Begransad delning

Lecture 4
String in Java

Department of Computer Science
Hofstra University

Beg

Lecture Goals

Describe how Strings are represented in Java Platform
Perform basic operations with Strings in Java

Work with the String’s built-in methods to manipulate Strings
Write regular expressions to match patterns and split strings

ransad delning

Beg|

Motivation Example

ransad delning

There is hereby imposed on the taxable income of every individual
(other than a surviving spouse as defined in section 2(a) or the head
of a household as defined in section 2(b)) who is not a married
individual (as defined in section 7703) a tax determined in
accordance with the following table:

26 U.S. Code § 1 — Tax imposed
Hard to read https://www.law.cornell.edu/uscode/text/26/1

\

How do we quantify the difference?

N

If you are single, never lost your spouse, and not the head of a

household, you pay taxes according to the following table:

Easy to read

Use flesch score to measure of text readability

https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability tests

Begransad delning

Measure the Text Readability by Flesch Score

number of words per sentence number of syllables per word
words #syllables
FleschScore = 206.835 -4.015)| {84617 SYTADIES,
sentences #words

Document is

represented as a big

long string. Requires
Score School level Notes the ablllty to
100.00-80.00 | 5th grade Very easy to read. Easily understood by an ave man|pUIate Strlngs|

90.0-80.0 6th grade Easy to read. Conversational English for consume

80.0-70.0 | 7th grade Fairly easy to read.

70.0-60.0 8th & 9th grade Plain English. Easily understood by 13- to 15-year-old students.

60.0-50.0 10th to 12th grade | Fairly difficult to read.

50.0-30.0 College Difficult to read.

30.0-0.0 College graduate | Very difficult to read. Best understood by university graduates.

FleshScore = 12.6 FleshScore = 65.8

String Basics

Strin tﬂ

= new| String("Hello World!");

String tex
String tex
String tex
String tex
String tex

2 = textl;

t3 = text1l.concat(

'It’s a great day.");

t4 = textl + [lt’s a great day.";

t6 =

t5 =|"Hello World!”;
"Hello World!”;

String text7 = new String("Hello World!");

text ’.equals(ﬂextl);

texty ==

textl

text2

text3

text4

text5

text6

text7

" compare string. CL
extl; // false

no way to change

Begransad delning

Java Heap

—>

Two references to the
same object 51 "Hello World! It's a great day."

"Hello World!"

doesn’t change

makes another object ,

N\

J

s

> "Hello World! It's a great day."
+ operator also does append

\

J

—)

"Hello World!"

"Hello World!"

Begransad delning

String Class’s Built-in Methods

= Strings can do lots of things:

= https://docs.oracle.com/javase/10/docs/api/java/lang/String.html

= Let’s look at some methods in the context of our problems:

= length, charAt, toCharArray, indexOf, split

= For example, we need to look at words, character by character, to calculate

does the letter appear
anywhere in the word?

the number of syllables.

public static boolean hasLetter(String word, char letter)

{

for (inti=0; ik word.length()}i++) {
if [(word.charAt(i] == letter){
returntrue;

} charAt (1) cannot be
} used to change the String
return false;

- T

Begransad delning

Count the number of syllables (Contd.)

public static boolean hasLetter(String word, char letter)

{

for (char d: word.toCharArray()) {
if (c == letter) {
return true;

}

return false;

} Z

public staticdeeeleamshasLetter(String word, char letter)
{

for (int i = 0; i < word.length(); i++) {
if (word.charAt(i) == letter) {

return weem 0
} i \
String text = "Can your me? @o, hello?
} -1 int index = text.indexOf("he"); //index is 8
returniaiesyms index = text.indexOf("He"); //indexis 17

} index = text.indexOf("Help"); //indexis-1

Begransad delning

Manipulate String with For-each Loop

public static string replaceletter(String word, char gone, char new1

{

char[] cArray + word.toCharArray();

for (char c: cArray) {

if (c == gone) {
Cc = newl;
}
}
O Ehjmm—

return new String(cArray);

}

Attempt #1: NO

Attempt #2: NO

replaceletter Java Heap
toCharArray () returnsa
word . . copy of word's array of chars
*>[a happy]
gone ‘as /
new TV
% lal (« lhl lal Ipl lp 7 lyl
cArray

Begransad delning

Manipulate String with For-each Loop (Contd.)

