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Lecture Goals
 We introduce simple sorting algorithms, incl. Bubble Sort, 

Selection Sort, and Insertion Sort, with high time complexity.
 We introduce binary heap for priority queue data abstract, 

which leads to an efficient sorting algorithm known as Heap 
Sort.

 We introduce the Quick Sort algorithm and analyze its 
performance. 

 We introduce the Merge Sort algorithm and analyze its 
performance.



Bubble Sort

 Bubble Sort works by repeatedly swapping adjacent elements if they 
are in the wrong order. 
 We sort the array using multiple passes. After the first pass, the maximum 

element goes to end (its correct position). Same way, after second pass, the 
second largest element goes to second last position and so on.

 In every pass, we process only those elements that have already not moved 
to correct position. After k passes, the largest k elements must have been 
moved to the last k positions.

 Time complexity: O(n2)
 Bubble Sort | GeeksforGeeks

 https://www.geeksforgeeks.org/bubble-sort-algorithm/
 https://www.geeksforgeeks.org/time-and-space-complexity-analysis-of-

bubble-sort/
 https://www.youtube.com/watch?v=nmhjrI-aW5o

https://www.geeksforgeeks.org/bubble-sort-algorithm/
https://www.geeksforgeeks.org/time-and-space-complexity-analysis-of-bubble-sort/
https://www.geeksforgeeks.org/time-and-space-complexity-analysis-of-bubble-sort/
https://www.youtube.com/watch?v=nmhjrI-aW5o


Bubble Sort Time Complexity
 The worst-case condition for bubble sort occurs when elements of the array are arranged 

in decreasing order. In the worst case, the total number of iterations or passes required to 
sort a given array is (n-1). where n is the number of elements present in the array.

 Pass 1:
Number of comparisons = (n-1), Number of swaps = (n-1)

 Pass 2:
Number of comparisons = (n-2), Number of swaps = (n-2)

 …

 Pass n-1:
Number of comparisons = 1
Number of swaps = 1

 Total number of comparison required to sort the array
= (n-1) + (n-2) + . . . 2 + 1
= (n-1)*(n-1+1)/2 { by using sum of n natural Number formula }
= (n*(n-1)) / 2

 In worst case, Total number of swaps = Total number of comparison
Total number of comparison (Worst case) = n(n-1)/2
Total number of swaps (Worst case) = n(n-1)/2

 So worst case time complexity is O(n2)



Bubble Sort Example



Selection Sort

 Selection Sort works by repeatedly selecting the smallest element from the 
unsorted portion and swapping it with the first unsorted element. This 
process continues until the entire array is sorted.
 First we find the smallest element and swap it with the first element. This way we 

get the smallest element at its correct position.
 Then we find the smallest among remaining elements (or second smallest) and 

move it to its correct position by swapping.
 Keep going until all elements are sorted.

 Time complexity: O(n2), as there are two nested loops:
 Outer loop to select each element one by one with O(n) complexity
 Inner loop to compare that element with every other element with O(n) complexity

 Selection Sort | GeeksforGeeks
 https://www.geeksforgeeks.org/selection-sort-algorithm-2/
 https://www.geeksforgeeks.org/time-and-space-complexity-analysis-of-selection-

sort/
 https://www.youtube.com/watch?v=xWBP4lzkoyM

https://www.geeksforgeeks.org/selection-sort-algorithm-2/
https://www.geeksforgeeks.org/time-and-space-complexity-analysis-of-selection-sort/
https://www.geeksforgeeks.org/time-and-space-complexity-analysis-of-selection-sort/
https://www.youtube.com/watch?v=xWBP4lzkoyM




Insertion Sort

 Insertion sort works by iteratively inserting each element of an unsorted list 
into its correct position in a sorted portion of the list. It is like sorting playing 
cards in your hands. You split the cards into two groups: the sorted cards and 
the unsorted cards. Then, you pick a card from the unsorted group and put it in 
the right place in the sorted group.
 We start with second element of the array as first element in the array is assumed to be 

sorted.
 Compare second element with the first element and check if the second element is 

smaller then swap them.
 Move to the third element and compare it with the first two elements and put at its 

correct position
 Repeat until the entire array is sorted.

