
Begränsad delning

Lecture 3
Inheritance and Polymorphism

Department of Computer Science
Hofstra University

Begränsad delning

Lecture Goals

 Explain the value of inheritance

 Use UML Diagrams to display class hierarchies

 Explain an “is-a” relationship between classes

 Understand that object construction occurs from the inside out

 Explain the purpose and implementation of polymorphism

 Create methods which override from a superclass

 Use casting of objects to aid the compiler

 Describe abstract classes and interfaces and decide which one to use

Begränsad delning

General Motivation

A bunch of
code in main

Procedure oriented
programming

Classes and
Objects

Object oriented
programming

Inheritance and
polymorphism

Advanced object
oriented programming

Complexity of your project
low high

Begränsad delning

Motivation for Inheritance

public class Person
{
 private String name;
 private boolean student;
 public person(boolean s)
 {
 this.student = s;
 }
}

Potential Solution 1
Now in every method, I can just do
this:

if (student)
 // code for students
 else
 // code for faculty

public class Person {

 private String name;

 // more code here

}

Fully written Person class Potential Problem

Now needs to handle:
1. Students
2. Faculty

they behave differently

Begränsad delning

Motivation for Inheritance (Contd.)
Potential Problem

Now needs to handle:
1. Students
2. Faculty

public class Person {

 private String name;

 // more code here

}

Fully written Person class

Potential Solution 1 - Problems

public class Person
{
 private String name;
 private boolean student;
 private boolean graduate;
 private boolean fulltime;
 // more code here
}

Each method becomes:

if (student)
 if (graduate && fulltime)
 // some code
 else if (!graduate)

 // more code

they behave differently

different students behave differently

Begränsad delning

Motivation for Inheritance (Contd.)

Potential Solution 2

public class Person {

 private String name;

 // more code here

}

Fully written Person class Potential Problem

Now needs to handle:
1. Students
2. Faculty

they behave differently

public class Student
{
 private String name;

}

public class Faculty
{
 private String name;

}

Potential Solution 2 - Problems

hard to keep common code consistent

// in main
Person persons[];
Student students[];
Faculty faculty[];

cannot just copy
tedious

potential mistake

cannot use
this anymore

no clean way single array of everyone
for thing like sorting by join date

private String firstname;
private String lastname;

Begränsad delning

Motivation for Inheritance (Contd.)

 What do we want then?
1. Keep common behavior in one class

2. Split different behavior into separate classes

3. Keep all of the objects in a single data structure

The answer is Inheritance

Begränsad delning

Details of Inheritance: Extend Keyword

public class Person {

 private String name;

 // more code here

}

public class Student {

 private String name;

 // more code here

}

public class Faculty {

 private String name;

 // more code here

}

common code

diverging code

diverging code

“extend” means “inherit from”

base/super class

derived/sub class

derived/sub class

What is inherited?
 Public instance

variables
 Public methods
 Private instance

variables

Private variables can be
accessed only through
public methods!

public getName() { return name; }

Private methods cannot be
inherited!

extend Person

extend Person

Begränsad delning

Illustrate Inheritance Hierarchy with UML Diagrams

Person

Private String name

Public String getName()

Student

Private double gpa

Public double getGPA()

Faculty

Private double salary

Public double getSalary()

(Unified Modeling
Language) UML Diagram

Inheritance Hierarchy

common code

diverging code diverging code

base/super class

derived/sub class derived/sub class

Begränsad delning

Definitions of Visibility Modifiers

public

protected

package

private

Less Restrictive

More Restrictive

can access from any class

can access from same class

can access from same class
can access from same package
can access from any subclass

can access from same class
can access from same package

Lose access by
any subclass

Rule of thumb: Make member variables private
(and methods either public or private)

Definition: A package is a grouping of
related classes. It makes classes easier to
find and use, to avoid naming conflicts,
and to control access

(or default)

Begränsad delning

“Is-a” Relationship Between Reference and Object Type

 What do we want then?
1. Keep common behavior in one class
2. Split different behavior into separate classes
3. Keep all of the objects in a single data structure

Reference Object

Person p = new Person();

new Student();Student s =

???

