
Begränsad delning

Lecture 2
Classes and Objects in Java

Department of Computer Science
Hofstra University

Begränsad delning

Lecture Goals

 Write classes, create objects, and call methods on them.
 Describe what member variables, methods and constructors

are.
 Describe what the keywords public and private mean and their

effect on where variables can be accessed
 Explain what getters and setters are and write them in your

classes
 Explain how to overload methods in Java and why

overloading methods is useful
 Draw memory models with variable scope for reasoning about

variable values for object type data.

Begränsad delning

Object Oriented Programming (OOP)

 Computer science -- is the science of using and processing
large amounts of information to automate useful tasks and
learn about the world around us using a computer.

 OOP -- organizes the information based on real-world objects
such that program can be:
 easy to match the problem
 easy to write
 easy to maintain
 easy to debug

Map
Location
Shape
Color
......

Visualizing geospatial data

Begränsad delning

Definitions of Class and Object

 A class is a type of data
 a template defined by the programmer
 like a factory and can produce pieces of data with the

template
 An object is one such piece of data
 made out of the factory
 with associated functionality

 A class can be used to produce multiple objects
 Each individual object can be customized and

changed without affecting others

Begränsad delning

An Example of Class and Object

I want to build a class
that can represent my
location in the world, or
can represent anyone's
location in the world.

Concept of location
Latitude: 40.7
Longitude: -73.6

Begränsad delning

Defining a Class

public class Location
{
 public double latitude;
 public double longitude;
 public Location(double lat, double lon)
 {
 this.latitude = lat;
 this.longitude = lon;

}
 public double distance(Location other) {
 // body not shown

}
}

Member variables:
data the objects need to store

Methods:
The things this class can do

Constructor:
Method to create a new object

Must be in file
Location.java

Begränsad delning

Creating and Using Objects
public class LocationTester
{
 public static void main(String[] args)

{
 Location hof = new Location(40.7, -73.6);
 Location oxford = new Location(51.7, -1.2);
 System.out.println(hof.distance(oxford));
 }
}

In file
LocationTester.java

public class Location
{
 public double latitude;
 public double longitude;
 public Location(double lat, double lon)
 {
 this.latitude = lat;
 this.longitude = lon;

}
 public double distance(Location other) {
 // body not shown

}
}

In file
Location.java

"this" is the calling object

Begränsad delning

Creating and Using Objects (Contd.)
public class LocationTester
{
 public static void main(String[] args)

{
 Location hof = new Location(40.7, -73.6);
 Location oxford = new Location(51.7, -1.2);
 System.out.println(hof.distance(oxford));
 }
}

In file
LocationTester.java

public class Location
{
 public double latitude;
 public double longitude;
 public Location(double lat, double lon)
 {
 this.latitude = lat;
 this.longitude = lon;

}
 public double distance(Location other) {
 return getDist(this.latitude, this.longitude,
 other.latitude, other.longitude);
 }
}

In file
Location.java

"this" is the calling object hof

$ javac *.java
$ java LocationTester
3397.26

Begränsad delning

The Main Method in Java

 Java begins execution with the first line of a "main" method

 This method can be defined in any class, usually public.

 When a class has a main method, it can be "run”, and usually there is only
one class with main method in a Java program

 The keyword static, when applied to a method or a member variable,
simply means that this method (or member variable) is defined for the
class, but not for particular objects in the class. Thus, main is a general
method.

 There is no "calling object" inside main. If you want to call instance
methods from main, you must create objects and then call the instance
methods on those objects. You can, however, call other static methods
directly.

public static void main(String[] args)

public class Location
{
 public double latitude;
 public double longitude;
 public Location(double lat, double lon)
 {
 this.latitude = lat;
 this.longitude = lon;

}
 public double distance(Location other) {
 return getDist(this.latitude, this.longitude,
 other.latitude, other.longitude);
 }
 public static void main(String[] args) {
 Location hof = new Location(40.7, -73.6);
 Location oxford = new Location(51.7, -1.2);
 this.distance(hof);
 hof.distance(oxford);
 }
}

Begränsad delning

Overloading Methods

public class Location
{
 public double latitude;
 public double longitude;
 public Location(double lat, double lon)
 {
 this.latitude = lat;
 this.longitude = lon;

}
 public double distance(Location other) {
 // body not shown

}
}

In file
Location.java

What if the user wants to create Location
objects without passing in any parameters?