 Time complexity: O(n2), as there are two nested loops:
 Outer loop to select each element in the unsorted group one by one, with O(n) 

complexity
 Inner loop to insert that element into the sorted group, with O(n) complexity

 Insertion Sort | GeeksforGeeks
 https://www.geeksforgeeks.org/insertion-sort-algorithm/
 https://www.geeksforgeeks.org/time-and-space-complexity-of-insertion-sort-algorithm/
 https://www.youtube.com/watch?v=OGzPmgsI-pQ

https://www.geeksforgeeks.org/insertion-sort-algorithm/
https://www.geeksforgeeks.org/time-and-space-complexity-of-insertion-sort-algorithm/
https://www.youtube.com/watch?v=OGzPmgsI-pQ


Insertion Sort Example 1



Insertion Sort Example 2



Heapsort: Binary Heap
 In a heap the largest (or smallest) element is always stored at the root, hence the 

name "heap". A heap is useful data structure when you need to remove the largest
(or smallest) element. A common use of a heap is to implement a priority queue 
and heapsort.

 A binary heap is a complete binary tree which is an efficient data structure satisfies 
the heap ordering property. 
 In a complete tree, every level (except possibly the leaf level) is completely filled; the 

leaf level is filled from left to right.

A complete binary tree with n = 16 nodes (height = 4) Not a complete binary tree (not filled from left to right)

Level 0

Level 1

Level 2

Level 4 (leaf)

Level 3



Complete Binary Tree or Not?

Above: complete binary trees  
Below: not complete binary trees  

Leaf level is not filled from left to right. Non-leaf level is not 
completely filled.



Heapsort: Binary Heap
 The heap ordering can be one of two types:

 The min-heap property: the value of each node is greater than or equal to the 
value of its parent, with the minimum-value element at the root.

 The max-heap property: the value of each node is less than or equal to the value 
of its parent, with the maximum-value element at the root.

 A heap is not a sorted structure and can be regarded as partially ordered. There is no 
particular relationship among nodes on any given level, even among the siblings.

 Since a heap is a complete binary tree, it has a smallest possible height - a heap 
with n nodes has O(log n) height.

1
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9
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6 2 1

in this lecture

Max Heap Animations | Data Structure | Visual How
https://www.youtube.com/watch?v=uU0iWaVxMgc 

https://www.youtube.com/watch?v=uU0iWaVxMgc


Binary Heap:  Array Representation
Array representation.
 Indices range in [1, n].
 Take nodes in level order.
 No explicit pointers needed!
 Only works for complete binary trees
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A Min Heap

i 0 1 2 3 4 5 6 7  
a[i] - T S R P N O A

8 9 10 11
E I H G

E I H G

P N O A
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Proposition. Can use array indices to move 
through tree.
 Parent of node at index k is at floor(k/2).

 Parent of node at 8 or 9 is at floor(8/2)= 
floor(9/2)=4.

 Children of node at  index k are at 2k and 
2k+1.
 Children of node at 4 is at 2*4=8 and 2*4+1=9

Proposition. Largest key is a[1], which is root 
of binary tree.
 Leaf nodes have indices [floor(n/2)+1, n]

 [floor(11/2)+1, n]=[6, 11]
 Non-leaf nodes have indices [1, floor(n/2)]

 [1, floor(11/2)]=[1, 5]



Binary Heap Operations: Promotion
 Scenario. A key becomes larger than its parent’s key.
 To eliminate the violation:
 Exchange key in child with key in parent.
 Repeat until heap order restored.
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private void swim(int k)

{

while (k > 1 && less(k/2, k))

{
exch(k, k/2);  

k = k/2;

}

}
parent of node at k is at k/2



Binary Heap Operations: Insert
 Insert. Add node as leaf, then swim it up. 
 Cost. O(log n) compares since tree height is O(log n).
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key to insert

insert

public void insert(Key x)

