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Lecture Goals
 Compare the Graph ADT with other ADTs
 Define basic notions associated with graphs
 Implement graphs using an adjacency matrix representation and an 

adjacency list representation
 We introduce two classic algorithms for searching a graph—depth-

first search and breadth-first search. 
 we introduce a depth-first search based algorithm for computing the 

topological sort of an acyclic digraph. 



ADT of Graph

Unstructured structures 

Sets

Sequential, linear structures 

Arrays, linked lists
Hierarchical structures

TreesUseful for 
 iterating over all elements,
 accessing via index Can indicate common structure in key

 for example, the prefix in tire

Principle: Basic objects & Relationships between them

Graph is a generalization of this principle

Basic objects: vertices, nodes 

Relationships between them: edges, arcs, links



Examples of Graphs

Basic objects: websites
Relationships between them: hyperlinks

Basic objects: people
Relationships between them: friends

Basic objects: cities
Relationships between them: nonstop flights

Basic objects: tasks
Relationships between them: dependencies

Some general questions related to graphs:
 How to create a graph?
 Are two vertices adjacent? 
 Is the graph dense? sparse? 
 How far are two vertices in the graph?
 How many components are there in the graph?
 Can we find a vertex with particular key value?



Graph Definitions
Basic objects: vertices, nodes 

Relationships between them: edges, arcs, links
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What are the neighbors of the 
vertex 4? 
A. 3,4,5,6 
B. 3,5,6 
C. 3,6 
D. 5

Path: sequence of vertices and edges that depicts hopping along graph

For which pair of vertices is there a path in the graph 
starting at the first and ending at the second?
 A. vertex 1 and vertex 3 
B. vertex 4 and vertex 6 
C. vertex 6 and vertex 5

Size of graph: |V| + |E|
|V|: number of vertices
|E|: number of edges

edges are symmetric

start point

end point

cost

Neighbor: u is a neighbor of v if:
there is an edge from u to v
 OR
there is an edge from v to u

What's the maximum number of edges in 
a directed and undirected graph with n vertices?
 Assume there are no self-loops (i.e. edges 

from a node back to itself).
 Assume there there is at most one edge from 

a given start vertex to a given end vertex.

n*(n-1) n*(n-1)/2



Implementing Graphs in Java
Basic objects: vertices, nodes 
Relationships between them: edges, arcs, links

Label by integers

public abstract class Graph {
 private int numVertices;
 private int numEdges;

 public Graph() {
  numVertices = numEdges = 0;
 }

 public int getNumVertices() {
  return numVertices;
 }

 public int getNumEdges() {
  return numEdges;
 }

 public void addVertex() {
  implementAddVertex();
  numVertices++;
 }

 public abstract void implementAddVertex();

 public abstract List<Integer> getNeighbors(int v);
}

size of a graph data associated with any graph 

methods that ought to be 
available with any graph. 

leave implementation of key 
functionalities to subclasses

For example, which cities we can reach with nonstop flight?



public class GraphAdjMatrix extends Graph {
private int[][] adjMatrix;

   public void implementAddEdge(int v, int w) {
      adjMatrix[v][w] = 1;
   }
   public void implementAddVertex() {
      int v = getNumVertices();
      if (v >= adjMatrix.length) {
     int[][] newAdjMatrix = new int[v * 2][v * 2];
         for (int i = 0; i < adjMatrix.length; i++) {
        for (int j = 0; j < adjMatrix.length; j++) {
       newAdjMatrix[i][j] = adjMatrix[i][j];
    }
     }
     adjMatrix = newAdjMatrix;
      }
   }}

Graph Representation: Adjacency Matrix

0

1
4

3

2

5

V = {0, 1, 2, 3, 4, 5}

0
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0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0

How long does it take to test 
whether there is an edge between 
vertex v and vertex w in the graph?

O(1)

 Algebraic representation of graph 
structure. 

 Fast to test for edges. 
 Fast to add/remove edges. 
 Slow to add/remove vertices. 
 Requires a lot of memory.

relabel vertices starting at 0 to use as index
start point

end point

row index

Column index

array entry > 1: 
- multiple edges, 
- or weighted edges

Symmetric entry
5 edges in graph 

→ 5 nonzero entries in adjacency matrix

1 2 3 4 5

0 0

expand the 2-d array

The grid (2-d array) is indexed by the vertices labels and 
stores information in a particular location based on whether 
these two vertices have an edge between them or not

sparse
Graph Implementations
https://www.youtube.com/watch?v=2guA5uMEmZQ 

v*2 instead of v+1 to 
amortize cost of adding 
new vertices in the future.