public static string replaceletter(String word, char goneln, char newln)
{
char[l cArrav = word.toCharArrav():
char[] cArrayMod = new char[cArray.length];
inti=0;
for (char c: cArray) {
e rancln Attempt #1: NO
cArrayMod][i] = newln;
else Attempt #2: NO
cArrayMod](i] = ¢;
} e Attempt #3: YES
return new String(cArrayMod); // replaceletter("a happy", 'a', ') -> "i hippy"??
}
replaceletter Java Heap
word
— w "a happy"] doesn,t Change
goneln a newln |
cArray (| o) (.) (0 | e (o,
—>{ ‘a h a Pl p y
c] i [e —
/)lil (7 lhl III lpl Ipl lyl
cArrayMod ~L—L

Begransad delning

Count the number of words

String text = "Can you hear me? Hello, hello?";
String[] words = text.split(" ");

Words _é \\Can// \\you// \\hearll \\me?// \\Hello, 44 \\hello?//

what if we add an extra space here

String text = “Can you hear me? Hello, hello?";
String[] words = text.split(" ");

Words —) \\Canll \\you// \\hear// \\me?// \\ 77 \\HellO’// \\hello?//

split

public String[] split(String regex) ®— il doesn’tiake a string

Splits this string around matches of the giver| regular expression.

Begransad delning

Introduction to Regular Expressions (Regex)

Regular expression’s basic units are characters, and it represents the pattern

we are trying to match.

String text = "Hello hello?";

o n oaun o“ ?II
String[] words = text.split(" "); Hello hello:

This single space is a regular expression. It matches single spaces

3 ways to combine

String text = "Hello hello?";

“Hello” “hello?”
String[] words = text.split(" +");

\

Matches 1 or more spaces in a row

Begransad delning

Create More Complicated Regex

public class Document {
private Stri : he text of ment
protectec List<String>|getTokens|String pattern)

}

Assume you have a Document object, d, whose text is "Hello[}nello 2"

d.getTokens(" +");

Matches 1 or more spaces —
>]

Assume yo
string, |1t

ave a Document object, d, whose textis "spllitping a
's as easy as 1 2 33! Right?"

d.getTokens("it");

Assume you have a Document object, d, whose text is "Splng a
string, |[it|'s as easy as 1 2 33! Right?"

Concatenation

d.getTokens("it+");

- < means o oo and Repeiion
-> [Mitt", "it"]

Concatenation

Begransad delning

Create More Complicated Regex (Contd.)

public class Document {

private String text; // The text of the whole document
protected List<String> getTokens(String pattern)

}

Assume you have a Document object, d, whose text is "Splng a
string, [it|'s as easy as 1 2 33! Right?"

d.getTokens("i(t+)");
_> [Ilitt"’ ||it||]

Assume you have a Document object, d, whose textis "Splfittlihg a
stg, it|'s as easy as 1 2 33! ht?"

Concatenation

and Repetition

d.getTokens("it*");

-> ["itt", "i", "i", "it", "i"] _

ume you have a Document object, d, whose text is "Spling a
string, |it|'s as easy as 1 2 33! Right?"

d.getTokens("it|st"); _ Alternation
_> ["it"’ llst"’ |Iitll]

Begransad delning

Create More Complicated Regex (Contd.)

public class Document {

private String text; // The text of the whole document
protected List<String> getTokens(String pattern)

}

Assume you have a Document object, d, whose textis "Splitting a
string, it's as easy as E BBl Right?"

d.getTokens("[123]");

e maen-anmng e [
_> [Illll’ |l2|l , |l3|l’ II3II]

classes

d.getTokens("[1-3]");
_> [Illll’ Il2ll , Il3ll' Il3ll]

Assume you hav Q egzobject d, whose text is Spllttlng
Sy

.)

string, it's 1 2 33! Right?"

d getTOkenS("[a-f]"). _
> [ll n Ilall’ Ilell’ llall’ Ilall]

Assume _you have a Document object, d, se text is '1itting a

stringﬂ as easy as 1 2 33@ 'ght'

d.getTokens("[*a-z123]");

_> [llsll’ ll’ll’ mn IIIII llRll ll'l)ll]

Negation

Excluding a character

Begransad delning

Some Practices

public class Document { Expression Matches
private String text; // The text of the whole document "ar" Zero or more Q's
protected List<String> getTokens(String pattern) - 1 or more a's
} Ul a = E Any character between a
and f

. . "["a-cz]" Any character which is not
Assume you have a Document object, d, whose text is BEhIaES BEdha Rels

"Splitting a string, it's as easy as 1 2 33! "labc]+" 1 ormore of the character a,

Right'J" b, or cinarow
"abc" The characters abc in a row
" mn. = o The character a or the
d.getTokens(") character b

_> [Illll’ |I2II , |l33ll]

Option C is FAR more versatile. It
same as [123]

B. I|[1’2’33]|l _> [II’II’ Illll’ II2II’ II3II’ II3II]
simply add comma to the group of letters that we're looking for.

C. ||[0_9]+n J > ["1", non) l|33||]
X

captures ANY non-negative integer
(not just 1, 2, and 33).