{
pq[++n] = x;  

swim(n);

}



Binary Heap Operations: Demotion
 Scenario. A key becomes smaller than one (or both) of its children’s.
 To eliminate the violation:
 Exchange key in parent with key in larger of the two children.
 Repeat until heap order restored.
 (Called max_heapify in video)

private void sink(int k, int n)

{

while (2*k <= n)

{

int j = 2*k;
if (j < n && less(j, j+1)) j++;  

if (!less(k, j)) break;

exch(k, j);  
k = j;

}

}

children of node at k

are 2*k and 2*k+1
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Top-down max_heapify (sink)



Binary Heap Operations: DeleteMax
 Delete max. Exchange root with rightmost leaf node (last element of the 
array), then sink it down. 
 Cost. O(log n) compares.

public Key delMax()

{
Key max = pq[1];  

exch(1, n--);  

sink(1);

pq[n+1] = null;
return max;

}
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remove the maximum



Heapsort Algorithm
 Basic plan for in-place sort. 
 View input array as a complete binary tree. 
 Heap construction: build a max-heap with all n keys. 
 Sortdown: repeatedly remove the maximum key.
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sorted result  
(in place)

1 2 3 4 5 6 7 8 9 10 11
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Heapsort: Heap Construction
First pass.  Build heap using bottom-up method.

for (int k = floor(n/2); k >= 1; k--) 

//call sink(k) on all non-leaf 

nodes k from bottom up

   sink(k, n);
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11-node heap



Heapsort: Sortdown
Second pass. 
 Remove the maximum, one at a time.  
 Leave in array, instead of nulling out.

while (n > 1)

{

exch(a, 1, n--);

sink(a, 1, n);
}
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starting point (heap-ordered)
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sink(1, 7)

M

O

L

R S T X

P

E

E A

exch(1, 7)
sink(1, 6)

R

A

M

L

S T X

O

E

E P

exch(1, 6)
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result (sorted)



Heapsort: Java Implementation
public class Heap
{

public static void sort(Comparable[] a)
{

int n = a.length;
for (int k = n/2; k >= 1; k--)

sink(a,

while (n >
{

k,

1)

n);

exch(a, 1, n);

sink(a, 1, --n);
}

}

private static void sink(Comparable[] a, int k, int n)
{ /* as before */ }

private static boolean less(Comparable[] a, int i, int j)
{ /* as before */ }

private static void exch(Object[] a, int i, int j)
{ /* as before */ }

}

but convert from 1-based  

indexing to 0-base indexing

but make static (and pass arguments)

O(nlogn)

Integer arithmetic k=n/2
takes the floor of n/2



Heapsort: Trace
a[i]

N k 0 1 2 3 4 5 6 7 8 9 10 11
initial values S O R T E X A M P L E

11 5 S O R T L X A M P E E

11 4 S O R T L X A M P E E

11 3 S O X T L R A M P E E

11 2 S T X P L R A M O E E

11 1 X T S P L R A M O E E
heap-ordered  X T S P L R A M O E E

10 1 T P S O L R A M E E X

9 1 S P R O L E A M E T X

8 1 R P E O L E A M S T X

7 1 P O E M L E A R S T X

6 1 O M E A L E P R S T X

5 1 M L E A E O P R S T X

4 1 L E E A M O P R S T X

3 1 E A E L M O P R S T X

2 1 E A E L M O P R S T X

1 1 A E E L M O P R S T X

sorted result A E E L M O P R S T X

Heapsort trace (array contents just after each sink)

sink(k, N)

3-node heap

7-node heap

11-node heap

red: exchanged

black: compared
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3

starting point (arbitrary order)



Binary Heap:  Practical improvements

 Multiway heaps. Complete d-way tree. 
 Parent’s key no smaller than its children’s keys. 
 Fact. Height of complete d-way tree on n nodes is O(log d n).

