
Lecture 11
Shortest Paths

Department of Computer Science
Hofstra University

Lecture Goals
 In this lecture we study shortest-paths problems. We begin by

analyzing some basic properties of shortest paths and a generic
algorithm for the problem.

 For single-source shortest path, we consider:
 Dijkstra's algorithm
 Bellman–Ford algorithm
 Topological Sort for DAG

 For all-pairs shortest path, we conclude:
 Floyd Warshall Algorithm
 Johnson’s Algorithm

Shortest Paths in an Edge-weighted Digraph
Given an edge-weighted digraph, find the shortest path from source vertex
s to t.

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph shortest path from 0 to 6
0->2 0.26

 Which vertices?
 Single source: from source vertex s to every other vertex.
 Source-sink: from source vertex s to another t.
 All pairs: between all pairs of vertices.
 Nonnegative weights?
 Cycles?
 Negative cycles.

Variants

Simplifying assumption: Each vertex is reachable from s.

Shortest Paths in an Unweighted Digraph

 BFS (Breadth-First Search) can find shortest paths in
unweighted graphs.
 BFS visits nodes in order of their distance from the source vertex,

ensuring the first path found to any node is the shortest possible path in
terms of the number of edges.

 Time complexity: O(V+E)

 Advantages:
 Optimal for unweighted graphs
 Simpler implementation than Dijkstra's

 Limitations:
 Only works for unweighted graphs
 Not suitable for graphs with negative edges

Edge Relaxation
Relax edge e = u→v with weight w(u,v). (We also write uv to denote u→v)
 distTo[u] is length of shortest known path from s to u.
 distTo[v] is length of shortest known path from s to v.
 prevNode[v] is the previous vertex on shortest known path from s to v.
 If e = u→v gives shorter path to v through u, update distTo[v] and

prevNode[v].
 distTo[v] = min(distTo[v], distTo[u] + w(u,v)); prevNode[v]=u

Previous shortest path from s to v
goes through vertex x, with cost of 7.2

s

3.1

After relaxing edge uv, the shortest
path from s to v is updated to go
through vertex u, with cost of 4.4

1.3

u

v

private void relax(DirectedEdge e)
{

Int u = e.from(), v = e.to();
if (distTo[v] > distTo[u] + w(u,v))
{

distTo[v] = distTo[u] + w(u,v);
prevNode[v] = u;

}
}

7.2

prevNode[v]=u

OLD distTo[v] = 7.2 > distTo[u] + w(u,v)
= 3.1+1.3 = 4.4
NEW distTo[v]  distTo[u] + w(u,v) = 4.4,
prevNode[v] = u

x

Generic Shortest-paths Algorithm
Generic algorithm (to compute SPT from s)

For each vertex v: distTo[v] = ∞.
For each vertex v: prevNode[v] = null.
distTo[s] = 0.
Repeat until done:
 - Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.
Pf.

 Throughout algorithm, distTo[v] is the length of a simple path from s to v (and
prevNode[v] is its previous vertex on the path).

 Each successful relaxation decreases distTo[v] for some v.
 The entry distTo[v] can decrease at most a finite number of times.
Efficient implementations. How to choose which edge to relax?

 Ex 1. Dijkstra’s algorithm. (no negative weights).
 Ex 2. Bellman–Ford algorithm. (negative weights, can detect negative cycles).

 Ex 3. Topological sort. (DAG with no directed cycles)

Dijkstra's Algorithm
 Initialization:

 Set the distance to the source vertex as 0 and to all other vertices as infinity.
 Mark all vertices as unvisited and store them in a priority queue.

 Main Loop:
 Visit the unvisited vertex u with the shortest known distance from the

queue.
 For each unvisited neighbor vertex v of vertex u, calculate its tentative

distance through the current vertex. If this distance is smaller than the
previously recorded distance, update it with edge relaxation for edge uv.

 Mark the current vertex as visited once all its neighbors are processed.
 Termination:

 The algorithm continues until all reachable vertices are visited.
 Time complexity: O(V log V + V) for Binary Heap implementation
 Notes:

 Dijkstra’s Algorithm is greedy and optimal: any vertex that has been visited
should have its shortest distance to the source.

 It works for both undirected and directed graphs. The only difference is the
function for getting the neighbors of vertex v, as each undirected edge is
treated as two directed edges in opposite directions.)

Dijkstra’s Algorithm: Correctness Proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted

digraph with nonnegative weights.

Proof.

 Each edge e = u→v is relaxed exactly once (when vertex u is visited),

afterwards:

- distTo[v] ≤ distTo[u] + w(u,v).

