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Lecture Goals
 In this lecture we study shortest-paths problems. We begin by 

analyzing some basic properties of shortest paths and a generic 
algorithm for the problem. 

 For single-source shortest path, we consider:
 Dijkstra's algorithm 
 Bellman–Ford algorithm 
 Topological Sort for DAG

 For all-pairs shortest path, we conclude:
 Floyd Warshall Algorithm 
 Johnson’s Algorithm



Shortest Paths in an Edge-weighted Digraph
Given an edge-weighted digraph, find the shortest path from source vertex
s to t.

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph shortest path from 0 to 6
0->2 0.26

 Which vertices? 
 Single source: from source vertex s to every other vertex. 
 Source-sink: from source vertex s to another t. 
 All pairs: between all pairs of vertices. 
 Nonnegative weights? 
 Cycles? 
 Negative cycles.

Variants

Simplifying assumption: Each vertex is reachable from s. 



Shortest Paths in an Unweighted Digraph

 BFS (Breadth-First Search) can find shortest paths in 
unweighted graphs.
 BFS visits nodes in order of their distance from the source vertex, 

ensuring the first path found to any node is the shortest possible path in 
terms of the number of edges.

 Time complexity: O(V+E)

 Advantages:
 Optimal for unweighted graphs
 Simpler implementation than Dijkstra's

 Limitations:
 Only works for unweighted graphs
 Not suitable for graphs with negative edges



Edge Relaxation
Relax edge e = u→v with weight w(u,v). (We also write uv to denote u→v)
 distTo[u] is length of shortest known path from s to u. 
 distTo[v] is length of shortest known path from s to v. 
 prevNode[v] is the previous vertex on shortest known path from s to v. 
 If e = u→v gives shorter path to v through u, update distTo[v] and 

prevNode[v].
 distTo[v] = min(distTo[v], distTo[u] + w(u,v)); prevNode[v]=u 

Previous shortest path from s to v 
goes through vertex x, with cost of 7.2

s

3.1

After relaxing edge uv, the shortest 
path from s to v is updated to go 
through vertex u, with cost of 4.4

1.3

u

v

private void relax(DirectedEdge e)
{

Int u = e.from(), v = e.to();
if (distTo[v] > distTo[u] + w(u,v))
{

distTo[v] = distTo[u] + w(u,v);  
prevNode[v] = u;

}
}

7.2 

prevNode[v]=u

OLD distTo[v] = 7.2 > distTo[u] + w(u,v)
= 3.1+1.3 = 4.4 
NEW distTo[v]  distTo[u] + w(u,v) = 4.4, 
prevNode[v] = u

x



Generic Shortest-paths Algorithm
Generic algorithm (to compute SPT from s)

For each vertex v: distTo[v] = ∞. 
For each vertex v: prevNode[v] = null. 
distTo[s] = 0. 
Repeat until done:
 - Relax any edge. 

Proposition. Generic algorithm computes SPT (if it exists) from s. 
Pf. 

 Throughout algorithm, distTo[v] is the length of a simple path from s to v (and 
prevNode[v] is its previous vertex on the path). 

 Each successful relaxation decreases distTo[v] for some v. 
 The entry distTo[v] can decrease at most a finite number of times.
Efficient implementations. How to choose which edge to relax?

 Ex 1. Dijkstra’s algorithm. (no negative weights). 
 Ex 2. Bellman–Ford algorithm. (negative weights, can detect negative cycles). 

 Ex 3. Topological sort. (DAG with no directed cycles)



Dijkstra's Algorithm
 Initialization:

 Set the distance to the source vertex as 0 and to all other vertices as infinity.
 Mark all vertices as unvisited and store them in a priority queue.

 Main Loop:
 Visit the unvisited vertex u with the shortest known distance from the 

queue.
 For each unvisited neighbor vertex v of vertex u, calculate its tentative 

distance through the current vertex. If this distance is smaller than the 
previously recorded distance, update it with edge relaxation for edge uv.

 Mark the current vertex as visited once all its neighbors are processed.
 Termination:

 The algorithm continues until all reachable vertices are visited.
 Time complexity: O(V log V + V) for Binary Heap implementation
 Notes:

 Dijkstra’s Algorithm is greedy and optimal: any vertex that has been visited 
should have its shortest distance to the source. 

 It works for both undirected and directed graphs. The only difference is the 
function for getting the neighbors of vertex v, as each undirected edge is 
treated as two directed edges in opposite directions.)



Dijkstra’s Algorithm: Correctness Proof

Proposition.  Dijkstra's algorithm computes a SPT in any edge-weighted 

digraph with nonnegative weights.