Person p = new Person();
Student s = new Student();
Person p = new Student();
Student s = new Person();

A Person “is-a” Person

A Student “is-a” Student

A Student “is-a” Person

// in main
Person[] p = new Person[3];
p[0] = new Person();
p[1] = new Student();
p[2] = new Faculty();

A Person array CAN store
Student and Faculty objects

the code compiles
and works just fine

You can assign an object of a
more specific subclass
(Student) to a reference of a
more abstract base class
(Person), but not vice versa.

Begränsad delning

Some Practices
public class Person {
 private String name;
 public String getName() {return name;}
}

public class Student extends Person {
 private int id;
 public int getID() {return id;}
}

public class Faculty extends Person {
 private String id;
 public String getID() {return id;}
}

Student s = new Student();
Person p = new Person();
Person q = new Person();
Faculty f = new Faculty();
Object o = new Faculty();

Which of the following lines of
code, when executed in
sequence, will cause an error?

String n = s.getName();
p = s;
int m = p.getID();
f = q;
o = s;

int m = ((Student)p).getID(); do casting and compiler
would trust you

Begränsad delning

Revisit Object Construction with Inheritance

Student s = new Student();

Subclass

Indirect
Superclass

Superclass

new allocates space
this is passed to the
constructor

Objects are
created from
the inside out

Student();

Person();

Object();

Person

Private String name

Public String getName()

Student

Private double gpa

Public double getGPA()

Faculty

Private double salary

Public double getSalary()

what does this statement do exactly?

Heap

Begränsad delning

Object Construction with Compiler Support

Subclass

Indirect
Superclass

Superclass

Student s = new Student();

Wait, I don’t remember extending Object...

compiler did that for you!

Your Code

Java
Compiler

Bytecode

Human-readable java

Processes code and
inserts new commands

Runs on JVM

Begränsad delning

Compiler’s Rules
public class Person {
 private String name;
}

public class Person extends object {
 private String name;
}

Rule #1 - No superclass?
 Compiler inserts: extends Object

Rule #2 - No constructor?
Java gives you one for you.

Rule #3 - 1st Line must be:
this(argsopt)

or
super(argsopt)

Otherwise, Java inserts:
“super();”

public class Person extends object
{
 private String name;
 public Person() {

 }
}

Same class constructor call

Base class constructor call
public class Person extends object
{
 private String name;
 public Person() {
 super();
 }
}

Added by compiler

Begränsad delning

Object Construction with Compiler Support (Contd.)

Subclass

Indirect
Superclass

Superclass

Student s = new Student();

Compiler ensures object construction
occurs from the inside out

public class Student extends Person
{
}

public class Student extends Person
{
 public Student() {
 super();
 }
}

Has super class:
1st rule doesn’t apply

Has no constructor:
2nd rule DOES apply

Needs to call super’s
default constructor:
3rd rule DOES apply

But how do we initialize name ?

Begränsad delning

Variable Initialization in a Class Hierarchy

public class Person extends Object {
 private String name;
 public Person(String n) {
 this.name = n;
 super();
 }
}

public class Person extends Object {
 private String name;
 public Person(String n) {
 super();
 this.name = n;
 }
}

public class Person extends Object {
 private String name;
 public Person() {
 super();
 }
} Initialize name variable in Person

ERROR! super() has to be the first line!

public class Student extends Person
{
 public Student() {
 super();
 }
} Initialize name variable in Student

public class Student extends Person
{
 public Student(String n) {
 super();
 this.name = n;
 }
} ERROR! name is private

public class Student extends Person
{
 public Student(String n) {
 super(n);
 }
}

initialize without public setters

but no
getters and

setters

Begränsad delning

Variable Initialization in a Class Hierarchy (Contd.)

public class Student extends Person
{
 public Student(String n) {
 super(n);
 }
}

public class Student extends Person
{
 public Student(String n) {
 super(n);
 }
 public Student() {
 super(“Student”);
 }
}

public class Student extends Person
{
 public Student(String n) {
 super(n);
 }
 public Student() {
 this(“Student”);
 }
}

Use our same class constructor Use super class constructor

Add a no-arg constructor

should not jump to
the super class if

there is same
class constructor

Begränsad delning

Some Practices

public class Person {
 private String name;
 public Person(String n) {
 this.name = n;
 System.out.print("#1 ");
 }
}

public class Student extends Person {
 public Student() {
 this("Student");
 System.out.print("#2 ");
 }
 public Student(String n) {
 super(n);
 System.out.print("#3 ");
 }
}

Suppose you call:

Student s = new Student();

What is the order of statements

printed?