 Inequality holds until algorithm terminates because:

- distTo[v] cannot increase

- distTo[u] will not change

 Thus, upon termination, shortest-paths optimality conditions hold.

we choose lowest distTo[] value at each
step (and edge weights are nonnegative)

distTo[] values are monotone decreasing

Toy Example: find shortest path starting from
source vertex S for undirected graph

SD: Shortest Distance. PN: Previous Node

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A
N1 SD PN

S 0

A 2 S

B 3 A

Visit B
N1 SD PN

S 0

A 2 S

B 3 A

S
A

B
4

3

2

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A Visit B
N1 SD PN

S 0

A 2 S

B 4 S

S
A

B
4

1

2

N1 SD PN

S 0

A 2 S

B 4 S

Toy Example: find shortest path starting
from source vertex S for directed graph

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A
N1 SD PN

S 0

A 2 S

B 4 S

Visit B
N1 SD PN

S 0

A 2 S

B 4 S

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A ∞
B 4 S

Visit B Visit A
N1 SD PN

S 0

A 5 B

B 4 S

S
A

B
4

1

2

N1 SD PN

S 0

A 5 B

B 4 S

S
A

B
4

1

2

Example Graph

Initialize

Visit vertex A

OLD distTo[B] = ∞ > distTo[A] + w(A,B) = 0+2 = 2
NEW distTo[B]  distTo[A] + w(A,B) = 2, prevNode[B] = A
OLD distTo[D] = ∞ > distTo[A] + w(A,D) = 0+8 = 8
NEW distTo[D]  distTo[A] + w(A,D) = 8, prevNode[D] = A

Visit vertex B

OLD distTo[D] = 8 > distTo[B] + w(B,D) = 2+5 = 7
NEW distTo[D]  distTo[B] + w(B,D) = 7, prevNode[D] = B
OLD distTo[E] = ∞ > distTo[B] + w(B,E) = 2+6 = 8
NEW distTo[E]  distTo[B] + w(B,E) = 8, prevNode[E] = B

Visit vertex D

OLD distTo[E] = 8 < distTo[D] + w(D,E) = 7+3 = 10
No update, distTo[E] stays 8, prevNode[E] stays B
OLD distTo[F] = ∞ > distTo[D] + w(D,F) = 7+2 = 9
NEW distTo[F]  distTo[D] + w(D,F) = 9, prevNode[F] = D

Visit vertex E

OLD distTo[C] = ∞ > distTo[E] + w(E.C) = 8+9 = 17
NEW distTo[C]  distTo[E] + w(E.C) = 17, prevNode[C] = E
OLD distTo[F] = 9 = distTo[E] + w(E.F) = 8+1 = 9
No update, distTo[F] stays 9, prevNode[F] = D (You can also update
prevNode[F] = E.)

Visit vertex F

OLD distTo[C] = 17 > distTo[F] + w(F,C) = 9+3 = 12
NEW distTo[C]  distTo[F] + w(F,C) = 12, prevNode[C] = F

Visit vertex C

Nothing changes, since C has no unvisited neighbor vertices

End of Algorithm

 Table contains the shortest distance to each vertex N from the
source vertex A, and its previous vertex in the shortest path

Getting the Shortest Path from A to C

 C’s previous vertex is F; F’s previous vertex is D; D’s previous
vertex is B; B’s previous vertex is A

 Shortest Path from A to C is ABDFC

Dijkstra’s Algorithm Example 2

A

B

C E

D

1

1

3

3

21

4

Initialize

A

B

C E

D

1

1

3

3

21

4

∞ ∞

∞
∞

0

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Visit vertex A

B

C E

D

1

1

3

3

21

4

3 ∞

∞
1

0

N SD PN

A 0

B 3 A

C 1 A

D ∞
E ∞

A

Visit vertex C

N SD PN

A 0

B 2 C

C 1 A

D ∞
E 5 C

3

A

B

E

D

1

1

3

21

4

2 ∞

5
1

0

C

Visit vertex B

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

Visit vertex E

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

Nothing changes

Visit vertex D

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

Nothing changes

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

Dijkstra’s Algorithm Example 3
 Consider vertices in increasing order of distance from s

- (non-tree vertex with the lowest distTo[] value).
 Add vertex to tree and relax all edges pointing from that vertex.

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

choose source vertex 0
relax all edges adjacent from 0
choose vertex 1
relax all edges adjacent from 1

v distTo[]

0
1
2
3
4
5
6
7

∞
∞
∞
∞
∞
∞
∞
∞

v edgeTo[]

0
1
2
3
4
5
6
7

-
-
-
-
-
-
-
-

0
5
17
20
9
14
29
8

0
1
1
0
7
4
0

choose vertex 7
relax all edges adjacent from 7
choose vertex 4
relax all edges adjacent from 4

15
17

13
26

7
2

4
5

choose vertex 5
relax all edges adjacent from 5
choose vertex 2
relax all edges adjacent from 2
choose vertex 3
relax all edges adjacent from 3
choose vertex 6
relax all edges adjacent from 6

14

25

5

2

Dijkstra’s Algorithm Example 4

 Suppose we run Dijkstra’s single source shortest-path
algorithm on the following edge weighted directed graph with
vertex P as the source. In what order do the vertices get
included into the set of vertices for which the shortest path
distances are finalized?