3 - w a y heap
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Binary Heap vs. Binary Search Tree
 Binary Heap is different from Binary Search Tree (BST, 

e.g., red-black tree)
 Binary Heap: the max-heap property

 Value of each node is less than or equal to the value of its parent, 
with the maximum-value element at the root.

 A heap is not a sorted structure and can be regarded as partially 
ordered. 

 BST: Ordered, or sorted, binary trees
 Items to the left of a given node are smaller.
 Items to the right of a given node are larger.

 Both structures offer O(log n) time complexity for certain 
operations, they are used in different scenarios.
 Heapsort is used for efficient sorting and simple priority queue 

implementations
 BST can also be used for sorting, by insertions followed by in-

order traversal, with O(n log(n)) average-case complexity.
 Red-black trees are for maintaining ordered data with frequent 

updates and searches.

9
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6 2 1

8

5

1 7 9

Binary Heap

Binary Search Tree
In-order traversal gives 
sorted list [1,5,7,8,9,10]

10



Quicksort
 QuickSort is based on the principle of divide and conquer: breaking down the 

problem into smaller sub-problems.
 Choose a Pivot: Select an element from the array as the pivot. The choice of 

pivot can vary (e.g., first element, last element, random element, or median).
 Partition the Array: 
 1. The pivot is compared with each element in the array.
 2. Elements smaller than the pivot are moved to its left.
 3. Elements larger than the pivot are moved to its right.
 4. The pivot is placed in its final sorted position.
 Recursively Call: Recursively apply the same process to the two partitioned 

sub-arrays (left and right of the pivot).
 Base Case: The recursion stops when there is only one element left in the sub-

array, as a single element is already sorted.
 QuickSort | geeksforgeeks

 https://www.geeksforgeeks.org/quick-sort-algorithm/
 QUICK SORT | Sorting Algorithms | DSA | GeeksforGeeks 
 https://www.youtube.com/watch?v=PgBzjlCcFvc&t=80s 
 Partition Function of Quick Sort | GeeksforGeeks  

https://www.youtube.com/watch?v=OwR53k9DZ9c 

https://www.geeksforgeeks.org/quick-sort-algorithm/
https://www.youtube.com/watch?v=PgBzjlCcFvc&t=80s
https://www.youtube.com/watch?v=OwR53k9DZ9c


Quicksort: Selection of Pivot
 The pivot is an element chosen from the array that serves as a 

reference point for partitioning the array into two subarrays. 
There are several strategies for selecting the pivot:
 ###First or Last Element as Pivot. Simple to implement but can lead to 

poor performance if the array is already sorted or nearly sorted.
 ### Random Element as Pivot. This can help avoid worst-case 

scenarios and provide more consistent performance across different 
input distributions.

 ### Median-of-Three. This method selects the median of the first, 
middle, and last elements of the array as the pivot. It provides a good 
balance between simplicity and performance.



Worst case. Number of compares is quadratic.
・ n + (n -  1) + (n -  2)  + … + 1 O(n 2).

・More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~1.39 n log n.
・39% more compares than mergesort.

・But faster than mergesort in practice because of less 
data movement.

Random shuffle.
・Probabilistic guarantee against worst case.

・Basis for math model that can be validated with 
experiments.

Quicksort Time Complexity



Quicksort Example 1 
1. Shuffle the array. 
2. Partition so that, for some pivot j

• entry a[j] is in place 
• no larger entry to the left of j
• no smaller entry to the right of j

3. Sort each piece recursively.

Choose the first element as pivot



Quicksort Example 2

 Input array [4, 3, 9, 7, 1, 2, 10, 6, 5]

Choose the last element as pivot



K R A T E L E P U I M Q C X O S

Partition Operation
Repeat until i and j pointers cross.
 Scan i from left to right so long as (a[i] < a[lo]).
 Scan j from right to left so long as (a[j] > a[lo]).
 Exchange a[i]  with a[j].

lo i jjjj

pivot
K R A T E L E P U I M Q C X O S

lo i j

K C A T E L E P U I M Q R X O S

i i jjj

lo

K C A I E L E P U T M Q R X O S

i j

When pointers cross.
 Exchange a[lo] with a[j].