https://www.youtube.com/watch?v=2guA5uMEmZQ


Graph Representation: Adjacency List
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0 → {1} 

1 → null 

2 → {3} 

3 → null 

4 → {3}

5 → {3, 4} 

 Easy to add vertices. 
 Easy to add/remove edges. 
 May use a lot less memory than 

adjacency matrices.

public class GraphAdjList extends Graph {
private Map<Integer, ArrayList<Integer>> adjListsMap;

 public void implementAddVertex() {
  int v = getNumVertices();
  ArrayList<Integer> neighbors = new ArrayList<Integer>();
 adjListsMap.put(v, neighbors);
 }

 public void implementAddEdge(int v, int w) {
 (adjListsMap.get(v)).add(w);
 }
}

Motivation for new representation: 
 want to avoid storing information on 

edges that aren't in the graph
 Edges connect a vertex to its neighbors

vertex → {neighbors} 

Neighbour can be reached by one hop

- Sparse graph: O(1) edges for each vertex
- most applications use sparse graphs

Is it also fast?

Yes. Operations are all O(1)



Some Practices
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0 How much storage is required to represent a 
graph as a matrix? (Big-O, Tightest Bound) 
A. |V|           B. |E|  
C. |V|+|E|     D. |V|2
E. |E|2 

0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0

0   1    2   3    4   5    6 
0
1
2
3
4
5
6 

What would change if undirected?

Symmetric matrix, hence half of the 
matrix is redundant, but still O(|V|2)

0 0 1 1 0 0 0
0 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

0   1    2   3    4   5    6 
0
1
2
3
4
5
6 

How much storage is required to represent a graph 
as an adjacency list? (Big-O, Tightest Bound) 
A. |V|           B. |E|  
C. |V|+|E|     D. |V|2
E. |E|2 

0 → {3} 

1 → {2} 

2 → {0} 

3 → {4} 

4 → null

5 → {4} 

6 → {4, 5} 

O(|V|)

O(|E|)

Much more efficient for 
sparse graphs!

For dense graphs with lots of 
edges, |E| will be as large as |V|2 

Symmetric matrix



Find the Neighbors
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Neighbors: vertices that are adjacent. 

In degree: number of incoming edges. 

Out degree: number of outgoing edges. 
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0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0

0 0
0 → {1} 

1 → null 

2 → {3} 

3 → null 

4 → {3}

5 → {3, 4} 

Which implementation makes finding 
the out degree more efficient?

Which implementation makes 
finding the in degree more efficient?

outgoing edge

incoming edge

there is edge in between

count the number of 
nonzero slots

return the size of list

count the number of 
occurrences in all lists

For dense graphs without multiple edges between pairs of vertices, |E| 
is O(|V|2). so the adjacency matrix representation is faster. For sparse 
graphs, |E| = O(|V|) so both representations have the same performance.Matrix: O(|V|) List: O(1)

Matrix: O(|V|) List: O(|E| + |V|)

0 1 2 3 4 5



Coding getOutNeighbors (outgoing) 

public class GraphAdjList extends Graph {

 private Map<Integer,ArrayList<Integer>> adjListsMap;

 public List<Integer> getOutNeighbors(int v) {
  return adjListsMap.get(v);
  return new ArrayList<Integer>(adjListsMap.get(v));
 }
}

public class GraphAdjMatrix extends Graph {

 private int[][] adjMatrix;

 public List<Integer> getOutNeighbors(int v) {
  List<Integer> neighbors = new ArrayList<Integer>();
  for (int i = 0; i < getNumVertices(); i++) {
   for (int j=0; j< adjMatrix[v][i]; j++)
   if (adjMatrix[v][i] > 0)
    neighbors.add(i);
  }
  return neighbors;
 }
}
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0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0

0   1    2   3    4   5    6 
0
1
2
3
4
5
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0 → {3} 

1 → {2} 

2 → {0} 

3 → {4} 

4 → null

5 → {4} 

6 → {4, 5} 

// list to return

// return v’s list

Returning the array pointer allows the caller to 
modify the list contents. Not good encapsulation.

