
Lecture 12
Minimum Spanning Trees

Department of Computer Science
Hofstra University

Lecture Goals
 In this lecture we study the minimum spanning tree problem.
 We consider two classic algorithm for the problem—Kruskal's

algorithm and Prim's algorithm.
 Both are greedy algorithms that are also optimal.

Minimum Spanning Tree (MST)
Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is both a tree (connected and acyclic)
and spanning (includes all of the vertices).

Goal. Find a minimum weight spanning tree.

24

23
9

714

21

6

4

16
5

10

11

18

graph G

8

24

23
9

714

21

6

4

16
5

10

11

18

not acyclic

8

24

23
9

714

6

4

16
5

10

11

18

not connected

8

21

24

23
9

714

6

4

16
5

10

11

18

spnning tree T: cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

8

21

Brute force.
Try all spanning trees?

MST Applications
 One example would be a telecommunications company trying to lay cable in a new

neighborhood. If it is constrained to bury the cable only along certain paths (e.g.
roads), then there would be a graph containing the points (e.g. houses) connected by
those paths.

 Some of the paths might be more expensive, because they are longer, or require the
cable to be buried deeper; these paths would be represented by edges with larger
weights.

 A MST would be one with the lowest total cost, representing the least expensive
path for laying the cable.

 Network design.
 Cluster analysis.
 Indirect applications.

A Useful Tool for Finding the MST: Cut
Property

 A cut is an assignment of a graph's nodes to two non-empty sets.
 A crossing edge is an edge which connects a node from one set to a

node from the other set.
 Cut property: Given any cut, minimum weight crossing edge is in

the MST.
 In case of a tie, pick any edge with equal weight. Different choices will

results in different MSTs.

Proof of the Cut Property

 Suppose that the minimum crossing edge e were not in the MST.
 • Adding e to the MST creates a cycle.
 • Some other edge f must also be a crossing edge.
 Replacing f with e results in a lower weight spanning tree.

Contradiction!

Generic MST Finding Algorithm

 Start with no edges in the MST.
 Find a cut that has no crossing edges in the MST.
 Add smallest crossing edge to the MST.
 Repeat until V-1 edges are added.

 This should work, but we need an efficient way of finding a
cut with no crossing edges
 Prim’s Algorithm
 Kruskal’s Algorithm

Prim’s Algorithm

 The algorithm starts with an empty spanning tree. The idea is to maintain
two sets of vertices. The first set contains the vertices already included in
the MST, and the other set contains the vertices not yet included. At every
step, it considers all the edges that connect the two sets and picks the
minimum weight edge from these edges. After picking the edge, it moves
the other endpoint of the edge to the set containing MST.

 Step 1: Determine an arbitrary vertex as the starting vertex of the MST.
 Step 2: Follow steps 3 to 5 till there are vertices that are not included in the

MST (known as fringe vertex).
 Step 3: Find edges connecting any tree vertex with the fringe vertices.
 Step 4: Find the minimum among these edges.
 Step 5: Add the chosen edge to the MST if it does not form any cycle.
 Step 6: Return the MST and exit

Time Complexity of Prim’s Algorithm

 Time complexity of Prim’s algorithm depends on the
implementation of the priority queue for finding the minimum
weight edge.

 1. Using an Adjacency Matrix
• Priority Queue: Simple linear search for the minimum edge.
• Time Complexity: O(V2). This is because finding the minimum edge in each

iteration takes O(V), and this is done V times.
 2. Using an Adjacency List with a Binary Heap

• Priority Queue: Binary heap for efficient minimum edge extraction and key
updates.

• Time Complexity: O((V+E) log V), where E is the number of edges.
• 3. Using an Adjacency List with a Fibonacci Heap

• Priority Queue: Fibonacci heap for faster decrease-key operations.
• Time Complexity: O(E+V log V).

