7 2

1 3 4 7 8 2

1 2 3 4 7 8

pos 1

pos 2

pos 3

pos 4

pos 4
Best, average, worst?

- # of loop iterations depends on the values of
the pairs of consecutive elements

* similar to selection sort analysis

Begränsad delning

Analyze Merge Sort
Merge Sort: Basic Algorithm

If list has one element, return.

Divide list in half

Sort first half

Sort second half

Merge sorted lists

5 3 2 4 1

5 3 2 4 1

5 3 2 4 1

53 41 2

4 153 2

41253

41 253

HOW? Divide and conquer.
Recursion!

Performance?

O(n) work to merge all
the lists on one level

Each time we divide,
we call MergeSort on
two (smaller) lists

Keep dividing by two
until lists have size 1
log2(n)

O(nlog(n))

compare the head of each list

Best Average Worst

Selection Sort O(n2) O(n2) O(n2)

Insertion Sort O(n) O(n2) O(n2)

Merge Sort O(nlog(n)) O(nlog(n)) O(nlog(n))

*Quick Sort O(nlog(n)) O(nlog(n)) O(n2)

*Asymptotics is not
the only measure
of performance

A Summary of Sorting

Begränsad delning

Introduction to Benchmarking

www.speedtest.net

Your Java
Code

Version A

Your Java
Code

Version B

~10 seconds ~5 seconds

Times might not be
consistent…

Your Java
Code

Java
Compiler

Java Virtual
Machine

Operating
System

Hardware

bytecode

The running time of a
program is influenced
by many things!

So how do we reason
about how long it takes for
a program to run on real
systems? Couldn’t we just
time how long our
programs take? YES!

abstraction

Makes choices that affect
performance

abstraction for hardware resource

These systems are
MEANT to be hidden
from you

Begränsad delning

Details of Benchmarking (Using Java Timing API)

 Just means running programs on real machines and measuring performance
 For us, “performance” is just how long it takes for something to execute.
 Allows us to compare machines by running the same program
 Allows us to compare programs on a single machine

Same
program

Program
A

Program
B

vs.

Same
machine vs.

public static void main(String [] args) {
 // set some size n
 double array[] = new double[n];
 // fill the array with contents (random)
 long startTime = System.nanoTime();
 selectionSort(array);
 long endTime = System.nanoTime();
 double estTime = (endTime-startTime) /

 1000000000.0;
 System.out.println(estTime);
}We’ll do this, next!

How long does
selection sort run?

we just want this time

Begränsad delning

Idea for Analyzing Our Sorts
For increasing sizes of n

 Print n

 Create a randomized array of size n
 Time selection sort, print outcome

 Create a randomized array of size n
 Time quick sort, print outcome

n Selection (s)
10000 0.112887621
20000 0.397227565
30000 0.580318935
40000 1.020979179
50000 1.605557659
60000 2.340087449
70000 3.264979954
80000 4.097073897
90000 5.285101776
100000 6.57904119

Quick (s)
0.001323534
0.001568662
0.002420492
0.003304295
0.004232703
0.004983088
0.006035047
0.006989112
0.007900941
0.008538038

By “best fit” I just found a good
value for constant “k”

Select: Looks like n2 growth

Won’t all “best fits” look really
good?

Quicksort is fantastic
n2 is best, matching our
high-level analysis

Begränsad delning

Idea for Analyzing Our Sorts (Contd.)

Zoom in on quick sort

Real data…

Looks linear?

Get more data… Still appears linear

n log2n

10,000,000 ?

log(n) is just really small relative to n

- input
- system task

best fit analysis

~23 We can use real runtimes to reason about performance
 Be prepared for real system data to be noisy
 Can be really useful when we want to understand

actual performance on a real system

Begränsad delning

Additional Resources

 Big-O analysis
 http://web.mit.edu/16.070/www/lecture/big_o.pdf -- Big O handout from MIT
 https://www.interviewcake.com/article/java/big-o-notation-time-and-space-

complexity -- explanation of Big O with examples
 http://discrete.gr/complexity/ -- "A Gentle Introduction to Algorithm Complexity

Analysis" GIves a lot more detail than what we provided.
 Sorting algorithms

 http://www.java2novice.com/java-sorting-algorithms/ -- 5 different sort algorithm
explanation with codes

 https://www.cs.cmu.edu/~adamchik/15-
121/lectures/Sorting%20Algorithms/sorting.html -- different search algrotihms with
solid examples

 Timing code in Java
 http://stackoverflow.com/questions/180158/how-do-i-time-a-methods-execution-in-

java -- many ways offered by many people

	Lecture 5�Algorithm Performance Analysis
	Lecture Goals
	Motivation
	Performance Analysis Overview
	Count Operations
	Introduction to Asymptotic Analysis
	Asymptotic Analysis
	Big-O Classes
	Big-O Complexity Chart
	Quiz
	Quiz Con’t
	Compute Big O for Consecutive Code
	Compute Big O with Nested Operations
	Short Videos of Sorting Algorithms
	Practice: Analyze Big-O Class of Selection Sort
	Best case, Average case, Worst case
	Analyze Search Algorithms
	Analyze Sorting Algorithms
	Analyze Merge Sort
	Introduction to Benchmarking
	Details of Benchmarking (Using Java Timing API)
	Idea for Analyzing Our Sorts
	Idea for Analyzing Our Sorts (Contd.)
	Additional Resources