// return a COPY of v’s list

What does this change do?
A. It's a change in the code but will not materially affect the output.
B. It allows multiple edges between two vertices.
C. It will have some other effect on the code behavior.

array entry > 1: 
- multiple edges

2

getOutNeighbors(6)

getOutNeighbors(0)



Coding 2-Hop Neighbors (outgoing)
1

2 3

0
public class GraphAdjList extends Graph {

 private Map<Integer,ArrayList<Integer>> adjListsMap;

 public List<Integer> getDistance2 (int v) {
  List<Integer> distance2 = new ArrayList<>();

  // Loop through oneHop and get the neighbors of each 
  for(int u : getOutNeighbors(v)){
   distance2.addAll(getOutNeighbors(u));
  }
  return distance2;
 }
}

public class GraphAdjMatrix extends Graph {

 private int[][] adjMatrix;

 public List<Integer> getDistance2 (int v) {
  List<Integer> distance2 = new ArrayList<Integer>();

  // Loop through oneHop and get the neighbors of each 
  for(int u : getOutNeighbors(v)){
   distance2.addAll(getOutNeighbors(u));
  }
  return distance2;
 }
}

0 → {1, 2} 

1 → {3} 

2 → {1, 3} 

3 → null 

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0
1
2
3 

Find all two-hop neighbors from given vertex 

0   1    2   3  



Coding 2-Hop Neighbors (Matrix Multiplication)

1

2 3

0

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0
1
2
3 

0   1    2   3  

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

2

= matrix whose entries are two-hop neighbors!

Matrix multiplication for finding two-hop neighbors

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

=

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

0*0 + 1*0 + 1*0 + 0*0 = 0

0*1 + 1*0 + 1*1 + 0*0 = 1 

0*1 + 1*0 + 1*0 + 0*0 = 0 

0*0 + 1*1 + 1*1 + 0*0 = 2 

0*0 + 0*0 + 0*0 + 1*0 = 0 

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

0
1
2
3 

0   1    2   3  

For all the vertices in the graph

Dot product

Matrix multiplication is well studied and optimized in 
software and hardware, and can be done very fast

Node 3 is a two-hop neighbor of 
node 0 along two different paths



Coding 2-Hop Neighbors (Matrix 
Multiplication)

 Consider the multiplication of the first row of the left matrix 
wit the last column of the right matrix:  
 0*0 + 1*1 + 1*1 + 0*0 = 2. 

 This means that there are two 2-hop paths from 1 to 3:
 Path 01 3 consisting of two edges 01 & 1 3, corresponding to 

the first term of 1*1
 Path 02 3 consisting of two edges 02 &2 3, corresponding to 

the second term of 1*1

1

2 3

00 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

=

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

Path 01 3

Path 02 3



Summary of Digraph Representations
In practice. Use adjacency-lists representation.
 Algorithms based on iterating over vertices adjacent from v.
 Real-world graphs tend to be sparse (not dense).

proportional to V proportional to V2

representation space
insert edge  
from v to w

edge from  
v to w?

iterate over vertices  
adjacent from v?

adjacency matrix V 2 1 V

adjacency lists E + V 1 outdegree(v) outdegree(v)

†  disallows parallel edges

sparse (E = 200) dense (E = 3000)

Two graphs (V= 50)

1



DFS vs. BFS



Represent Problems as Graphs: Maze Exploration

intersection passage

Goal. Explore every intersection in the maze. 

Maze graph. Vertex = intersection. Edge = passage.



Depth-First Search (DFS)
DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked  

vertices w adjacent to v.

Goal.  Systematically traverse a graph.

Typical applications.
 Find all vertices connected to a given source vertex.
 Find a path between two vertices.

87
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10 11

0
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21
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Java execution stack is used to keep track of where to search next

0
1
2
3
4
5
6
7
8
9

10
11

v marked[ ]

F
F
F  
F  
F  
F  
F 
F
F
F
F
F

edgeTo[ ]

–   

–
–
–
–
–
–
–
–
–
–
–

T 0

0
5
6
4

0

Data structures.
 Boolean array marked[] to mark vertices.
 Integer array edgeTo[] to keep track of paths.

 (edgeTo[w] == v) means that edge v-w taken 
to discover vertex w

dfs(0)
   dfs(6)
      dfs(4)
         dfs(5)
            dfs(3)
            3 done
         5 done
      4 done
   6 done
   dfs(2)
   2 done
   dfs(1)
   1 done
0 done

T

T
T

T
T
T



Depth-First Search: Java Implementation

public class DepthFirstPaths {

}

private boolean[] marked;  
private int[] edgeTo;  
private int s;

public DepthFirstPaths(Graph G, int s) {
...
dfs(G, s);

}

private void dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v))

if (!marked[w])
{

edgeTo[w] = v;  
dfs(G, w);

}
}

recursive DFS does the
work

marked[v] = true  if vconnected to s

find vertices connected to s

initialize data structures

edgeTo[v] = previous vertex on 
path from s to v

 Code for directed graphs identical to undirected one.