A. #1 #2 #3

B. #1 #3 #2

C. #3 #2 #1

D. #3 #1 #2

E. None of the above

#1 #3 #2

Begränsad delning

Some Practices Con’t

public class Person {
 private String name;
 public Person(String n) {
 this.name = n;
 System.out.print("#1 ");
 }
}

public class Student extends Person {
 public Student() {
 this("Student");
 System.out.print("#2 ");
 }
 public Student(String n) {
 super(n);
 System.out.print("#3 ");
 }
}

Suppose you call:

Student s = new Student(“Tom");

What is the order of statements

printed?

#1 #3

Suppose you call:

Student s = new Person(“Tom");

What is the order of statements

printed?

Compile time error (ref. Slide

11.)

Begränsad delning

Some Practices (Contd.)

public class Person {
 private String name;
 public Person(String n) {
 super();
 this.name = n;
 }
 public void setName(String n) {
 this.name = n;
 }
}

public class Student extends Person {

 public Student() {

 this.setName(“Student”);

 }

}

Suppose you call:

Student s = new Student();

What will be the name variable

for this object?

A. “student”

B. “Undefined”

C. null

D. Compile Error

E. Runtime Error

ERROR: Implicit super constructor Person() is undefined. Must
explicitly invoke another constructor

Super()

Begränsad delning

Method Overriding

 Overloading: Same class has same method name with
different parameters

 Overriding: Subclass has same method name with the same
parameters as the superclass

Super

Test

void fun(int a)
void fun(int a, int b)
void fun(char a) Derived

void fun(int a)

Overriding

Overloading

 What do we want then?
1. Keep common behavior in one class
2. Split different behavior into separate classes
3. Keep all of the objects in a single data structurevoid fun(int a)

A private method cannot be overridden since it is
not visible from any other class. When we use final
specifier with a method, the method cannot be
overridden in any of the inheriting classes. Since
private methods are inaccessible, they are implicitly
final in Java.

Begränsad delning

An Example: Object Class
All java classes can override it

Person

Private String name

Public String getName()

Student

Private int studentID

Public int getSID()

public class Person {
 private String name;
 // more code here
 public String toString() {
 return this.getName();
 }
 public static void main(String[] args) {
 Person p = new Person("Tim");
 System.out.println(p.toString());
 }
}

Override Object’s toString() method
for Person class

println automatically calls toString()

public class Student extends Person{
 private int studentID;
 // more code here
 public String toString() {
 return this.getSID() + “: ” +
 this.getName(); super.toString();
 }
 public static void main(String[] args) {
 Student s = new Student("Cara", 1234);
 System.out.println(s);
 }
}

Override Object’s toString() method
for Student class

$ Tim

what if Person changes?

$ 1234: Cara

Public String toString()

Public String toString()

Begränsad delning

Introduce to Polymorphism

Person s = new Student("Cara", 1234);
System.out.println(s);

$ 1234: Cara $ Cara

For superclass reference to subclass object, the
actually called method depends on the dynamic
type. This is referred as Polymorphism.

Person

Private String name

Public String getName()

Student

Private int studentID

Public int getSID()
Public String toString()

Faculty

Private String employeeID

Public String getEID()
Public String toString()

Person p[] = new Person[3];
p[0] = new Person("Tim");
p[1] = new Student("Cara", 1234);
p[2] = new Faculty("Mia", "ABCD");
for(int i = 0; i < p.length; i++)
{
 System.out.println(p[i]);
}

$ Tim
$ 1234: Cara
$ ABCD: Mia

The dynamic (or actual) type
of the object is Student, so
its toString() method will
be called.

Polymorphism allow us to
keep all of our objects in
one big collection, and
then call appropriate
methods on every element

Java Polymorphism Fully Explained In 7 Minutes
https://www.youtube.com/watch?v=jhDUxynEQRI

https://www.youtube.com/watch?v=jhDUxynEQRI

Begränsad delning

Polymorphism Implementation: Compile
Time and Run Time Rules

Person

Private String name

Public String getName()
Public String toString()

Student

Private int studentID

Public int getSID()
Public String toString()

Person s = new Student("Cara", 1234);

s.toString(); String toString()

Method Signature

Executed at
Runtime

Person s = new Student("Cara", 1234);

s.getSID();

No getSID()
method

Compile Time Error!