Begränsad delning

Overloading Methods (Contd.)

public class Location
{
 public double latitude;
 public double longitude;
 public Location() {
 this.latitude = 40.7;
 this.longitude = -73.6;

 }
 public Location(double lat, double lon) {
 this.latitude = lat;
 this.longitude = lon;

 }
 public double distance(Location other) {
 // body not shown

 }
 }

In file
Location.java

Constructor without
parameters

Default constructor

Parameter constructor
Overloading

Begränsad delning

Overloading Methods (Contd.)

public class Location
{
 // Code omitted here
 public double distance(Location other)
 {
 // body not shown

 }
 public double distance(double otherLat, double otherLon) {
 // body not shown

 }
 }

In file
Location.java

What is the advantage? We don’t have to create and remember different
names for functions doing the same thing. For example, in our code, if
overloading was not supported by Java, we would have to create method names
like distance1 and distance2.

Begränsad delning

A Real-world Example of Overloading

 ArrayList in Java API: overloaded constructors and add method

Begränsad delning

CAUTION

public class Location
{
 // Code omitted here
 public double distance(Location other)
 {
 // body not shown

 }
 public int distance(Location other)
 {
 // body not shown

 }
 }

In file
Location.java

At compile time, the compiler decides which version of the overloaded method
you're actually trying to call by using the parameter list. It can't do that by using
the return type alone.

Parameter must be different

Begränsad delning

Public vs. Private: Protect Data and Method

public class LocationTester
{
 public static void main(String[] args)

{
 Location hof = new Location(40.7, -73.6);
 Location oxford = new Location(51.7, -1.2);
 hof.latitude = 35.2;
 System.out.println(hof.distance(oxford));
 }
}

public class Location
{
 public double latitude;
 public double longitude;
 public Location(double lat, double lon) {
 this.latitude = lat;
 this.longitude = lon;

 }
 public double distance(Location other) {
 // body not shown

 }
 }

public means can
access from any class

allowed

In file
Location.java

In file
LocationTester.java

Begränsad delning

Public vs. Private: Protect Data and Method

public class LocationTester
{
 public static void main(String[] args)

{
 Location hof = new Location(40.7, -73.6);
 Location oxford = new Location(51.7, -1.2);
 hof.latitude = 35.2;
 System.out.println(hof.distance(oxford));
 }
}

public class Location
{
 private double latitude;
 private double longitude;
 public Location(double lat, double lon) {
 this.latitude = lat;
 this.longitude = lon;

 }
 public double distance(Location other) {
 // body not shown

 }
 }

private means can access only from
Location

allowed

ERROR

In file
Location.java

In file
LocationTester.java

Begränsad delning

Basic Class Design Rules

Private: helper methods

Public: for world use

Methods Members

Private: use getters and setters

giving right level of access

Rule of thumb: Make member variables
private (and methods either public or private)

Begränsad delning

An Example of Getter
public class Location
{
 private double latitude;
 private double longitude;
 // code omitted here
 public double getLatitude()

{
 return this.latitude;
 }
}

public class LocationTester
{
 public static void main(String[] args)

{
 Location hof = new Location(40.7, -73.6);
 System.out.println(hof.latitude);

 System.out.println(hof.getLatitude());
 }
}

In file
Location.java

In file
LocationTester.java

getter

ERROR

allowed

Can the user
change the

value ?

Begränsad delning

An Example of Setter
public class Location
{
 private double latitude;
 private double longitude;
 // code omitted here
 public void setLatitude(double lat)

{
 this.latitude = lat;
 }
}

public class LocationTester
{
 public static void main(String[] args)

{
 Location hof = new Location(40.7, -73.6);
 hof.latitude = 35.2;

 hof.setLatitude(35.2);
 }
}

In file
Location.java

In file
LocationTester.java

setter

ERROR

allowed

why don’t we just make that
member variable public? If

we're exposing the ability to
change and read it?

Begränsad delning

Another Example of Setter

public void setLatitude(double lat)
{
 if (lat < -180 || lat > 180)
 {
 System.out.println("Illegal value for latitude");
 } else {
 this.latitude = lat;
 }
}

getters and setters give
us more control

Begränsad delning

Trace Your Code: Drawing Memory Model

int var1;

var1 = 52;

int var2;

var2 = var1;

var1 = 127;

System.out.println("var1 is " + var1 +

 ", var2 is " + var2);

what does this code print?