A. "[1233]" X 12, e
X

[llll TETE T0nn nnnn vnen veen veen venr v v v owenr owe o nnonn
’ ’ ’ ’ 7 7 7 7 ’ ’ 7’ 7’ 7’ 7’ 7’
PETE 0rr nenn veen veen veen veen verr verr o VRrr o vern o venr v o o nn
—> 7’ 7 7’ 7’ 7’ 7 7’ 7’ 7’ ’ ’ ’ ’ ’ ’ ’
TR 0 e e g 1o s nnn TUNRRE R e e e e nnonn
’ 7 7 7 1 ’ ’ 2 ’ ’ 33 ’ ’ ’ ’ ’ ’ ’ ’ ’]

D. "[1-3]*"

return empty string if the char is not in the group'

E. |I1|2 I 33" J -> ["1", |l2|l , |l33ll]

Begransad delning

Use Regex to Calculate Flesch Score

public class Document {
private String text; // The text of the whole document

protected List<String> getTokens(String pattern) _

public abstract int getNumWords();

public abstract int getNumSentences();

public class BasicDocument extends Document {
@Override
public int getNumWords() {

List<String> tokens = getTokens("___");

return tokens.size();
} What constitutes a word?
@Override

public int getNumSentences()

{
List<String> tokens = getTokens("____"); _

return tokens.size();

http://www.tutorialspoint.com/java/java_regular expressions.htm

Begransad delning

Regex Exercises

re\w+ed$
Matches strings that start with "re" and end with "ed" (like "received" or "renewed")
re*ed$

Matches strings that start with "re", with e repeated 0 or more times, and end with "ed" (like "reed" or
"reeed” or "reeeececed")

Nre)*ed$
ed, reed, rereed, rerererereed
Nre]*ed$
ed, eed, red, rrrred, eerreerred, rerereed
Nrel]+ed$
eed, red, rrrred, eerreerred, rerereed, but NOT ed
"re{2}ed$
Matches reced
Nre){2}ed$
Matches rereed
re\wed
\w Matches any single word character (letter, digit, or underscore)
Matches "re" followed by exactly one word character, followed by "ed* (like rexed, reled, re_ed, reAed)
re.ed
. Matches any single character (except newline)

Matches “re” followed by exactly one single character, followed by “ed* (like rexed, re-ed, re ed
(including a space), re3ed, re.ed (matching a literal period)(

[re]®, [re]+

Begransad delning

This regular expression will match: Any sequence of 'r' and 'e' characters, including an

empty string

The characters 'r' and 'e' can appear in any order and any number of times

Examples of Matching Strings
"" (empty string)

r

e

rre
"eerr”
"rererere"
Examples of Non-Matching Strings
"a" (contains a character other than 'r' or 'e')
"read" (contains characters other than 'r' or 'e')
"RED" (case-sensitive, uppercase letters don't match)

[re]+ will match any sequence of 'r' and 'e' characters, will not match "" (empty string)

Begransad delning

["re]

The * inside the square brackets [] negates the character class, meaning it matches any
character except those listed.

Components of the Regular Expression
[*re] - A negated character class that matches any single character that is NOT 't' or 'e'
+ - Quantifier that matches one or more occurrences of the preceding pattern
Matching Pattern
This regular expression will match:
One or more characters that are neither 't' nor 'e'
Any sequence of characters as long as it doesn't contain 't' or 'e'

Examples of Matching Strings
"a"
abc
"123"
"XyZ"
" ! @#H
"The quick brown fox"
Examples of Non-Matching Strings
"" (empty string, doesn't match because + requires at least one character)
"r" (contains 'r")
"e" (contains 'e")
"read" (contains both 't and 'e")

" n

	Lecture 4�String in Java
	Lecture Goals
	Motivation Example
	Measure the Text Readability by Flesch Score
	String Basics
	String Class’s Built-in Methods
	Count the number of syllables (Contd.)
	Manipulate String with For-each Loop
	Manipulate String with For-each Loop (Contd.)
	Count the number of words
	Introduction to Regular Expressions (Regex)
	Create More Complicated Regex
	Create More Complicated Regex (Contd.)
	Create More Complicated Regex (Contd.)
	Some Practices
	Use Regex to Calculate Flesch Score
	Regex Exercises
	[re]*, [re]+
	[^re]

