
Begränsad delning

Lecture 4
String in Java

Department of Computer Science
Hofstra University

Begränsad delning

Lecture Goals

 Describe how Strings are represented in Java Platform
 Perform basic operations with Strings in Java
 Work with the String’s built-in methods to manipulate Strings
 Write regular expressions to match patterns and split strings

Begränsad delning

Motivation Example

There is hereby imposed on the taxable income of every individual
(other than a surviving spouse as defined in section 2(a) or the head
of a household as defined in section 2(b)) who is not a married
individual (as defined in section 7703) a tax determined in
accordance with the following table:

26 U.S. Code § 1 – Tax imposed
https://www.law.cornell.edu/uscode/text/26/1

If you are single, never lost your spouse, and not the head of a
household, you pay taxes according to the following table:

Easy to read

Hard to read

How do we quantify the difference?

Use flesch score to measure of text readability
https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests

Begränsad delning

Measure the Text Readability by Flesch Score

High score: Few words/sentence and few syllables/word

Low score: Many words/sentence and many syllables/word

There is hereby imposed on the taxable income of every
individual (other than a surviving spouse as defined in
section 2(a) or the head of a household as defined in
section 2(b)) who is not a married individual (as defined
in section 7703) a tax determined in accordance with the
following table:

If you are single, never lost your spouse, and
not the head of a household, you pay taxes
according to the following table:FleshScore = 12.6 FleshScore = 65.8

Document is
represented as a big
long string. Requires

the ability to
manipulate Strings!

number of words per sentence number of syllables per word

longer word makes text harder to read than longer sentence

Begränsad delning

String Basics
String text1 = new String("Hello World!");
String text2 = text1;
String text3 = text1.concat("It’s a great day.");
String text4 = text1 + "It’s a great day.";
String text5 = "Hello World!”;
String text6 = "Hello World!”;
String text7 = new String("Hello World!");
text7.equals(text1);
text7 == text1;

String is an object

"Hello World!"

Java Heap

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘!’

Strings are immutable

no way to change

String append

makes another object

+ operator also does append

"Hello World! It's a great day."

"Hello World!"

Interned Strings: One object

// true

// false

"Hello World!"

In heap, Strings
are basically
represented as
arrays of chars

text2

text3

text4

text5

text6

text7

text1

"Hello World! It's a great day."

Two references to the
same object

doesn’t change

Compare string

Begränsad delning

String Class’s Built-in Methods

 Strings can do lots of things:
 https://docs.oracle.com/javase/10/docs/api/java/lang/String.html

 Let’s look at some methods in the context of our problems:
 length, charAt, toCharArray, indexOf, split

 For example, we need to look at words, character by character, to calculate
the number of syllables.

public static boolean hasLetter(String word, char letter)
{
 for (int i = 0; i < word.length(); i++) {
 if (word.charAt(i) == letter) {
 return true;
 }
 }
 return false;
}

Loop over the indexes of character
array in the string

length() returns the number of
characters in the String

Get each letter and compare it to
the char in question

does the letter appear
anywhere in the word?

charAt(i) returns the char at
index i in the String

If no letters match,
return false

charAt(i) cannot be
used to change the String

Begränsad delning

public static boolean hasLetter(String word, char letter)
{
 for (int i = 0; i < word.length(); i++) {
 if (word.charAt(i) == letter) {
 return true;
 }
 }
 return false;
}

Count the number of syllables (Contd.)
public static boolean hasLetter(String word, char letter)
{
 for (char c: word.toCharArray()) {
 if (c == letter) {
 return true;
 }
 }
 return false;
}

toCharArray() returns the chars
in a String, as a char[]

Same method, using a for-each loop

Change this method so that it
returns the index where it first finds
letter (or -1 if it doesn't find it)?

int

i

-1

built-in String method
indexOf(String str) does
exactly this, but with a String to
match.

String text = "Can you hear me? Hello, hello?
int index = text.indexOf("he"); // index is 8
index = text.indexOf("He"); // index is 17
index = text.indexOf("Help"); // index is -1

0

For dealing with case, check out String methods:
equalsIgnoreCase, toLowerCase, toUpperCase

Begränsad delning

Manipulate String with For-each Loop
public static string replaceLetter(String word, char gone, char new1)
{
 char[] cArray = word.toCharArray();
 for (char c: cArray) {
 if (c == gone) {
 c = new1;
 }
 }
 return word;
 return new String(cArray);
}

// replaceLetter("a happy", 'a', 'i') -> "i hippy"??

Does this method successfully
return a modified word?