Proof.  

 Each edge e = u→v is relaxed exactly once (when vertex u is visited), 

afterwards:  

- distTo[v]  ≤  distTo[u] + w(u,v).

 Inequality holds until algorithm terminates because:

- distTo[v] cannot increase

- distTo[u] will not change

 Thus, upon termination, shortest-paths optimality conditions hold. 

we choose lowest distTo[ ] value at each 
step (and edge weights are nonnegative)

distTo[ ] values are monotone decreasing



Toy Example: find shortest path starting from 
source vertex S for undirected graph

SD: Shortest Distance. PN: Previous Node

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A
N1 SD PN

S 0

A 2 S

B 3 A

Visit B
N1 SD PN

S 0

A 2 S

B 3 A

S
A

B
4

3

2

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A Visit B
N1 SD PN

S 0

A 2 S

B 4 S

S
A

B
4

1

2

N1 SD PN

S 0

A 2 S

B 4 S



Toy Example: find shortest path starting 
from source vertex S for directed graph

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A
N1 SD PN

S 0

A 2 S

B 4 S

Visit B
N1 SD PN

S 0

A 2 S

B 4 S

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A ∞
B 4 S

Visit B Visit A
N1 SD PN

S 0

A 5 B

B 4 S

S
A

B
4

1

2

N1 SD PN

S 0

A 5 B

B 4 S

S
A

B
4

1

2



Example Graph



Initialize



Visit vertex A

OLD distTo[B] = ∞ > distTo[A] + w(A,B) = 0+2 = 2
NEW distTo[B]  distTo[A] + w(A,B) = 2, prevNode[B] = A
OLD distTo[D] = ∞ > distTo[A] + w(A,D) = 0+8 = 8
NEW distTo[D]  distTo[A] + w(A,D) = 8, prevNode[D] = A



Visit vertex B

OLD distTo[D] = 8 > distTo[B] + w(B,D) = 2+5 = 7
NEW distTo[D]  distTo[B] + w(B,D) = 7, prevNode[D] = B
OLD distTo[E] = ∞ > distTo[B] + w(B,E) = 2+6 = 8
NEW distTo[E]  distTo[B] + w(B,E) = 8, prevNode[E] = B



Visit vertex D

OLD distTo[E] = 8 < distTo[D] + w(D,E) = 7+3 = 10
No update, distTo[E] stays 8, prevNode[E] stays B
OLD distTo[F] = ∞ > distTo[D] + w(D,F) = 7+2 = 9
NEW distTo[F]  distTo[D] + w(D,F) = 9, prevNode[F] = D



Visit vertex E

OLD distTo[C] = ∞ > distTo[E] + w(E.C) = 8+9 = 17
NEW distTo[C]  distTo[E] + w(E.C) = 17, prevNode[C] = E
OLD distTo[F] = 9 = distTo[E] + w(E.F) = 8+1 = 9
No update, distTo[F] stays 9, prevNode[F] = D (You can also update 
prevNode[F] = E.)



Visit vertex F

OLD distTo[C] = 17 > distTo[F] + w(F,C) = 9+3 = 12
NEW distTo[C]  distTo[F] + w(F,C) = 12, prevNode[C] = F 



Visit vertex C

Nothing changes, since C has no unvisited neighbor vertices



End of Algorithm

 Table contains the shortest distance to each vertex N from the 
source vertex A, and its previous vertex in the shortest path



Getting the Shortest Path from A to C

 C’s previous vertex is F; F’s previous vertex is D; D’s previous 
vertex is B; B’s previous vertex is A

 Shortest Path from A to C is ABDFC



Dijkstra’s Algorithm Example 2

A

B

C E

D

1

1

3

3

21

4



Initialize

A

B

C E

D

1

1

3

3

21

4

∞ ∞

∞
∞

0

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞



Visit vertex A 

B

C E

D

1

1

3

3

21

4

3 ∞

∞
1

0

N SD PN

A 0

B 3 A

C 1 A

D ∞
E ∞

A



Visit vertex C 

N SD PN

A 0

B 2 C

C 1 A

D ∞
E 5 C

3

A

B

E

D

1

1

3

21

4

2 ∞

5
1

0

C



Visit vertex B 

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0



Visit vertex E 

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

Nothing changes



Visit vertex D 

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

Nothing changes

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0



Dijkstra’s Algorithm Example 3
 Consider vertices in increasing order of distance from s 

- (non-tree vertex with the lowest distTo[ ] value). 
 Add vertex to tree and relax all edges pointing from that vertex.