 ANS: P, Q, R, U, S, T

N SD PN

P 0

Q ∞
R ∞
S ∞
T ∞
U ∞

N SD PN

P 0

Q 1 P

R ∞
S 6 P

T 7 P

U ∞

Visit P

N SD PN

P 0

Q 1 P

R 2 Q

S 5 Q

T 7 P

U ∞

Visit Q

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit R

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit S

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit T

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Finished

Visit U (nothing changes)

(nothing
changes)

(nothing
changes)

SD: Shortest Distance
PN: Previous vertex

Bellman-Ford Algorithm
• Initialize distance array distTo[]

for each vertex v as distTo[v] = ∞,
and distTo[s] = 0 to source vertex
s.

• Relax all edges V-1 times.
• Can terminate early when all

distTo[] values have converged
• The order of edge relaxations affects

algorithm efficiency but not
correctness.

Bellman–Ford algorithm
For each vertex v: distTo[v] = ∞.
For each vertex v: edgeTo[v] = null.
distTo[s] = 0.
Repeat V-1 times:
 - Relax each edge.

Generic algorithm (to compute SPT from s)

For each vertex v: distTo[v] = ∞.
For each vertex v: edgeTo[v] = null.
distTo[s] = 0.
Repeat until done:
 - Relax any edge.

Recall:

private void relax(DirectedEdge e)
{

Int u = e.from(), v = e.to();
if (distTo[v] > distTo[u] + w(u,v))
{

distTo[v] = distTo[u] + w(u,v);
prevNode[v] = u;

}
}

Bellman-Ford Algorithm Proof of
Correctness

 Relaxing edges V-1 times in the Bellman-Ford algorithm
guarantees that the algorithm has explored all possible paths
with up to V-1 edges, which is the maximum possible number
of edges of a shortest path in a graph with V vertices.

 This allows the algorithm to correctly calculate the shortest
paths from the source vertex to all other vertices, given that
there are no negative-weight cycles.

Bellman-Ford Algorithm with Negative Cycle
Detection

• Initialize distance array distTo[] for each vertex v as distTo[v]
= ∞, and distTo[s] = 0 to source vertex s.

• Relax all edges V-1 times.
• Can terminate early when all distTo[] values have converged
• The order of edge relaxations affects algorithm efficiency but not

correctness. A good heuristic is to follow the Breadth First Search (BFS)
order.

• Relax all the edges one more time i.e. the V-th time:
• Case 1 (Negative cycle exists): if any edge can be further relaxed, i.e.,

for any edge u→v, if distTo[u] > distTo[u] + w(u,v)
• Case 2 (No Negative cycle) : case 1 fails for all the edges.

• Notes:
• It can find any negative cycle that is reachable from source vertex s

(but not negative cycles that are unreachable from s).
• If there is a negative cycle that is reachable from source vertex s, then

any paths that go through the cycle has distance −∞, since the cost can
be reduced by traversing the cycle infinite number of times.

Time Complexity of Bellman-Ford Algorithm

 Time complexity for connected graph:
 Average Case: O(VE)
 Worst Case: O(VE)

 If the graph is dense or complete, the value of E becomes O(V2). So
overall time complexity becomes O(V3)

Bellman-Ford Algorithm Example 1
Repeat V − 1 times: relax all E edges.

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

v distTo[]

0
1
2
3
4
5
6
7

∞
∞
∞
∞
∞
∞
∞
∞

v edgeTo[]

0
1
2
3
4
5
6
7

-
-
-
-
-
-
-
-

0
5
17
20
9
13
28
8

0
1
1
0
4
2
0

14
17

26

5
2

5

25

2

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→2 7→5
pass 1 pass 2 pass 3 (converged, no further changes, so stop here)

Order of edge relaxations

Reverse order of edge
relaxations will result
in slower convergence

Dijkstra's Algorithm vs. Bellman-Ford
Algorithm

 Dijkstra's Algorithm:
 Uses a priority queue to select the next vertex to process.
 Greedily selects the vertex with the smallest tentative distance to source

vertex.
 Works only on graphs with non-negative edge weights.

 Bellman-Ford Algorithm:
 Iteratively relaxes all edges V-1 times.
 Does not use a priority queue.
 Can handle graphs with negative edge weights, and can detect negative

cycles.
 Dijkstra's algorithm is faster and more efficient for graphs with non-

negative weights; Bellman-Ford Algorithm is more versatile as it
can handle negative weights and detect negative cycles, albeit at the
cost of lower efficiency.