Depth-First Search Application: Flood Fill

Solution. 
 Build a grid graph.
 Vertex: pixel. 
 Edge: between two adjacent gray pixels. 
 Blob: all pixels connected to given pixel.

Problem. Flood fill is a flooding algorithm that determines and alters the area 
connected to a given node in a multi-dimensional array with some matching 
attribute.

https://en.wikipedia.org/wiki/Flood_fill 

https://en.wikipedia.org/wiki/Flood_fill


Reachability Application: Mark–Sweep Garbage Collector

Every data structure is a digraph.
 Vertex = object.
 Edge = reference.
 Roots: Objects known to be directly accessible by program (e.g., stack).
 Reachable objects: Objects indirectly accessible by program  (starting at a 

root and following a chain of pointers).
roots

Mark–sweep algorithm. [McCarthy, 1960]
Mark: mark all reachable objects.
Sweep: if object is unmarked, it is garbage (so 
add to free list).
Memory cost. Uses 1 extra mark bit per object 
(plus DFS stack).



Recall from Lecture 2-classes and objects in 
java

public class Location
{
 // Code omitted here
 public static void main(String[] args)

{ 
   Location loc1 = new Location(40.7, -73.6);
       Location loc2 = new Location(51.7 , -1.2);
   loc1 = loc2;
   loc1.latitude = 35.2;
   System.out.println(loc2.latitute + ”, " + loc2.longitude);

loc1 @1

loc2 @2

Location Object

40.7

-73.6

Latitude

Longitude

Location Object

51.7

-1.2

Latitude

Longitude

@1

@2

@2

35.2

$ 35.2, -1.2

After assignment loc1 = loc2, the 
Object Location(40.7, -73.6) is 
unreachable and should be 
garbage-collected.



Breadth-First Search (BFS)
BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.  

Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unmarked neighbors to the queue,  
and mark them.

0

4

2

1

5
3

0
1
2
3
4
5

v     marked[ ]     edgeTo[ ]    distTo[ ]

–
–
– 
–
– 
–

0
–
– 
–
– 
–

1
1
2
2
1

0
0
2
2
0

Queue

F
F
F
F  
F  
FT

T

T

T
T
T

s.distTo[v] stores the distance from s to v

0

2

1

5

3

4

distTo[v] = distTo[edgeTo[v]] + 1;



Breadth-First Search: Java Implementation
public class BreadthFirstPaths {

private boolean[] marked;  
private int[] edgeTo;  
private int[] distTo;
…

}

private void bfs(Graph G, int s) {  
Queue<Integer> q = new Queue<Integer>();  
q.enqueue(s);
marked[s] = true;  
distTo[s] = 0;

while (!q.isEmpty())  {  
int v= q.dequeue();
for (int w : G.adj(v)) {

if (!marked[w]) {  
q.enqueue(w);  
marked[w] = true;  
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;

}
}

}
}

initialize FIFO queue of 
vertices to explore

found new vertex w via edge v–w

Every undirected graph is a 
digraph (with edges in both 
directions). 

 Code for directed graphs identical to undirected one.
 Function G.adj(v) returns all neighbors in the edge arrow direction.

 DFS. Put unvisited vertices on a stack.  
 BFS. Put unvisited vertices on a queue.



Breadth-First Search Properties
Proposition. BFS examines vertices in increasing distance (number of edges) from s.

Proposition. In any connected graph, BFS computes shortest paths (fewest number 
of edges) from s to all other vertices in time proportional to E + V.

Pf. [correctness]  Queue always consists of zero or more vertices of distance k from 
s, followed by zero or more vertices of distance k + 1.

4

2

1

5
3

graph G

4

3

dist = 2dist = 1

1

5

0 2

dist = 0

0

level-order

Pf. [running time]  Each vertex connected to s is visited once, and all its edges are 
checked.

s



Breadth-First Search Application: Web Crawler 

Goal.   Crawl web, starting from some root web page, say www.hofstra.edu.

Solution. [BFS with implicit digraph]
 Choose root web page as source s.
 Maintain a Queue of websites to explore.
 Maintain a SET of marked websites.
 Dequeue the next website and enqueue  

any unmarked websites to which it links.
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19 33
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http://www.princeton.edu/


Multiple-Source Shortest Paths Problem
Given a digraph and a set of source vertices, find 
shortest path from any vertex in the set to each 
other vertex, assuming all edges have weight 1.

Ex. S = { 1, 7, 10 }.
 Shortest path to 4 is 7 → 6 → 4.
 Shortest path to 5 is 7 → 6 → 0 → 5.
 Shortest path to 12 is 10 → 12.
 …

How to implement multi-source 
shortest paths algorithm?