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

choose source vertex 0
relax all edges adjacent from 0
choose vertex 1  
relax all edges adjacent from 1

v  distTo[]

0
1
2
3
4
5
6
7

∞ 
∞ 
∞ 
∞
∞
∞
∞
∞

v  edgeTo[]

0
1
2
3
4
5
6
7

-
-
-
-
-
-
-
-

0
5
17
20
9
14
29
8

0
1
1
0
7
4
0

choose vertex 7
relax all edges adjacent from 7
choose vertex 4
relax all edges adjacent from 4

15
17

13
26

7
2

4
5

choose vertex 5
relax all edges adjacent from 5
choose vertex 2
relax all edges adjacent from 2
choose vertex 3
relax all edges adjacent from 3
choose vertex 6
relax all edges adjacent from 6

14

25

5

2



Dijkstra’s Algorithm Example 4

 Suppose we run Dijkstra’s single source shortest-path 
algorithm on the following edge weighted directed graph with 
vertex P as the source. In what order do the vertices get 
included into the set of vertices for which the shortest path 
distances are finalized? 

 ANS: P, Q, R, U, S, T



N SD PN

P 0

Q ∞
R ∞
S ∞
T ∞
U ∞

N SD PN

P 0

Q 1 P

R ∞
S 6 P

T 7 P

U ∞

Visit P

N SD PN

P 0

Q 1 P

R 2 Q

S 5 Q

T 7 P

U ∞

Visit Q

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit R

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit S

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit T

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Finished

Visit U (nothing changes)

(nothing
changes)

(nothing
changes)

SD: Shortest Distance
PN: Previous vertex



Bellman-Ford Algorithm
• Initialize distance array distTo[] 

for each vertex v as distTo[v] = ∞, 
and distTo[s] = 0 to source vertex 
s.

• Relax all edges V-1 times.
• Can terminate early when all 

distTo[] values have converged
• The order of edge relaxations affects 

algorithm efficiency but not 
correctness.

Bellman–Ford algorithm 
For each vertex v: distTo[v] = ∞. 
For each vertex v: edgeTo[v] = null. 
distTo[s] = 0. 
Repeat V-1 times:
 - Relax each edge. 

Generic algorithm (to compute SPT from s)

For each vertex v: distTo[v] = ∞. 
For each vertex v: edgeTo[v] = null. 
distTo[s] = 0. 
Repeat until done:
 - Relax any edge. 

Recall:

private void relax(DirectedEdge e)
{

Int u = e.from(), v = e.to();
if (distTo[v] > distTo[u] + w(u,v))
{

distTo[v] = distTo[u] + w(u,v);  
prevNode[v] = u;

}
}



Bellman-Ford Algorithm Proof of 
Correctness

 Relaxing edges V-1 times in the Bellman-Ford algorithm 
guarantees that the algorithm has explored all possible paths 
with up to V-1 edges,  which is the maximum possible number 
of edges of a shortest path in a graph with V vertices. 

 This allows the algorithm to correctly calculate the shortest 
paths from the source vertex to all other vertices, given that 
there are no negative-weight cycles.



Bellman-Ford Algorithm with Negative Cycle 
Detection

• Initialize distance array distTo[] for each vertex v as distTo[v] 
= ∞, and distTo[s] = 0 to source vertex s.

• Relax all edges V-1 times.
• Can terminate early when all distTo[] values have converged
• The order of edge relaxations affects algorithm efficiency but not 

correctness. A good heuristic is to follow the Breadth First Search (BFS) 
order.

• Relax all the edges one more time i.e. the V-th time:
• Case 1 (Negative cycle exists): if any edge can be further relaxed, i.e., 

for any edge u→v, if distTo[u] > distTo[u] + w(u,v)
• Case 2 (No Negative cycle) : case 1 fails for all the edges.

• Notes:
• It can find any negative cycle that is reachable from source vertex s 

(but not negative cycles that are unreachable from s).
• If there is a negative cycle that is reachable from source vertex s, then 

any paths that go through the cycle has distance −∞, since the cost can 
be reduced by traversing the cycle infinite number of times. 



Time Complexity of Bellman-Ford Algorithm

 Time complexity for connected graph: 
 Average Case: O(VE)
 Worst Case: O(VE)

 If the graph is dense or complete, the value of E becomes O(V2). So 
overall time complexity becomes O(V3)



Bellman-Ford Algorithm Example 1
Repeat V − 1 times: relax all E edges.