Dijkstra’s Algorithm does not work for Negative
Edge Weights

 Dijkstra’s Algorithm is greedy and optimal: any vertex that has been visited should have its
shortest distance to the source. After visiting A, C, D, we have got D’s shortest distance to A is
2, but after visiting D, D’s distance to A is updated to -10, which violates the greedy optimal
assumption of Dijkstra’s Algorithm. Even if you update D’s distance to A to -10, its downstream
vertex E’s distance will not be updated.

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Visit A Visit C

N SD PN

A 0

B 10 A

C 1 A

D ∞
E ∞

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E ∞

Visit D

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E 3 D

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E 3 D

Visit E

E’s SD is not
updated and
Incorrect

A

B

C
1

10

D

-20

1

E1

Visit B

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E 3 D

Bellman Ford Algorithm works for Negative
Edge Weights

 We run for V-1=3 iterations, then run one more iteration with no change. Hence we
conclude that The Bellman-Ford algorithm successfully calculated the shortest paths from
vertex A to all other vertices. The shortest path from vertex A to vertex D goes through
vertex B with a total cost of -10. There are no negative weight cycles.

 Suppose edge update order AB, AC, BD, CD, DE

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Iter 1 Iter 2

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

No change
converged

E1

Topological Sort for Shortest Paths in Edge-
weighted DAG

 Suppose that a graph is a Directed Acyclic Graph (DAG), i.e., it has no
directed cycles. It is easier and faster to find shortest paths than in a general
digraph.

 Idea: Consider vertices in topological order. Relax all outgoing edges from
that vertex

 Initialize dist[] = {∞,∞, ….} and dist[s] = 0 where s is the source vertex.
 Create a topological order of all vertices.
 For every vertex u in topological order
 For every adjacent vertex v of u
 if (dist[v] > dist[u] + weight(u, v)) //relax edge uv
 dist[v] = dist[u] + weight(u, v)

 Time Complexity: Time complexity of topological sort is O(V+E). After
finding topological order, the algorithm process all vertices and for every
vertex, it runs a loop for all adjacent vertices. Total adjacent vertices in a
graph is O(E), so the double for loop has complexity O(V+E). Therefore,
overall time complexity is O(V+E).

Shortest Paths in Edge-weighted DAG: Correctness Proof

Proposition. Topological sort algorithm computes SPT in any edge-

weighted DAG in time proportional to E + V.

Pf.

 Each edge e = v→w is relaxed exactly once (when v is relaxed),

- leaving distTo[w] ≤ distTo[v] + e.weight().

 Inequality holds until algorithm terminates because:

- distTo[w] cannot increase

- distTo[v] will not change

 Thus, upon termination, shortest-paths optimality conditions hold.

because of topological order, no edge
pointing to v will be relaxed after v is relaxed

distTo[] values are monotone decreasing

edge weights
can be negative!

Topological Sort Example 1

 Consider this DAG and a topological order ADBCEF

Visit A

Visit D

Initialize

Visit C

Visit E

Visit B

8 CC

Topological Sort Example 2

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

v distTo[]

0
1
2
3
4
5
6
7

∞
∞
∞
∞
∞
∞
∞
∞

v edgeTo[]

0
1
2
3
4
5
6
7

-
-
-
-
-
-
-
-

0
5
17
20
9
13
29
8

0
1
1
0
4
4
0

15
17

26

7
2

5

14

25

5

2

0 1 4 7 5 2 3 6

 Consider this DAG and a topological order 01475236

Topological Sort Example 3

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Visit A Visit B

N SD PN

A 0

B 10 A

C 1 A

D ∞
E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

E1

Visit C

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit E

Consider topological order ABCDE

Topological Sort Example 3

A

B

C
1

10

D

-20

1

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞

Visit A Visit C

N SD PN

A 0

B 10 A

C 1 A

D ∞
E ∞

N SD PN

A 0

B 10 A

C 1 A

D 2 C

E ∞

E1

Visit B

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E ∞

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit D

N SD PN

A 0

B 10 A

C 1 A

D -10 B

E -9 D

Visit E

Consider topological order ACBDE

Longest Paths in Edge-weighted DAG
Formulate as a shortest paths problem in edge-weighted DAGs.
 Negate all weights.
 Find shortest paths.
 Negate weights in result.