Prim’s Algorithm Example 1

Steps 1-4

Steps 5-8

If we had selected the edge {1, 2} in the third step then
the MST would look like this one

Step 9

Prim’s Algorithm Example 2
 Start with vertex 0 and greedily grow tree T.
 Add to T the min weight edge with exactly one endpoint in T.
 Repeat until V – 1 edges.

1

2

3

4

5

6

0

7

4

2

1

3 11

5

6

7

8

9 12

13

14

15

16

17

Proof of Correctness for Prim’s Algorithm
• Loop Invariant

At each step, the edges selected by Prim's Algorithm form a subset of some MST.
• Base Case

• Starting from any vertex, the empty set of edges is trivially part of some MST
• The initial vertex forms our first component

• Inductive Step
Let A be our current tree and e be the next edge selected by Prim’s:

1. e is the minimum weight edge connecting A to V-A (where V is the set of all vertices)
2. e crosses a cut between visited and unvisited vertices
3. By the cut property, e must be in some MST

 Safety of Edge Selection
• For any edge e selected by Prim’s:

• It creates a cut (S, V-S) where S is the set of visited vertices
• e is the lightest edge crossing this cut
• No lighter edge could exist (or it would have been chosen)
• Therefore, e is a safe addition to our growing MST

 Conclusion
• The algorithm is correct because:

• It maintains a single growing tree
• Each edge selection is optimal (by the cut property)
• It terminates with n-1 edges (where n is the number of vertices)
• The result is connected (by construction)

 Therefore, Prim's Algorithm produces an MST

Dijkstra’s Algorithm vs. Prim’s algorithm

 Similarities:
 Both use a greedy approach.
 They employ similar data structures, often using a priority queue.
 The basic structures of both algorithms are very similar, with the main

difference being in how they update vertex values
 Dijkstra's finds shortest paths, while Prim's constructs a minimum

spanning tree (MST).
 This is reflected in how they calculate and update vertex values:
 In Dijkstra's algorithm, choose the closest vertex to the source node (via a

directed path), the distance to a vertex is relaxed to sum of the edge weight
plus the distance to the previous vertex if it is smaller.

 In Prim's algorithm, choose the closest vertex to the tree (via an undirected
edge), i.e., the vertex with the minimum weight of the edge connecting it
to the MST.

Kruskal’s Algorithm

 Sort all edges of the given graph in increasing order. Then it keeps
on adding new edges and nodes in the MST if the newly added edge
does not form a cycle. It picks the minimum weighted edge at first
and the maximum weighted edge at last. Thus we can say that it
makes a locally optimal choice in each step in order to find the
optimal solution. Hence this is a Greedy Algorithm.

 1. Sort all the edges in non-decreasing order of their weight.
 2. Pick the lowest-cost edge. Check if it forms a cycle with the

spanning tree formed so far. If the cycle is not formed, include this
edge. Else, discard it.

 3. Repeat Step 2 until there are (V-1) edges in the spanning tree.

Time Complexity of Kruskal’s Algorithm

1. The time complexity of Kruskal's algorithm is determined by
two main operations:
1. Sorting the edges: Sorting all E edges by weight takes O(E log E) using

a comparison-based sorting algorithm.
2. Union-Find operations: For each edge, the algorithm performs union

and find operations to check for cycles, with time complexity O(α(V)),
where α is the inverse Ackermann function, which grows slower than
logarithmic function O(log V).

• Thus, the overall time complexity is dominated by the sorting
step, resulting in time complexity of O(E log E) or
equivalently O(E log V), since E ≤ V2 for a connected graph.

Kruskal’s Algorithm Example 1

e W

7-6 1

8-2 2

6-5 2

0-1 4

2-5 4

8-6 6

2-3 7

7-8 7

0-7 8

1-2 8

3-4 9

5-4 10

1-7 11

14 14

e W

7-6 1

8-2 2

6-5 2

0-1 4

2-5 4

8-6 6

2-3 7

7-8 7

0-7 8

1-2 8

3-4 9

5-4 10

1-7 11

14 14

Steps 1-4

Kruskal’s Algorithm Example 2
 Consider edges in ascending order of weight.
 Add next edge to tree T unless doing so would create a cycle.