i i jjj

lo

K C A I E E L P U T M Q R X O S

i j ij

lo

E C A I E K L P U T M Q R X O S

ij hi



lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Q U I C K S O R T E X A M P L E
K R A T E L E P U I M Q C X O S

0 5 15 E C A I E K L P U T M Q R X O S
0 3 4 E C A E I K L P U T M Q R X O S
0 2 2 A C E E I K L P U T M Q R X O S
0 0 1 A C E E I K L P U T M Q R X O S
1 1 A C E E I K L P U T M Q R X O S
4 4 A C E E I K L P U T M Q R X O S
6 6 15 A C E E I K L P U T M Q R X O S
7 9 15 A C E E I K L M O P T Q R X U S
7 7 8 A C E E I K L M O P T Q R X U S
8 8 A C E E I K L M O P T Q R X U S

10 13 15 A C E E I K L M O P S Q R T U X
10 12 12 A C E E I K L M O P R Q S T U X
10 11 11 A C E E I K L M O P Q R S T U X
10 10 A C E E I K L M O P Q R S T U X
14 14 15 A C E E I K L M O P Q R S T U X
15 15 A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

no partition  
for subarrays  

of size 1

initialvalues  

random shuffle

result

Quicksort trace (array contents after each partition)

Quicksort: Trace



Partition Operation: Java Implementation
private static int partition(Comparable[] a, int lo, int hi)
{

int i = lo, j = hi+1;  
while (true)
{

while (less(a[++i], a[lo]))  
if (i == hi) break;

while (less(a[lo], a[--j]))  
if (j == lo) break;

if (i >= j) break;  
exch(a, i, j);

}

exch(a, lo, j);  
return j;

}

find item on right to swap

find item on left to swap

check if pointers cross

swap

swap with partitioning item  

return index of item now known to be in place

v

lo hi

≥ v≤ v

j

after

i j

v ≤v ≥ vduring

hi

before  v

lo



public class Quick
{

private static int partition(Comparable[] a, int lo, int hi)
{/* see previous slide / }

public static void sort(Comparable[] a)
{

StdRandom.shuffle(a);  
sort(a, 0, a.length - 1);

}

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= lo) return;
int j = partition(a, lo, hi);  
sort(a, lo, j-1);
sort(a, j+1, hi);

}
}

Shuffle needed to
improve performance

Quicksort: Java Implementation

Pivot selection



Quicksort is Equivalent to Sorting by BST  

 Key idea: compareTo calls are same for BST insert and 
Quicksort. 
 Every number gets compared to 5; 1, 3, 4 get compared to only 2.

 Recall: Insertion into a BST has average-case complexity O(N 
log N).

5
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1 3

Binary Search Tree
In-order traversal gives 
sorted list 
[1,2,3,4,5,6,7,9,10]

4

9

7 10



Best case.  Number of compares is ~ N log N.

initial values

random shuffle

Quicksort: Best-case Analysis

 When the list is randomly 
shuffled:
 If we happen to always pick 

the median element as the 
pivot, then Quicksort has the 
best-case complexity of O(n 
log n). This corresponds to a 
balanced BST.



Worst case. Number of compares is O(N2).

initial values

random shuffle

Quicksort: Worst-case Analysis

 When the list is already 
sorted:
 If we always pick the first 

element as the pivot (shown in 
the right), then Quicksort has 
the worst-case complexity of 
O(n2). This corresponds to a 
very unbalanced BST.

 If we always pick the middle 
element as the pivot, then 
Quicksort has the best-case 
complexity of O(n log n). This 
corresponds to a balanced 
BST.



Insertion sort small subarrays.

・Even quicksort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for ≈ 10 items.

・Note: could delay insertion sort until one pass at end.