Topological sort algorithm for DAGs works even with negative weights.
For general graphs, the longest paths problem is an unsolved problem (exponential time
at best)

equivalent: reverse sense of equality in relax()

shortest paths input

5->4 0.35 5->4 -0.35
4->7 0.37 4->7 -0.37
5->7 0.28 5->7 -0.28
5->1 0.32 5->1 -0.32
4->0 0.38 4->0 -0.38
0->2 0.26 0->2 -0.26
3->7 0.39 3->7 -0.39
1->3 0.29 1->3 -0.29
7->2 0.34 7->2 -0.34
6->2 0.40 6->2 -0.40
3->6 0.52 3->6 -0.52
6->0 0.58 6->0 -0.58
6->4 0.93 6->4 -0.93

longest paths input

s

Single Source Shortest-paths Algorithms
Summary

Algorithm Restriction Worst-Case
Complexity

Dijkstra
(Fibonacci

heap)

Undirected or directed graph; no negative
weights/cycles

O(V log V + E)

Bellman-Ford Directed graph with negative weights; undirected
graph with no negative weights (since a negative
weight edge forms a negative cycle by itself)

O(EV)

Topological
Sort

Directed Acyclic Graph (DAG) (directed graph, no
cycles)

O(E+V)

Floyd Warshall Algorithm for all-pairs
shortest paths

 The Floyd Warshall Algorithm is an all pair shortest path algorithm unlike
Dijkstra and Bellman Ford which are single source shortest path
algorithms.

 It works for both the directed and undirected weighted graphs. But, it does
not work for the graphs with negative cycles

 It follows Dynamic Programming approach to check every possible path
going via every possible vertex in order to calculate shortest distance
between every pair of vertices.

 For k = 0 to n – 1
 For i = 0 to n – 1
 For j = 0 to n – 1
 dist[i, j] = min(dist[i, j], dist[i, k] + dist[k, j])

 // Update dist[i, j] if shortcut through vertex k has shorter path
 where i = source vertex, j = Destination vertex, k = Intermediate vertex

 Time Complexity: O(V3), where V is the number of vertices in the graph
and we run three nested loops each of size V

Floyd Warshall Algorithm is Dynamic
Programming

 Floyd Warshall Algorithm is a Dynamic Programming based algorithm. It
finds all pairs shortest paths using following recursive nature of problem.
For every pair (i, j) of source and destination vertices respectively, there are
two possible cases. 1) k is not an intermediate vertex in shortest path from i
to j. We keep the value of dist[i][j] as it is. 2) k is an intermediate vertex in
shortest path from i to j. We update the value of dist[i][j] as dist[i][k] +
dist[k][j]. The following figure shows the above optimal substructure
property in the all-pairs shortest path problem, which enables the use of
dynamic programming.

Floyd Warshall Algorithm Example

 Step 1: Initialize the dist[][] matrix using the input graph
such that dist[i][j]= weight of edge from i to j, also
dist[i][j] = ∞ if there is no edge from i to j.

A B C D E
A 0 4 ∞ 5 ∞
B ∞ 0 1 ∞ 6
C 2 ∞ 0 3 ∞
D ∞ ∞ 1 0 2
E 1 ∞ ∞ 4 0

 Step 2: Treat vertex A as an intermediate vertex and
calculate the dist[][] for every {i,j} vertex pair using the
formula:

 dist[i][j] = min(dist[i][j], dist[i][A] + dist[A][j])

A B C D E

A 0 4 ∞ 5 ∞
B ∞ 0 1 ∞ 6

C 2 ∞ 0 3 ∞
D ∞ ∞ 1 0 2

E 1 ∞ ∞ 4 0

A B C D E

A 0 4 ∞ 5 ∞
B ∞ 0 1 ∞ 6

C 2 6 0 3 ∞
D ∞ ∞ 1 0 2

E 1 5 ∞ 4 0

 Step 3: Treat vertex B as an intermediate vertex and
calculate the dist[][] for every {i,j} vertex pair using the
formula:
dist[i][j] = minimum (dist[i][j], dist[i][B] + dist[B][j])

A B C D E

A 0 4 ∞ 5 ∞
B ∞ 0 1 ∞ 6

C 2 6 0 3 ∞
D ∞ ∞ 1 0 2

E 1 5 ∞ 4 0

A B C D E

A 0 4 5 5 10

B ∞ 0 1 ∞ 6

C 2 6 0 3 12

D ∞ ∞ 1 0 2

E 1 5 6 4 0

 Step 4: Treat vertex C as an intermediate vertex and
calculate the dist[][] for every {i,j} vertex pair using the
formula:
dist[i][j] = minimum (dist[i][j], dist[i][C] + dist[C][j])

A B C D E

A 0 4 5 5 10

B 3 0 1 4 6

C 2 6 0 3 12

D 3 7 1 0 2

E 1 5 6 4 0

A B C D E

A 0 4 5 5 10

B ∞ 0 1 ∞ 6

C 2 6 0 3 12

D ∞ ∞ 1 0 2

E 1 5 6 4 0

 Step 5: Treat vertex D as an intermediate vertex and
calculate the dist[][] for every {i,j} vertex pair using the
formula:
dist[i][j] = minimum (dist[i][j], dist[i][D] + dist[D][j])