Variable declaration: draw a box and label it with the
variable's name

Variable assignment: put the value of the right hand
side into the box for the variable on the left hand side

var1 var252 52

NOT connected and just copy the value

127 $ var1 is 127, var2 is 52

Primitive type data: int,double, float, short, long, char, boolean, byte

Begränsad delning

Drawing Memory Model with Objects
public class Location
{ private double latitude;
 // Code omitted here
 public static void main(String[] args)

{
 int var1 = 52;
 Location hof;
 hof = new Location(40.7, -73.6);
 Location oxford = new Location(51.7 , -1.2);
 hof.latitude = 35.2;

In file
Location.java

var1 52

hof @20

oxford @30

Java Heap
Location Object

40.7

-73.6

Latitude

Longitude

Location Object

51.7

-1.2

Latitude

Longitude

@20

@30

35.2

variable declaration and same as primitives

assignment statement
memory

reference
// in main method and can access private var

reference

reference

Begränsad delning

More Examples
public class Location
{
 // Code omitted here
 public static void main(String[] args)

{
 Location loc1 = new Location(40.7, -73.6);
 Location loc2 = new Location(51.7 , -1.2);
 loc1 = loc2;
 loc1.latitude = 35.2;
 System.out.println(loc2.latitute + ”, " + loc2.longitude);

loc1 @1

loc2 @2

Location Object

40.7

-73.6

Latitude

Longitude

Location Object

51.7

-1.2

Latitude

Longitude

@1

@2

@2

35.2

$ 35.2, -1.2

After assignment loc1 = loc2, the
Object Location(40.7, -73.6) is
unreachable and should be
garbage-collected.

Begränsad delning

Reason Your Code with Scope
public class Location
{
 private double latitude;
 private double longitude;
 public Location(double lat, double lon) {
 this.latitude = lat;
 this.longitude = lon;

 }
}

public class LocationTester
{
 public static void main(String[] args)

{
 Location hof = new Location(40.7, -73.6);
 hof.latitude = 2.5;
 }
}

In file
Location.java

In file
LocationTester.java

ERROR. Variable not defined here

Member variables are declared outside any method

Parameters behave like local variables

Local variables are declared inside a method

The scope of a variable is the area where it is defined to have a value

Begränsad delning

An Example

public class Location
{
 public double latitude;
 public double longitude;
 public Location(double latIn, double lonIn) {
 this.latitude = latIn;
 this.longitude = lonIn;

 }
}

public class LocationTester
{
 public static void main(String[] args)

{
 double lat = 40.7;
 Location hof = new Location(lat, -73.6);
 }
}

In file
Location.java

In file
LocationTester.java

lat
Location Object

Latitude

Longitude

hof @1

main's scope

latIn

lonIn -73.6

constructor's scope

this

Java Heap

@1

40.740.7 40.7

-73.6

Begränsad delning

An Example (Contd.)

public class Location
{
 public double latitude;
 public double longitude;
 public Location(double latIn, double lonIn) {
 this.latitude = latIn;
 this.longitude = lonIn;

 }
}

public class LocationTester
{
 public static void main(String[] args)

{
 double lat = 40.7;
 Location hof = new Location(lat, -73.6);
 }
}

In file
Location.jav
a

In file
LocationTester.java

lat
Location Object

Latitude

Longitude

hof

main's scope

latIn

lonIn -73.6

constructor's scope

this

Java Heap

@1

this is optional
Looks for latitude in the constructor‘s local scope

Doesn't find it, so looks in calling object scope

40.7 40.740.7

-73.6

Begränsad delning

Another Example
public class ArrayLocation
{
 private double coords[];
 public ArrayLocation(double[] coords) {
 this.coords = coords;
 }
 public static void main(String[] args)

 {
 double[] coords = {5.0, 0.0};
 ArrayLocation hof = new ArrayLocation(coords);

coords[0] = 40.7;
coords[1] = -73.6;

 System.out.println(hof.coords[0]);
 }
}

In file
ArrayLocation.java

coords
5.0 0.0

hof
main's scope

coordsconstructor's scope this

Java Heap

ArrayLocation Object

coords

40.7 -73.6

$ 40.7

	Lecture 2�Classes and Objects in Java
	Lecture Goals
	Object Oriented Programming (OOP)
	Definitions of Class and Object
	An Example of Class and Object
	Defining a Class
	Creating and Using Objects
	Creating and Using Objects (Contd.)
	The Main Method in Java
	Overloading Methods
	Overloading Methods (Contd.)
	Overloading Methods (Contd.)
	A Real-world Example of Overloading
	CAUTION
	Public vs. Private: Protect Data and Method
	Public vs. Private: Protect Data and Method
	Basic Class Design Rules
	An Example of Getter
	An Example of Setter
	Another Example of Setter
	Trace Your Code: Drawing Memory Model	
	Drawing Memory Model with Objects
	More Examples
	Reason Your Code with Scope
	An Example
	An Example (Contd.)
	Another Example