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= lo + CUTOFF - 1)
{

Insertion.sort(a, lo, hi);  
return;

}
int j = partition(a, lo, hi);  
sort(a, lo, j-1);
sort(a, j+1, hi);

}

Quicksort: Practical Improvements



Mergesort

 Mergesort is based on the principle of divide and 
conquer: breaking down the problem into smaller 
sub-problems.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves.

input M E R G E S O R T E X A M P L E

sort left half E E G M O R R S T E X A M P L E

sort right half E E G M O R R S A E E L M P T X

merge results A E E E E G L M M O P R R S T X

Mergesort overview



Mergesort Example 1



Merge Operation

E E G M R A C E R T

lo mid mid+1 hi

a[]

sorted sorted

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],  obtain 
sorted array a[lo] to a[hi], by selecting the smaller of the smallest elements in 
each subarray and put it into the sorted array a[].

A C E E E G M R R T

k

a[]

E E G M R A C E R T

i j

aux[]

sorted

k k k k k k k k k

i i i i jjjj

one subarray exhausted, take from other Merge Sort Algorithm: A Step-by-Step Visualization
https://www.youtube.com/watch?v=ho05egqcPl4 

https://www.youtube.com/watch?v=ho05egqcPl4


Merge Operation: Java Implementation

A G H I L M

A G L O R H I M S T

j

k

lo hii mid

aux[]

a[]

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{

assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted

for (int k = lo; k <= hi; k++)  
aux[k] = a[k];

int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++)
{

if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j], aux[i])) a[k] = aux[j++];
else a[k] = aux[i++];

}

assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}

copy

merge



Mergesort: Java implementation

lo mid hi

10 11 12 13 14 15 16 17 18 19

public class Merge
{

private static void merge(...)
{ /* as before */ }

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{

if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;  
sort(a, aux, lo, mid);  
sort(a, aux, mid+1, hi);  
merge(a, aux, lo, mid, hi);

}

public static void sort(Comparable[] a)
{

aux = new Comparable[a.length];  

sort(a, aux, 0, a.length - 1);

}
}



Mergesort: Example 2 Trace

result after recursive call

a[]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M E R G E S O R T E X A M P L E

merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E

merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E

merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E

merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E

merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L

merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hiRecursive
call stack



Mergesort: Practical Improvements

Use insertion sort for small subarrays.
 Mergesort has too much overhead for tiny subarrays.
 Cutoff to insertion sort for ≈ 7 items.

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{

if (hi <= lo + CUTOFF - 1)
{

Insertion.sort(a, lo, hi);  
return;

}
int mid = lo + (hi - lo) / 2;  
sort (a, aux, lo, mid);
sort (a, aux, mid+1, hi);  
merge(a, aux, lo, mid, hi);

}



Mergesort: Practical Improvements
Stop if already sorted. 
 Is biggest item in first half ≤ smallest item in second half?
 Helps for partially-ordered arrays.

A B C D E F G H I J

A B C D E F G H I J M N O P Q R S T U V

M N O P Q R S T U V

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{

if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;  
sort (a, aux, lo, mid);

sort (a, aux, mid+1, hi);
if (!less(a[mid+1], a[mid])) return;  

merge(a, aux, lo, mid, hi);

}



Stable Sorting Algorithm 

 A stable sorting algorithm is one that maintains the relative 
order of elements with equal keys in the sorted output as they 
appeared in the input. 

 Stability is important when multiple sorting operations are 
performed on data with multiple keys. For example, if you first 
sort a list of students by name and then by grade, a stable sort 
will ensure that students with the same grade remain sorted by 
name. This characteristic is crucial in scenarios where 
secondary attributes need to be preserved after sorting by 
primary attributes.