A B C D E

A 0 4 5 5 7

B 3 0 1 4 6

C 2 6 0 3 5

D 3 7 1 0 2

E 1 5 5 4 0

A B C D E

A 0 4 5 5 10

B 3 0 1 4 6

C 2 6 0 3 12

D 3 7 1 0 2

E 1 5 6 4 0

 Step 6: Treat vertex E as an intermediate vertex and
calculate the dist[][] for every {i,j} vertex pair using the
formula:
dist[i][j] = minimum (dist[i][j], dist[i][E] + dist[E][j])

A B C D E

A 0 4 5 5 7

B 3 0 1 4 6

C 2 6 0 3 5

D 3 7 1 0 2

E 1 5 5 4 0

A B C D E

A 0 4 5 5 7

B 3 0 1 4 6

C 2 6 0 3 5

D 3 7 1 0 2

E 1 5 5 4 0

 Step 7: Since all the vertices have been treated as an
intermediate vertex, we can now return the updated
dist[][] matrix as our answer matrix.

Johnson’s Algorithm for all-pairs shortest
paths

 Idea: run Dijkstra’s Single Source shortest path algorithm with
every vertex as the source.

 Dijkstra’s algorithm doesn’t work for negative weight edge.
The idea of Johnson’s algorithm is to reweight all edges and
make them all positive, then run Dijkstra’s algorithm with
every vertex as the source.
 We can run Bellman-Ford algorithm with every vertex as the source

without reweighting, since Bellman-Ford algorithm can handle
negative edge weights, but the time complexity is much higher than
running Dijkstra’s algorithm.

 How to transform a given graph into a graph with non-
negative weight edges without changing the shortest paths?

Example 1: Increase weight of every edge
by a constant?

 True or False: In a weighted graph, assume that the shortest path from source s
to destination t is correctly calculated using a shortest path algorithm. If we
increase weight of every edge by a constant, the shortest path always remains
same.

 False. See the following counterexample. There are 4 edges sa, ab, bt and st
with weights 1, 1, 1 and 4 respectively. The shortest path from s to t is sabt with
cost 3. If we increase weight of every edge by 1, the shortest path changes to st
with cost 5.

 Similarly for negative weight edges. There are 4 edges sa, ab, bt and st with
weights -1, -1, -1 and -2 respectively. The shortest path from s to t is sabt with
cost -3. If we increase weight of every edge by 1, the shortest path changes to st
with cost -1.

as b t
1 1 1

4

as b t
2 2 2

5

as b t- 1

-2

as b t
0 0 0

-1

- 1 - 1

Double the original weights?

 True or False: Is the following statement valid about shortest
paths? Given a graph, suppose we have calculated shortest
path from a source to all other vertices. If we modify the graph
such that weights of all edges becomes double of the original
weight, then the shortest path remains same, and only the total
weight of path changes.

 True. The shortest path remains same. It is like if we change
unit of distance from meter to kilo meter, the shortest paths do
not change. But this does not make weights positive.

Johnson’s algorithm for All-pairs Shortest
Paths

1. Let the given graph be G. Add a dummy source vertex d, and add edges
with weight 0 from d to all vertices of G. Let the modified graph be G’.

2. Run Bellman-Ford algorithm on G’ with d as the source. Let the shortest
distances calculated by Bellman-Ford be h[0], h[1], .. h[V-1]. If we find a
negative weight cycle, then return. (We run Bellman-Ford algorithm since
it can handle negative edge weights.)

3. Reweight the edges of the original graph. For each edge (u, v), assign the
new weight as w'(u, v) = w(u, v) + h[u] – h[v], which is greater than or
equal to 0.

4. Remove the added dummy vertex d, and run Dijkstra’s algorithm with
every vertex as the source to obtain all-pairs shortest paths. Subtract h[u] –
h[v] from length of each shortest path to obtain the lengths of shortest paths
in the original graph.

Time complexity: Johnson’s algorithm uses both Dijkstra and Bellman-Ford as
subroutines. The main steps in the algorithm are Bellman-Ford Algorithm
called once and Dijkstra called V times. Time complexity of Bellman Ford is
O(VE) and time complexity of Dijkstra is O(V log V + E). So overall time
complexity is O(V2 log V + VE).

Johnson’s Algorithm: Proof
 The following property is always true since h[]

values are the shortest distances from the dummy
source code d:
 h[v] <= h[u] + w(u, v)

 The property states that the shortest distance from u
to v must be smaller than or equal to the shortest
distance from s to u plus edge weight w(u, v).
Because of this inequality, the new weights w’(u, v)
= w(u, v) + h[u] – h[v] must be greater than or equal
to 0.