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

v  distTo[]

0
1
2
3
4
5
6
7

∞ 
∞ 
∞ 
∞
∞
∞
∞
∞

v  edgeTo[]

0
1
2
3
4
5
6
7

-
-
-
-
-
-
-
-

0
5
17
20
9
13
28
8

0
1
1
0
4
2
0

14
17

26

5
2

5

25

2

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→2 7→5 
pass 1 pass 2 pass 3 (converged, no further changes, so stop here)

Order of edge relaxations 

Reverse order of edge 
relaxations will result 
in slower convergence 



Dijkstra's Algorithm vs. Bellman-Ford 
Algorithm

 Dijkstra's Algorithm:
 Uses a priority queue to select the next vertex to process.
 Greedily selects the vertex with the smallest tentative distance to source 

vertex.
 Works only on graphs with non-negative edge weights.

 Bellman-Ford Algorithm:
 Iteratively relaxes all edges V-1 times.
 Does not use a priority queue.
 Can handle graphs with negative edge weights, and can detect negative 

cycles.
 Dijkstra's algorithm is faster and more efficient for graphs with non-

negative weights; Bellman-Ford Algorithm is more versatile as it 
can handle negative weights and detect negative cycles, albeit at the 
cost of lower efficiency.



Dijkstra’s Algorithm does not work for Negative 
Edge Weights

 Dijkstra’s Algorithm is greedy and optimal: any vertex that has been visited should have its 
shortest distance to the source. After visiting A, C, D, we have got D’s shortest distance to A is 
2, but after visiting D, D’s distance to A is updated to -10, which violates the greedy optimal 
assumption of Dijkstra’s Algorithm. Even if you update D’s distance to A to -10, its downstream 
vertex E’s distance will not be updated.

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Visit A Visit C

N SD PN

A 0

B 10 A

C 1 A

D ∞
E ∞

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E ∞

Visit D

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E 3 D

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E 3 D

Visit E

E’s SD is not 
updated and
Incorrect

A

B

C
1

10

D

-20

1

E1

Visit B

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E 3 D



Bellman Ford Algorithm works for Negative 
Edge Weights

 We run for V-1=3 iterations, then run one more iteration with no change. Hence we 
conclude that The Bellman-Ford algorithm successfully calculated the shortest paths from 
vertex A to all other vertices. The shortest path from vertex A to vertex D goes through 
vertex B with a total cost of -10. There are no negative weight cycles.

 Suppose edge update order AB, AC, BD, CD, DE

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Iter 1 Iter 2

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

No change
converged

E1



Topological Sort for Shortest Paths in Edge-
weighted DAG

 Suppose that a graph is a Directed Acyclic Graph (DAG), i.e., it has no 
directed cycles. It is easier and faster to find shortest paths than in a general 
digraph.

 Idea: Consider vertices in topological order. Relax all outgoing edges from 
that vertex

 Initialize dist[] = {∞,∞, ….} and dist[s] = 0 where s is the source vertex. 
 Create a topological order of all vertices. 
 For every vertex u in topological order 
  For every adjacent vertex v of u 
   if (dist[v] > dist[u] + weight(u, v)) //relax edge uv
    dist[v] = dist[u] + weight(u, v) 

 Time Complexity: Time complexity of topological sort is O(V+E). After 
finding topological order, the algorithm process all vertices and for every 
vertex, it runs a loop for all adjacent vertices. Total adjacent vertices in a 
graph is O(E), so the double for loop has complexity O(V+E). Therefore, 
overall time complexity is O(V+E).



Shortest Paths in Edge-weighted DAG: Correctness Proof

Proposition. Topological sort algorithm computes SPT in any edge-  

weighted DAG in time proportional to E + V.

Pf.  

 Each edge e = v→w is relaxed exactly once (when v is relaxed),  

- leaving distTo[w]  ≤  distTo[v] + e.weight().

 Inequality holds until algorithm terminates because:

- distTo[w] cannot increase

- distTo[v] will not change

 Thus, upon termination, shortest-paths optimality conditions hold. 

because of topological order, no edge 
pointing to v will be relaxed after v is relaxed

distTo[ ] values are monotone decreasing

edge weights
can be negative!