 Stable Sorting Algorithms include: Bubble Sort, Insertion Sort, 
Merge Sort, Radix Sort (next lecture)



Stable Sorting Example

Name Grade
Bas 60

Frank 80
Jana 60

Jouni 60
Lara 20
Nick 80
Rose 60
Sam 40

Name Grade
Lara 20
Sam 40
Bas 60

Jana 60
Jouni 60
Rose 60

Frank 80
Nick 80

Sort by Name
(primary attribute)

Then sort by Grade
(secondary attribute)

These lines 
do not cross



Summary

inplace? stable? complex i ty  
(w ors t -case ) remarks

Bubble O(n2)

Select ion O(n2)

Insertion O(n2)
J

Heap O(n log n) O(n log n) guarantee

Quick O(n2)
O(n log n) probabilistic 
guarantee;  fastest in 

practice

M e r g e O(n log n) O(n log n) guarantee;



Video Tutorials
 Heap Sort

 Heaps // Michael Sambol
 https://www.youtube.com/playlist?list=PL9xmBV_5YoZNsyqgPW-

DNwUeT8F8uhWc6 
 Binary Min/Max Heap

 https://www.youtube.com/playlist?list=PLvTjg4siRgU197GA1yFNRWUg
sPZnvjuyL 

 Visual How (min heap, max heap)
 https://www.youtube.com/@visualhow/videos 

 HEAP SORT | Sorting Algorithms | DSA | GeeksforGeeks
 https://www.youtube.com/watch?v=MtQL_ll5KhQ

 2.6.3 Heap - Heap Sort - Heapify - Priority Queues (recommended)
 https://www.youtube.com/watch?v=HqPJF2L5h9U&list=PLDN4rrl48XKp

Zkf03iYFl-O29szjTrs_O&index=32 

https://www.youtube.com/playlist?list=PL9xmBV_5YoZNsyqgPW-DNwUeT8F8uhWc6
https://www.youtube.com/playlist?list=PL9xmBV_5YoZNsyqgPW-DNwUeT8F8uhWc6
https://www.youtube.com/playlist?list=PLvTjg4siRgU197GA1yFNRWUgsPZnvjuyL
https://www.youtube.com/playlist?list=PLvTjg4siRgU197GA1yFNRWUgsPZnvjuyL
https://www.youtube.com/@visualhow/videos
https://www.youtube.com/watch?v=MtQL_ll5KhQ
https://www.youtube.com/watch?v=HqPJF2L5h9U&list=PLDN4rrl48XKpZkf03iYFl-O29szjTrs_O&index=32
https://www.youtube.com/watch?v=HqPJF2L5h9U&list=PLDN4rrl48XKpZkf03iYFl-O29szjTrs_O&index=32


Video Tutorials

 Quick Sort
 Quick sort in 4 minutes (recommended)

 https://www.youtube.com/watch?v=Hoixgm4-P4M  
 Quicksort Algorithm: A Step-by-Step Visualization

 https://www.youtube.com/watch?v=bZkzH5x0SKU
 Visualization of Quick sort (HD)

 https://www.youtube.com/watch?v=aXXWXz5rF64 
 Merge Sort 

 Merge sort in 3 minutes
 https://www.youtube.com/watch?v=4VqmGXwpLqc 

 Merge Sort Algorithm: A Step-by-Step Visualization (recommended)
 https://www.youtube.com/watch?v=ho05egqcPl4 

 Merge Sort Animations | Data Structure | Visual How
 https://www.youtube.com/watch?v=spVhtO_IcGg

https://www.youtube.com/watch?v=Hoixgm4-P4M
https://www.youtube.com/watch?v=bZkzH5x0SKU
https://www.youtube.com/watch?v=aXXWXz5rF64
https://www.youtube.com/watch?v=4VqmGXwpLqc
https://www.youtube.com/watch?v=ho05egqcPl4
https://www.youtube.com/watch?v=spVhtO_IcGg


Video Tutorials

 Sort Algos // Michael Sambol Michael Sambol
 https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAP

Iq1BeUf4j20pl

 Merge Sort, Quick Sort, Bubble Sort, Insertion Sort, Selection Sort, 
Heap Sort

 10 Sorting Algorithms Easily Explained
 https://www.youtube.com/watch?v=rbbTd-gkajw 
 Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort, 

Heap Sort, Counting Sort, Shell Sort, Tim Sort, Radix Sort

https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAPIq1BeUf4j20pl
https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAPIq1BeUf4j20pl
https://www.youtube.com/watch?v=rbbTd-gkajw
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