 After reweighting, and all weights become non-
negative, and all set of paths between any two
vertices s and t is increased by the same amount,
hence the shortest paths remain the same as the
original graph before reweighting.
 Consider any path between two vertices s and t, the

weight of every path is increased by h[s] – h[t], since the
added h[] values for all intermediate vertices on the path
from s to t cancel each other out.

u vw(u,v)

h(u)

d
h(v)

Johnson’s Algorithm Example 2
 We add a dummy source vertex d and add edges with weight 0 from s to all

vertices of the original graph.
 We run Bellman-Ford algorithm to calculate the shortest distances from d

to all other vertices. The shortest distances from d to 0, 1, 2 and 3 are
 h[0]=0 (path d0), h[1]=-5 (path d01), h[2]=-1 (path d012), h[3]=0

(path d3)
 Once we get these distances, we remove vertex d and reweight each edge

uv as: w'(u, v) = w(u, v) + h[u] – h[v].
 w’(0,1)=0, w’(1,2)=0, w’(2,3)=0, w’(0,3)=3, w’(0,2)=3

 Since all weights are greater than or equal to 0 now, we can run Dijkstra’s
shortest path algorithm with every vertex as the source.

h[0]=0 h[1]=-5

h[3]=0 h[2]=-1

d

Johnson’s Algorithm Example 2 Con’t
 Let’s run Dijkstra’s shortest path algorithm with vertex 0 as the source. We

can obtain the shortest paths shown on the left
 We then subtract h[u] – h[v] from length of each shortest path from u to v

to obtain the lengths of shortest paths in the original graph shown on the
right, e.g., SD(02)=0-(h[0]-h[2])=0-(0-(-1))=-1)

N SD’ PN

0 0

1 0 0

2 0 1

3 0 2

N SD PN

0 0

1 -5 0

2 -1 1

3 0 2
Shortest paths from 0
in modified graph

Shortest paths from 0
in original graph

Johnson’s Algorithm: Example 1 Revisited
 w’(s, a) = w(s, a) + h[s] – h[a] = -1 + 0 - (-1) = 0
 w’(a, b) = w(a, b) + h[a] – h[b] = -1 + -1 - (-2) = 0
 w’(b, t) = w(b, t) + h[b] – h[t] = -1 + -2 - (-3) = 0
 w’(s, t) = w(s, t) + h[s] – h[t] = -2 + 0 - (-3) = 1
 w’(s, a) + w’(a, b) + w’(b, t) = w(s, a) + w(a, b) + w(b, t) + h[s] – h[t] = -1 -1 -1 + 0 – (-

3) = 0
 w’(s, t) = w(s, t) + h[s] – h[t] = -2 + 0 – (-3) = 1
 For example, the shortest path from s to t is sabt, same as the original graph before

reweighting. Its length in the original graph is 0 – (h[s] – h[t]) = 0 – (0 – (-3)) = -3.

as b t- 1

-2

as b t
-1 + 0 - (-1) = 0

-1 + -1 - (-2) = 0
-1 + -2 - (-3) = 0

-2 + 0 - (-3) = 1

- 1 - 1

0 0 0 0

H[s]=0 H[a]=-1 H[b]=-2 H[t]=-3

d

N SD PN

s 0

a -1 s

b -2 a

t -3 b

N SD’ PN

s 0

a 0 s

b 0 a

t 0 b
Shortest paths from s in
modified graph (right)

Shortest paths from s
in original graph (left)

Video Tutorials

 Dijkstras Shortest Path Algorithm Explained | With Example | Graph
Theory
 https://www.youtube.com/watch?v=bZkzH5x0SKU
 The following lecture slides are based on this video

 Dijkstra's algorithm in 3 minutes
 https://www.youtube.com/watch?v=_lHSawdgXpI

 Bellman-Ford in 4 minutes — Theory
 https://www.youtube.com/watch?v=9PHkk0UavIM

 Bellman-Ford in 5 minutes — Step by step example
 https://www.youtube.com/watch?v=obWXjtg0L64

 Shortest Path Algorithms Explained (Dijkstra's & Bellman-Ford
https://www.youtube.com/watch?v=AE5I0xACpZs

 Floyd–Warshall algorithm in 4 minutes
 https://www.youtube.com/watch?v=4OQeCuLYj-4

https://www.youtube.com/watch?v=bZkzH5x0SKU
https://www.youtube.com/watch?v=_lHSawdgXpI
https://www.youtube.com/watch?v=9PHkk0UavIM
https://www.youtube.com/watch?v=obWXjtg0L64
https://www.youtube.com/watch?v=AE5I0xACpZs
https://www.youtube.com/watch?v=4OQeCuLYj-4

Tutorials from Geeksforgeeks

 https://www.geeksforgeeks.org/introduction-to-dijkstras-
shortest-path-algorithm/

 https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
 https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-

16/
 https://www.geeksforgeeks.org/johnsons-algorithm/

https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-path-algorithm/
https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-path-algorithm/
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
https://www.geeksforgeeks.org/johnsons-algorithm/

Quiz

 Which of the following algorithm can be used to efficiently
calculate single source shortest paths in a Directed Acyclic
Graph?
 Dijkstra
 Bellman-Ford
 Topological Sort

 ANS: Topological Sort
 Topological Sort has complexity O(V+E), which is the most

efficient algorithm among the three

Quiz

 Given a graph where all edges have positive weights, the
shortest paths produced by Dijsktra and Bellman Ford
algorithm may be different but path weight would always be
same.