Let’s trace the code with memory
model diagram

replaceLetter

"a happy"

Java Heap

‘a’ ‘ ’ ‘h’ ‘a’ ‘p’ ‘p ’ ‘y’

word

gone ‘a’

new ‘i’
cArray

toCharArray() returns a
copy of word's array of chars

c ‘a’‘i’

Attempt #1: NO

Attempt #2: NO

Begränsad delning

Manipulate String with For-each Loop (Contd.)
public static string replaceLetter(String word, char goneIn, char newIn)
{
 char[] cArray = word.toCharArray();
 char[] cArrayMod = new char[cArray.length];
 int i = 0;
 for (char c: cArray) {
 if (c == goneIn)
 cArrayMod[i] = newIn;
 else
 cArrayMod[i] = c;
 i++;
 }
 return new String(cArrayMod);
}

// replaceLetter("a happy", 'a', 'i') -> "i hippy"??

Does this method successfully
return a modified word?

replaceLetter

"a happy"

Java Heap

‘a’ ‘ ’ ‘h’ ‘a’ ‘p’ ‘p ’ ‘y’

word

goneIn ‘a’ newIn ‘i’
cArray

c ‘a’‘ ’

Attempt #1: NO

Attempt #2: NO

cArrayMod ‘i’ ‘ ’ ‘h’ ‘i’ ‘p’ ‘p’ ‘y’
i 0

Attempt #3: YES

123456‘h’‘a’‘p’‘p’‘y’

doesn’t change

Begränsad delning

Count the number of words
Use String method split(String pattern)
to split apart the String.

String text = "Can you hear me? Hello, hello?";
String[] words = text.split(" ");

“Can” “you” “hear” “me?” “Hello,” “hello?”words

String text = “Can you hear me? Hello, hello?";
String[] words = text.split(" ");

“Can” “you” “hear” “me?” “Hello,” “hello?”words

what if we add an extra space here

“”

it doesn’t take a string

Begränsad delning

Introduction to Regular Expressions (Regex)

String text = "Hello hello?";
String[] words = text.split(" "); “Hello” “hello?”“”

Repetition Concatenation Alternation

3 ways to combine

Repetition: + means 1 or more

String text = "Hello hello?";
String[] words = text.split(" +");

Regular expression’s basic units are characters, and it represents the pattern
we are trying to match.

“Hello” “hello?”

This single space is a regular expression. It matches single spaces

Matches 1 or more spaces in a row

Begränsad delning

Create More Complicated Regex
public class Document {
 private String text; // The text of the whole document
 protected List<String> getTokens(String pattern)
}

returns a List of "tokens" regex defining the "tokens"

Assume you have a Document object, d, whose text is "Hello hello?”

Matches 1 or more spaces
Repetition d.getTokens(" +");

-> [" "]

Concatenation

Assume you have a Document object, d, whose text is "Splitting a
string, it's as easy as 1 2 33! Right?"

d.getTokens("it");
-> ["it", "it"]

Two regular expressions side by side. Matches
when both appear one after the other

Concatenation
and Repetition

Assume you have a Document object, d, whose text is "Splitting a
string, it's as easy as 1 2 33! Right?"

d.getTokens("it+");
-> ["itt", "it"] + means "one or more"

Begränsad delning

Create More Complicated Regex (Contd.)
public class Document {
 private String text; // The text of the whole document
 protected List<String> getTokens(String pattern)
}

Concatenation
and Repetition

Assume you have a Document object, d, whose text is "Splitting a
string, it's as easy as 1 2 33! Right?"

d.getTokens("i(t+)");
-> ["itt", "it"]

Use parens to group r.e.'s if you
are not sure of grouping

d.getTokens("it*");
-> ["itt", "i", "i", "it", "i"]

* means "zero or more"

Assume you have a Document object, d, whose text is "Splitting a
string, it's as easy as 1 2 33! Right?"

d.getTokens("it|st");
-> ["it", "st", "it"]

| means OR

Assume you have a Document object, d, whose text is "Splitting a
string, it's as easy as 1 2 33! Right?"

Alternation

Begränsad delning

Create More Complicated Regex (Contd.)
public class Document {
 private String text; // The text of the whole document
 protected List<String> getTokens(String pattern)
}

Character
classes

Assume you have a Document object, d, whose text is "Splitting a
string, it's as easy as 1 2 33! Right?"

d.getTokens("[123]");
-> ["1", "2" , "3", "3"]

[] mean match "anything in the set"

d.getTokens("[1-3]");
-> ["1", "2" , "3", "3"]

- indicates a range
(any character between 1 and 3)

d.getTokens("[a-f]");
-> ["a", "a", "e", "a", "a"]

- indicates a range
(any character between a and f)

Assume you have a Document object, d, whose text is "Splitting a
string, it's as easy as 1 2 33! Right?"

Negation

Assume you have a Document object, d, whose text is "Splitting a
string, it's as easy as 1 2 33! Right?"

d.getTokens("[^a-z123]");
-> ["S", ",", "’", "!", "R", "?"]

^ indicates NOT any
characters in this set Excluding a character

Begränsad delning

Some Practices
public class Document {
 private String text; // The text of the whole document
 protected List<String> getTokens(String pattern)
}

Assume you have a Document object, d, whose text is
"Splitting a string, it's as easy as 1 2 33!
Right?"

d.getTokens("__________");
-> ["1", "2" , "33"]

E. "1|2|33"

Which of the following regular
expressions can you insert in
the blank so that it will give the
output shown? Select all that
apply.