Compile Time Rules:
 Compiler ONLY knows reference type
 Can only look in reference type class for method
 Outputs a method signature

Run Time Rules:
 Follow exact runtime type of object to find method
 Must match compile time method signature to

appropriate method in actual actual object’s class

Think like a compiler, act like
a runtime environment.

1. compiler interprets
the code

2. the runtime environment
executes the interpreted code

needs explicit
casting

Begränsad delning

Use Casting of Objects to Aid the Compiler

Person

Private String name

Public String getName()
Public String toString()

Student

Private int studentID

Public int getSID()
Public String toString()

Person s = new Student("Cara", 1234);

s.getSID();

((Student)s).getSID(); Compile Time Error!

Two types of casting:
 Automatic type promotion (like int to double)
 Superclass superRef = new Subclass();

 Explicit casting (like double to int)
 Subclass ref = (Subclass)superRef;

Person s = new Person(”Tim”);

((Student)s).getSID();
break the trust

Widening

Narrowing

BE CAREFUL:
Compiler trusts you

This works

Runtime Error!
java.lang.ClassCastException: From Person to Student

if(s instanceof Student)
{
 // only executes if s is-a
 // Student at runtime
 ((Student)s).getSID();
}

Runtime type check - instanceof
 Provides runtime check of is-a

relationship

Begränsad delning

Abstract Classes and Interfaces
 Person - Campus Accounts

 “Person” objects no longer make sense
 Add method “monthlyStatement”

 How do we:
 Force subclasses to have this method
 Stop having actual Person objects
 Keep having Person references
 Retain common Person code

Abstract classes!

 Can make any class abstract with keyword:
public abstract class Person {

 Class must be abstract if any methods are:
public abstract void monthlyStatement(){

Abstract classes offer inheritance of both!
 Implementation: instance variables and

methods which define common behavior
 Interface: method signatures which

define required behaviors

What if we just want to
inherit the Interface?

Interfaces only define required
methods. Classes can inherit

from multiple Interfaces

Implementation vs. Interface

Then use an Interface!

Abstract Classes and Methods in Java Explained in
7 Minutes
https://www.youtube.com/watch?v=HvPlEJ3LHgE

Begränsad delning

Abstract Classes and Interfaces (Contd.)
// Defined in java.lang.Comparable
package java.lang;
public interface Comparable<E> {
// Compare this object's name to o's name
// Return < 0, 0, > 0 if this object compares
// less than, equal to, greater than o.
 public abstract int compareTo(E o);
}

public class Person implements Comparable<Person> {
 private String name;
 // more code here
 @Override
 public int compareTo(Person o) {
 return this.getName().compareTo(o.getName());
 }

Abstract class or Interface?
 If you just want to define a required method:

Interface

 If you want to define potentially required methods AND common behavior:
Abstract class

	Lecture 3�Inheritance and Polymorphism
	Lecture Goals
	General Motivation
	Motivation for Inheritance
	Motivation for Inheritance (Contd.)
	Motivation for Inheritance (Contd.)
	Motivation for Inheritance (Contd.)
	Details of Inheritance: Extend Keyword
	Illustrate Inheritance Hierarchy with UML Diagrams
	Definitions of Visibility Modifiers
	“Is-a” Relationship Between Reference and Object Type
	Some Practices
	Revisit Object Construction with Inheritance
	Object Construction with Compiler Support
	Compiler’s Rules
	Object Construction with Compiler Support (Contd.)
	Variable Initialization in a Class Hierarchy
	Variable Initialization in a Class Hierarchy (Contd.)
	Some Practices
	Some Practices Con’t
	Some Practices (Contd.)
	Method Overriding
	An Example: Object Class
	Introduce to Polymorphism
	Polymorphism Implementation: Compile Time and Run Time Rules
	Use Casting of Objects to Aid the Compiler
	Abstract Classes and Interfaces
	Abstract Classes and Interfaces (Contd.)