Topological Sort Example 1

 Consider this DAG and a topological order ADBCEF



Visit A

Visit D

Initialize



Visit C

Visit E

Visit B

8 CC



Topological Sort Example 2

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

v  distTo[]

0
1
2
3
4
5
6
7

∞ 
∞ 
∞ 
∞
∞
∞
∞
∞

v  edgeTo[]

0
1
2
3
4
5
6
7

-
-
-
-
-
-
-
-

0
5
17
20
9
13
29
8

0
1
1
0
4
4
0

15
17

26

7
2

5

14

25

5

2

0  1  4  7  5  2  3  6

 Consider this DAG and a topological order 01475236



Topological Sort Example 3

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Visit A Visit B

N SD PN

A 0

B 10 A

C 1 A

D ∞
E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

E1

Visit C

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit E

Consider topological order ABCDE



Topological Sort Example 3

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Visit A Visit C

N SD PN

A 0

B 10 A

C 1 A

D ∞
E ∞

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E ∞

E1

Visit B

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit E

Consider topological order ACBDE



Longest Paths in Edge-weighted DAG
Formulate as a shortest paths problem in edge-weighted DAGs.
 Negate all weights.
 Find shortest paths.
 Negate weights in result.

Topological sort algorithm for DAGs works even with negative weights.
For general graphs, the longest paths problem is an unsolved problem (exponential time 
at best)

equivalent: reverse sense of equality in relax()

shortest paths input

5->4 0.35 5->4 -0.35
4->7 0.37 4->7 -0.37
5->7 0.28 5->7 -0.28
5->1 0.32 5->1 -0.32
4->0 0.38 4->0 -0.38
0->2 0.26 0->2 -0.26
3->7 0.39 3->7 -0.39
1->3 0.29 1->3 -0.29
7->2 0.34 7->2 -0.34
6->2 0.40 6->2 -0.40
3->6 0.52 3->6 -0.52
6->0 0.58 6->0 -0.58
6->4 0.93 6->4 -0.93

longest paths input

s



Single Source Shortest-paths Algorithms 
Summary

Algorithm Restriction Worst-Case 
Complexity

Dijkstra 
(Fibonacci   

heap)

Undirected or directed graph; no negative 
weights/cycles

O(V log V + E)

Bellman-Ford Directed graph with negative weights; undirected 
graph with no negative weights (since a negative 
weight edge forms a negative cycle by itself)

O(EV)

Topological 
Sort

Directed Acyclic Graph (DAG) (directed graph, no 
cycles)

O(E+V)



Floyd Warshall Algorithm for all-pairs 
shortest paths 

 The Floyd Warshall Algorithm is an all pair shortest path algorithm unlike 
Dijkstra and Bellman Ford which are single source shortest path 
algorithms. 

 It works for both the directed and undirected weighted graphs. But, it does 
not work for the graphs with negative cycles

 It follows Dynamic Programming approach to check every possible path 
going via every possible vertex in order to calculate shortest distance 
between every pair of vertices.

 For k = 0 to n – 1 
  For i = 0 to n – 1 
   For j = 0 to n – 1 
    dist[i, j] = min(dist[i, j], dist[i, k] + dist[k, j])

                     // Update dist[i, j] if shortcut through vertex k has shorter path
 where i = source vertex, j = Destination vertex, k = Intermediate vertex

 Time Complexity: O(V3), where V is the number of vertices in the graph 
and we run three nested loops each of size V



Floyd Warshall Algorithm is Dynamic 
Programming 

 Floyd Warshall Algorithm is a Dynamic Programming based algorithm. It 
finds all pairs shortest paths using following recursive nature of problem. 
For every pair (i, j) of source and destination vertices respectively, there are 
two possible cases. 1) k is not an intermediate vertex in shortest path from i 
to j. We keep the value of dist[i][j] as it is. 2) k is an intermediate vertex in 
shortest path from i to j. We update the value of dist[i][j] as dist[i][k] + 
dist[k][j]. The following figure shows the above optimal substructure 
property in the all-pairs shortest path problem, which enables the use of 
dynamic programming.



Floyd Warshall Algorithm Example



 Step 1: Initialize the dist[][] matrix using the input graph 
such that dist[i][j]= weight of edge from i to j, also 
dist[i][j] = ∞ if there is no edge from i to j.

A B C D E
A 0 4 ∞ 5 ∞
B ∞ 0 1 ∞ 6
C 2 ∞ 0 3 ∞
D ∞ ∞ 1 0 2
E 1 ∞ ∞ 4 0



 Step 2: Treat vertex A as an intermediate vertex and 
calculate the dist[][] for every {i,j} vertex pair using the 
formula:

 dist[i][j] = min(dist[i][j], dist[i][A] + dist[A][j])