 ANS: True
 Dijkstra and Bellman-Ford both work fine for a graph with all

positive weights, but they are different algorithms and may
pick different edges for shortest paths.

Quiz

 Match the following
 Group A
 a) Dijkstra's single shortest path algo
 b) Bellmen Ford's single shortest path algo
 c) Floyd Warshall's all pair shortest path algo
 Group B
 p) Dynamic Programming
 q) Backtracking
 r) Greedy Algorithm

 Dijkstra is a greedy algorithm where we pick the minimum distant
vertex from not yet finalized vertices. Bellman Ford and Floyd
Warshall both are Dynamic Programming algorithms where we
build the shortest paths in bottom up manner.

Quiz

 Let G be a directed graph whose vertex set is the set of numbers from 1 to
100. There is an edge from a vertex i to a vertex j if either j = i + 1 or j = 3i.
The minimum number of edges in a path in G from vertex 1 to vertex 100
is

 A. 4 B. 7 C. 23 D. 99
 ANS: 7
 The task is to find minimum number of edges in a path in G from vertex 1

to vertex 100 such that we can move to either i+1 or 3i from a vertex i.
 Since the task is to minimize number of edges, we would prefer to follow

3*i. Let us follow multiple of 3. 1 => 3 => 9 => 27 => 81, now we can't
follow multiple of 3 anymore. So we will have to follow i+1. This solution
gives a long path.

 What if we begin from end, and we reduce by 1 if the value is not multiple
of 3, else we divide by 3. 100 => 99 => 33 => 11 => 10 => 9 => 3 => 1

 So we need total 7 edges.

	Lecture 11�Shortest Paths
	Lecture Goals
	Shortest Paths in an Edge-weighted Digraph
	Shortest Paths in an Unweighted Digraph
	Edge Relaxation
	Generic Shortest-paths Algorithm
	Dijkstra's Algorithm
	Dijkstra’s Algorithm:	Correctness Proof
	Toy Example: find shortest path starting from source vertex S for undirected graph�SD: Shortest Distance. PN: Previous Node
	Toy Example: find shortest path starting from source vertex S for directed graph
	Example Graph
	Initialize
	Visit vertex A
	Visit vertex B
	Visit vertex D
	Visit vertex E
	Visit vertex F
	Visit vertex C
	End of Algorithm
	Getting the Shortest Path from A to C
	Dijkstra’s Algorithm Example 2
	Initialize
	Visit vertex A
	Visit vertex C
	Visit vertex B
	Visit vertex E
	Visit vertex D
	Dijkstra’s Algorithm Example 3
	Dijkstra’s Algorithm Example 4
	Slide Number 30
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm Proof of Correctness
	Bellman-Ford Algorithm with Negative Cycle Detection
	Time Complexity of Bellman-Ford Algorithm
	Bellman-Ford Algorithm Example 1
	Dijkstra's Algorithm vs. Bellman-Ford Algorithm
	Dijkstra’s Algorithm does not work for Negative Edge Weights
	Bellman Ford Algorithm works for Negative Edge Weights
	Topological Sort for Shortest Paths in Edge-weighted DAG
	Shortest Paths in Edge-weighted DAG: Correctness Proof
	Topological Sort Example 1
	Slide Number 42
	Slide Number 43
	Topological Sort Example 2
	Topological Sort Example 3
	Topological Sort Example 3
	Longest Paths in Edge-weighted DAG
	Single Source Shortest-paths Algorithms Summary
	Floyd Warshall Algorithm for all-pairs shortest paths
	Floyd Warshall Algorithm is Dynamic Programming
	Floyd Warshall Algorithm Example
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Johnson’s Algorithm for all-pairs shortest paths
	Example 1: Increase weight of every edge by a constant?
	Double the original weights?
	Johnson’s algorithm for All-pairs Shortest Paths
	Johnson’s Algorithm: Proof
	Johnson’s Algorithm Example 2
	Johnson’s Algorithm Example 2 Con’t
	Johnson’s Algorithm: Example 1 Revisited
	Video Tutorials
	Tutorials from Geeksforgeeks
	Quiz
	Quiz
	Quiz
	Quiz