1

2

3

4

5

6

0

7

0 - 7 1

2 - 3 2

1 - 7 3

0 - 2 4

5 - 7 5

1 - 3 6

1 - 5 7

2 - 7 8

4 - 5 9

1 - 2 10

4 - 7 11

0 - 4 12

2 - 6 13

3 - 6 14

0 - 6 15

4 - 6 16

graph edges sorted by weight

an edge-weighted graph

does not create a cycle creates a cycle

Kruskal's algorithm in 2 minutes
https://www.youtube.com/watch?v=71UQH7Pr9kU

https://www.youtube.com/watch?v=71UQH7Pr9kU

Proof of Correctness for Kruskal’s Algorithm
• Loop Invariant

At each step, the set of edges chosen by Kruskal's Algorithm is a subset of
some MST.

• Base Case
• Initially, the empty set of edges is trivially a subset of any MST

• Inductive Step
• Let e be the next edge selected by Kruskal's Algorithm. Two key facts:

1. e is the minimum weight edge that doesn't create a cycle with previously selected edges
2. The edges selected so far form a forest F

 Safety of Edge Selection
 Consider the components C1 and C2 that edge e connects:

• e is the minimum weight edge between these components
• Any path between C1 and C2 in the MST must use at least one edge
• That edge cannot be lighter than e (or Kruskal would have chosen it)
• Therefore, we can safely include e in our solution

• Conclusion
• The algorithm terminates when:

• It has selected exactly n-1 edges (where n is the number of vertices)
• The result is connected (due to the selection process)
• Each edge is chosen optimally (by the cut property)

 Therefore, Kruskal's Algorithm produces an MST

Summary
algorithm visualization bottleneck running time

Kruskal
sorting

union–find E log V

Prim priority queue E log V

https://www.youtube.com/watch?v=vmWSnkBVvQ0

https://www.youtube.com/watch?v=vmWSnkBVvQ0

Online Tutorials

 Prim’s Algorithm for Minimum Spanning Tree (MST) |
GeeksforGeeks
 https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-

algo-5/
 https://www.youtube.com/watch?v=eB61LXLZVqs

 Kruskal’s Algorithm for Minimum Spanning Tree | GeeksforGeeks
 https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-

algorithm-greedy-algo-2/
 https://www.youtube.com/watch?v=3rrNH_AizMA

 Prim's algorithm in 2 minutes
 https://www.youtube.com/watch?v=cplfcGZmX7I

 Kruskal’s Algorithm in 2 minutes
 https://www.youtube.com/watch?v=71UQH7Pr9kU&t=1s

 vid10 kruskals vs prims
 https://www.youtube.com/watch?v=vmWSnkBVvQ0

https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.youtube.com/watch?v=eB61LXLZVqs
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/
https://www.youtube.com/watch?v=3rrNH_AizMA
https://www.youtube.com/watch?v=cplfcGZmX7I
https://www.youtube.com/watch?v=71UQH7Pr9kU&t=1s
https://www.youtube.com/watch?v=vmWSnkBVvQ0

	Lecture 12�Minimum Spanning Trees
	Lecture Goals
	Minimum Spanning Tree (MST)
	MST Applications
	A Useful Tool for Finding the MST: Cut Property�
	Proof of the Cut Property
	Generic MST Finding Algorithm
	Prim’s Algorithm
	Time Complexity of Prim’s Algorithm
	Prim’s Algorithm Example 1
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Prim’s Algorithm Example 2
	Proof of Correctness for Prim’s Algorithm
	Dijkstra’s Algorithm vs. Prim’s algorithm
	Kruskal’s Algorithm
	 Time Complexity of Kruskal’s Algorithm
	Kruskal’s Algorithm Example 1
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Kruskal’s Algorithm Example 2
	Proof of Correctness for Kruskal’s Algorithm
	Summary
	Online Tutorials