A B C D E

A 0 4 ∞ 5 ∞
B ∞ 0 1 ∞ 6

C 2 ∞ 0 3 ∞
D ∞ ∞ 1 0 2

E 1 ∞ ∞ 4 0

A B C D E

A 0 4 ∞ 5 ∞
B ∞ 0 1 ∞ 6

C 2 6 0 3 ∞
D ∞ ∞ 1 0 2

E 1 5 ∞ 4 0



 Step 3: Treat vertex B as an intermediate vertex and 
calculate the dist[][] for every {i,j} vertex pair using the 
formula:
dist[i][j] = minimum (dist[i][j], dist[i][B] + dist[B][j])

A B C D E

A 0 4 ∞ 5 ∞
B ∞ 0 1 ∞ 6

C 2 6 0 3 ∞
D ∞ ∞ 1 0 2

E 1 5 ∞ 4 0

A B C D E

A 0 4 5 5 10

B ∞ 0 1 ∞ 6

C 2 6 0 3 12

D ∞ ∞ 1 0 2

E 1 5 6 4 0



 Step 4: Treat vertex C as an intermediate vertex and 
calculate the dist[][] for every {i,j} vertex pair using the 
formula:
dist[i][j] = minimum (dist[i][j], dist[i][C] + dist[C][j])

A B C D E

A 0 4 5 5 10

B 3 0 1 4 6

C 2 6 0 3 12

D 3 7 1 0 2

E 1 5 6 4 0

A B C D E

A 0 4 5 5 10

B ∞ 0 1 ∞ 6

C 2 6 0 3 12

D ∞ ∞ 1 0 2

E 1 5 6 4 0



 Step 5: Treat vertex D as an intermediate vertex and 
calculate the dist[][] for every {i,j} vertex pair using the 
formula:
dist[i][j] = minimum (dist[i][j], dist[i][D] + dist[D][j])

A B C D E

A 0 4 5 5 7

B 3 0 1 4 6

C 2 6 0 3 5

D 3 7 1 0 2

E 1 5 5 4 0

A B C D E

A 0 4 5 5 10

B 3 0 1 4 6

C 2 6 0 3 12

D 3 7 1 0 2

E 1 5 6 4 0



 Step 6: Treat vertex E as an intermediate vertex and 
calculate the dist[][] for every {i,j} vertex pair using the 
formula:
dist[i][j] = minimum (dist[i][j], dist[i][E] + dist[E][j])

A B C D E

A 0 4 5 5 7

B 3 0 1 4 6

C 2 6 0 3 5

D 3 7 1 0 2

E 1 5 5 4 0

A B C D E

A 0 4 5 5 7

B 3 0 1 4 6

C 2 6 0 3 5

D 3 7 1 0 2

E 1 5 5 4 0



 Step 7: Since all the vertices have been treated as an 
intermediate vertex, we can now return the updated 
dist[][] matrix as our answer matrix.



Johnson’s Algorithm for all-pairs shortest 
paths

 Idea: run Dijkstra’s Single Source shortest path algorithm with 
every vertex as the source.

 Dijkstra’s algorithm doesn’t work for negative weight edge. 
The idea of Johnson’s algorithm is to reweight all edges and 
make them all positive, then run Dijkstra’s algorithm with 
every vertex as the source.
 We can run Bellman-Ford algorithm with every vertex as the source 

without reweighting, since Bellman-Ford algorithm can handle 
negative edge weights, but the time complexity is much higher than 
running Dijkstra’s algorithm.

 How to transform a given graph into a graph with non-
negative weight edges without changing the shortest paths? 



Example 1: Increase weight of every edge 
by a constant?

 True or False: In a weighted graph, assume that the shortest path from source s 
to destination t is correctly calculated using a shortest path algorithm. If we 
increase weight of every edge by a constant, the shortest path always remains 
same.

 False. See the following counterexample. There are 4 edges sa, ab, bt and st 
with weights 1, 1, 1 and 4 respectively. The shortest path from s to t is sabt with 
cost 3. If we increase weight of every edge by 1, the shortest path changes to st 
with cost 5.

 Similarly for negative weight edges. There are 4 edges sa, ab, bt and st with 
weights -1, -1, -1 and -2 respectively. The shortest path from s to t is sabt with 
cost -3. If we increase weight of every edge by 1, the shortest path changes to st 
with cost -1.

as b t
1 1 1

4

as b t
2 2 2

5

as b t- 1

-2

as b t
0 0 0

-1

- 1 - 1



Double the original weights?

 True or False: Is the following statement valid about shortest 
paths? Given a graph, suppose we have calculated shortest 
path from a source to all other vertices. If we modify the graph 
such that weights of all edges becomes double of the original 
weight, then the shortest path remains same, and only the total 
weight of path changes.