-> ["1", "2", "3", "3"]

-> [",", "1", "2", "3", "3"]

-> ["1", "2" , "33"]

["","","","","","","","","","","","","","","",""
,"","","","","","","","","","","","","","","",""
,"","","","","1","","2","","33","","","","",""," ","","", ""]

-> ["1", "2" , "33"]

A. "[1233]"

B. "[1,2,33]"

C. "[0-9]+"

D. "[1-3]*" ->

Option C is FAR more versatile. It
captures ANY non-negative integer
(not just 1, 2, and 33).

simply add comma to the group of letters that we're looking for.

same as [123]

return empty string if the char is not in the group

Begränsad delning

Use Regex to Calculate Flesch Score

public class BasicDocument extends Document {
 @Override
 public int getNumWords() {
 List<String> tokens = getTokens("___________");
 return tokens.size();
 }
 @Override
 public int getNumSentences()
 {
 List<String> tokens = getTokens("_________");
 return tokens.size();
 }

public class Document {
 private String text; // The text of the whole document
 protected List<String> getTokens(String pattern)
 public abstract int getNumWords();
 public abstract int getNumSentences();

"A contiguous sequence of characters that does
NOT include end of sentence punctuation."

What constitutes a sentence?

What constitutes a word?
"Any contiguous sequence of
alphabetic characters"

Need a regex that
matches "any word"

given helper method

"A sequence of any characters ending with
end of sentence punctuation (. ! ?)"

http://www.tutorialspoint.com/java/java_regular_expressions.htm

Begränsad delning

Regex Exercises
 ^re\w+ed$

 Matches strings that start with "re" and end with "ed" (like "received" or "renewed")
 ^re*ed$

 Matches strings that start with "re", with e repeated 0 or more times, and end with "ed" (like "reed" or
"reeed” or "reeeeeeeed")

 ^(re)*ed$
 ed, reed, rereed, rerererereed

 ^[re]*ed$
 ed, eed, red, rrrred, eerreerred, rerereed

 ^[re]+ed$
 eed, red, rrrred, eerreerred, rerereed, but NOT ed

 ^re{2}ed$
 Matches reeed

 ^(re){2}ed$
 Matches rereed

 re\wed
 \w Matches any single word character (letter, digit, or underscore)
 Matches "re" followed by exactly one word character, followed by "ed“ (like rexed, re1ed, re_ed, reAed)

 re.ed
 . Matches any single character (except newline)
 Matches “re” followed by exactly one single character, followed by “ed“ (like rexed, re-ed, re ed

(including a space), re3ed, re.ed (matching a literal period)(

Begränsad delning

[re]*, [re]+

1. This regular expression will match: Any sequence of 'r' and 'e' characters, including an
empty string

2. The characters 'r' and 'e' can appear in any order and any number of times
 Examples of Matching Strings

• "" (empty string)
• "r"
• "e"
• "re"
• "er"
• "ree"
• "rre"
• "eerr“
• "rererere"

 Examples of Non-Matching Strings
• "a" (contains a character other than 'r' or 'e')
• "read" (contains characters other than 'r' or 'e')
• "RED" (case-sensitive, uppercase letters don't match)

• [re]+ will match any sequence of 'r' and 'e' characters, will not match "" (empty string)

Begränsad delning

[^re]

 The ^ inside the square brackets [] negates the character class, meaning it matches any
character except those listed.

 Components of the Regular Expression
 [^re] - A negated character class that matches any single character that is NOT 'r' or 'e'
 + - Quantifier that matches one or more occurrences of the preceding pattern
 Matching Pattern
 This regular expression will match:
 One or more characters that are neither 'r' nor 'e'
 Any sequence of characters as long as it doesn't contain 'r' or 'e'

 Examples of Matching Strings
 "a"
 "abc"
 "123"
 "xyz"
 "!@#"
 "The quick brown fox"

 Examples of Non-Matching Strings
 "" (empty string, doesn't match because + requires at least one character)
 "r" (contains 'r')
 "e" (contains 'e')
 "read" (contains both 'r' and 'e')

	Lecture 4�String in Java
	Lecture Goals
	Motivation Example
	Measure the Text Readability by Flesch Score
	String Basics
	String Class’s Built-in Methods
	Count the number of syllables (Contd.)
	Manipulate String with For-each Loop
	Manipulate String with For-each Loop (Contd.)
	Count the number of words
	Introduction to Regular Expressions (Regex)
	Create More Complicated Regex
	Create More Complicated Regex (Contd.)
	Create More Complicated Regex (Contd.)
	Some Practices
	Use Regex to Calculate Flesch Score
	Regex Exercises
	[re]*, [re]+
	[^re]