 True. The shortest path remains same. It is like if we change 
unit of distance from meter to kilo meter, the shortest paths do 
not change. But this does not make weights positive.



Johnson’s algorithm for All-pairs Shortest 
Paths

1. Let the given graph be G. Add a dummy source vertex d, and add edges 
with weight 0 from d to all vertices of G. Let the modified graph be G’.

2. Run Bellman-Ford algorithm on G’ with d as the source. Let the shortest 
distances calculated by Bellman-Ford be h[0], h[1], .. h[V-1]. If we find a 
negative weight cycle, then return. (We run Bellman-Ford algorithm since 
it can handle negative edge weights.)

3. Reweight the edges of the original graph. For each edge (u, v), assign the 
new weight as w'(u, v) = w(u, v) + h[u] – h[v], which is greater than or 
equal to 0.

4. Remove the added dummy vertex d, and run Dijkstra’s algorithm with 
every vertex as the source to obtain all-pairs shortest paths. Subtract h[u] – 
h[v] from length of each shortest path to obtain the lengths of shortest paths 
in the original graph.

Time complexity: Johnson’s algorithm uses both Dijkstra and Bellman-Ford as 
subroutines. The main steps in the algorithm are Bellman-Ford Algorithm 
called once and Dijkstra called V times. Time complexity of Bellman Ford is 
O(VE) and time complexity of Dijkstra is O(V log V + E). So overall time 
complexity is O(V2 log V + VE).



Johnson’s Algorithm: Proof
 The following property is always true since h[] 

values are the shortest distances from the dummy 
source code d:
 h[v] <= h[u] + w(u, v) 

 The property states that the shortest distance from u 
to v must be smaller than or equal to the shortest 
distance from s to u plus edge weight w(u, v). 
Because of this inequality, the new weights w’(u, v) 
= w(u, v) + h[u] – h[v] must be greater than or equal 
to 0. 

 After reweighting, and all weights become non-
negative, and all set of paths between any two 
vertices s and t is increased by the same amount, 
hence the shortest paths remain the same as the 
original graph before reweighting.
 Consider any path between two vertices s and t, the 

weight of every path is increased by h[s] – h[t], since the 
added h[] values for all intermediate vertices on the path 
from s to t cancel each other out. 

u vw(u,v)

h(u)

d
h(v)



Johnson’s Algorithm Example 2
 We add a dummy source vertex d and add edges with weight 0 from s to all 

vertices of the original graph. 
 We run Bellman-Ford algorithm to calculate the shortest distances from d 

to all other vertices. The shortest distances from d to 0, 1, 2 and 3 are
 h[0]=0 (path d0), h[1]=-5 (path d01), h[2]=-1 (path d012), h[3]=0 

(path d3) 
 Once we get these distances, we remove vertex d and reweight each edge 

uv as: w'(u, v) = w(u, v) + h[u] – h[v].
 w’(0,1)=0, w’(1,2)=0, w’(2,3)=0, w’(0,3)=3, w’(0,2)=3

 Since all weights are greater than or equal to 0 now, we can run Dijkstra’s 
shortest path algorithm with every vertex as the source. 

h[0]=0 h[1]=-5

h[3]=0 h[2]=-1

d



Johnson’s Algorithm Example 2 Con’t
 Let’s run Dijkstra’s shortest path algorithm with vertex 0 as the source. We 

can obtain the shortest paths shown on the left
 We then subtract h[u] – h[v] from length of each shortest path from u to v 

to obtain the lengths of shortest paths in the original graph shown on the 
right, e.g., SD(02)=0-(h[0]-h[2])=0-(0-(-1))=-1)

N SD’ PN

0 0

1 0 0

2 0 1

3 0 2

N SD PN

0 0

1 -5 0

2 -1 1

3 0 2
Shortest paths from 0 
in modified graph

Shortest paths from 0 
in original graph



Johnson’s Algorithm: Example 1 Revisited
 w’(s, a) = w(s, a) + h[s] – h[a] = -1 + 0 - (-1) = 0
 w’(a, b) = w(a, b) + h[a] – h[b] = -1 + -1 - (-2) = 0
 w’(b, t) = w(b, t) + h[b] – h[t] = -1 + -2 - (-3) = 0
 w’(s, t) = w(s, t) + h[s] – h[t] = -2 + 0 - (-3) = 1
 w’(s, a) + w’(a, b) + w’(b, t) = w(s, a) + w(a, b) + w(b, t) + h[s] – h[t] = -1 -1 -1 + 0 – (-

3) = 0
 w’(s, t) = w(s, t) + h[s] – h[t] = -2 + 0 – (-3) = 1
 For example, the shortest path from s to t is sabt, same as the original graph before 

reweighting. Its length in the original graph is 0 – (h[s] – h[t]) = 0 – (0 – (-3)) = -3.

as b t- 1

-2

as b t
-1 + 0 - (-1) = 0

-1 + -1 - (-2) = 0
-1 + -2 - (-3) = 0

-2 + 0 - (-3) = 1

- 1 - 1

0 0 0 0

H[s]=0 H[a]=-1 H[b]=-2 H[t]=-3

d

N SD PN

s 0

a -1 s

b -2 a

t -3 b

N SD’ PN

s 0

a 0 s

b 0 a

t 0 b
Shortest paths from s in 
modified graph (right)

Shortest paths from s 
in original graph (left)



Video Tutorials

 Dijkstras Shortest Path Algorithm Explained | With Example | Graph 
Theory
 https://www.youtube.com/watch?v=bZkzH5x0SKU 
 The following lecture slides are based on this video

 Dijkstra's algorithm in 3 minutes
 https://www.youtube.com/watch?v=_lHSawdgXpI 

 Bellman-Ford in 4 minutes — Theory
 https://www.youtube.com/watch?v=9PHkk0UavIM

 Bellman-Ford in 5 minutes — Step by step example
 https://www.youtube.com/watch?v=obWXjtg0L64

 Shortest Path Algorithms Explained (Dijkstra's & Bellman-Ford 
https://www.youtube.com/watch?v=AE5I0xACpZs 

 Floyd–Warshall algorithm in 4 minutes
 https://www.youtube.com/watch?v=4OQeCuLYj-4

https://www.youtube.com/watch?v=bZkzH5x0SKU
https://www.youtube.com/watch?v=_lHSawdgXpI
https://www.youtube.com/watch?v=9PHkk0UavIM
https://www.youtube.com/watch?v=obWXjtg0L64
https://www.youtube.com/watch?v=AE5I0xACpZs
https://www.youtube.com/watch?v=4OQeCuLYj-4


Tutorials from Geeksforgeeks

 https://www.geeksforgeeks.org/introduction-to-dijkstras-
shortest-path-algorithm/

 https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/ 
 https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-

16/ 
 https://www.geeksforgeeks.org/johnsons-algorithm/ 

https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-path-algorithm/
https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-path-algorithm/
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
https://www.geeksforgeeks.org/johnsons-algorithm/


Quiz

 Which of the following algorithm can be used to efficiently 
calculate single source shortest paths in a Directed Acyclic 
Graph?
 Dijkstra
 Bellman-Ford
 Topological Sort

 ANS: Topological Sort
 Topological Sort has complexity O(V+E), which is the most 

efficient algorithm among the three



Quiz

 Given a graph where all edges have positive weights, the 
shortest paths produced by Dijsktra and Bellman Ford 
algorithm may be different but path weight would always be 
same.

 ANS: True
 Dijkstra and Bellman-Ford both work fine for a graph with all 

positive weights, but they are different algorithms and may 
pick different edges for shortest paths.



Quiz 

 Match the following    
 Group A
 a) Dijkstra's single shortest path algo
 b) Bellmen Ford's single shortest path algo
 c) Floyd Warshall's all pair shortest path algo
 Group B
 p) Dynamic Programming
 q) Backtracking
 r) Greedy Algorithm

 Dijkstra is a greedy algorithm where we pick the minimum distant 
vertex from not yet finalized vertices. Bellman Ford and Floyd 
Warshall both are Dynamic Programming algorithms where we 
build the shortest paths in bottom up manner.



Quiz

 Let G be a directed graph whose vertex set is the set of numbers from 1 to 
100. There is an edge from a vertex i to a vertex j if either j = i + 1 or j = 3i. 
The minimum number of edges in a path in G from vertex 1 to vertex 100 
is 

 A. 4 B. 7 C. 23 D. 99
 ANS: 7
 The task is to find minimum number of edges in a path in G from vertex 1 

to vertex 100 such that we can move to either i+1 or 3i from a vertex i.
 Since the task is to minimize number of edges, we would prefer to follow 

3*i.  Let us follow multiple of 3. 1 => 3 => 9 => 27 => 81, now we can't 
follow multiple of 3 anymore. So we will have to follow i+1. This solution 
gives a long path.

 What if we begin from end, and we reduce by 1 if the value is not multiple 
of 3, else we divide by 3. 100 => 99 => 33 => 11 => 10 => 9 => 3 => 1

 So we need total 7 edges.
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