Use BFS, but initialize by 
enqueuing all source vertices.

dist = 2dist = 1dist = 0

1

7

10

6

9

12

dist = 3

0

8

4

11

5

2

3



Connectivity Queries Problem
 Vertices v and w are connected if there is a path between them.
 In undirected graph, the relation "is connected to" is an equivalence 
relation:
 Reflexive: v is connected to v.
 Symmetric: if v is connected to w, then w is connected to v.
 Transitive: if v connected to w and w connected to x, then v 

connected to x.
 Goal. Preprocess undirected graph to answer queries of the form is v 
connected to w? in constant time while using adjacency list.
 A connected component is a maximal set of connected vertices.
 Given connected components, can answer queries in constant time.

public class CC

boolean 

int 

int

CC(Graph G) 

connected(int v, int w) 

count() 

id(int v)

find connected components in G 

are v and w connected? 

number of connected components 

component identifier for v
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1110

0

6

4

21

5

3

3 connected components

0

id[ ]
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Finding Connected Components with DFS
Goal.  Partition vertices into connected components.
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10 11
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Java execution stack

dfs(0)
   dfs(6)
      dfs(4)
         dfs(5)
            dfs(3)
            3 done
         5 done
      4 done
   6 done
   dfs(2)
   2 done
   dfs(1)
   1 done
0 done
dfs(7)
   dfs(8)
   8 done
7 done
dfs(9)
   dfs(10)
      dfs(11)
      11 done
   10 done
9 done

0
1
2
3
4
5
6
7
8
9

10
11

v marked[ ]

F
F
F  
F  
F  
F  
F 
F
F
F
F
F

id[ ]

–   

–
–
–
–
–
–
–
–
–
–
–

T 0

0
0
0
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0
T

T
T

T
T
T

T

T

T
T
T

0

2
2
2

1
1

Initialize all vertices v as unmarked.
For each unmarked vertex v, run DFS to identify all  
vertices discovered as part of the same component.

Connected components

Can also use BFS



Connected Components Application: Particle Detection

Given grayscale image of particles, identify "blobs."
 Vertex: pixel.
 Edge: between two adjacent pixels with grayscale value > 70.
 Blob: connected component of 20-30 pixels.

black = 0
white = 255

Particle tracking. Track moving particles over time.



Precedence Scheduling Problem
Goal. Given a set of tasks to be completed with precedence 
constraints,  in which order should we schedule the tasks?

0.     Algorithms 
1.     Complexity Theory 
2.     Artificial Intelligence 
3.     Intro to CS 
4.     Cryptography 
5.     Scientific Computing 
6.     Advanced Programming

tasks

Digraph model. vertex = task; edge = precedence constraint.

precedence constraint graph

0

1

4

52

6

3

feasible schedule

Topological sort. Redraw DAG(Directed acyclic graph) so all edges point upwards. 

DAG



Graph traversal with DFS: pre-order, post-
order

function preOrderTraversal(node) {
  if (node !== null) {
    visitNode(node);
    preOrderTraversal(node.left);
    preOrderTraversal(node.right);
  }
}

function postOrderTraversal(node) {
  if (node !== null) {
    postOrderTraversal(node.left);
    postOrderTraversal(node.right);
    visitNode(node);
  }
}

function preOrderTraversal(node) {
  if (node !== null) {
    visitNode(node);
    foreach(c ∈ node.children) {   
        preOrderTraversal(c);}
    }
}

function postOrderTraversal(node) {
  if (node !== null) {
 foreach(c ∈ node.children) {   
      postOrderTraversal(c);}
        visitNode(node);   
 }
}

Recall: Binary Tree traversal with DFS: pre-order, post-order 

Graph traversal with DFS: pre-order, post-order 



Topological Sort

 topological sortfor Directed Acyclic Graph (DAG) is a linear 
ordering of vertices such that for every directed edge u-v, 
vertex u comes before v in the ordering, i.e., all pair-wise 
precedence constraints are satisfied.

The first vertex in topological sortis 
always a vertex with an in-degree of 0 (a 
vertex with no incoming edges), i.e., 4 or 
5.  Possible topological sorts include
“5 4 2 3 1 0”, “4 5 2 3 1 0”, “4 5 0 2 3 1”, 
“5 2 3 4 1 0”, etc.

https://www.geeksforgeeks.org/topological-sorting/ 

https://www.geeksforgeeks.org/topological-sorting/
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Sort 

Example



Topological Sort Applications

 Task scheduling and project management.
 Dependency resolution in package management systems.
 Determining the order of compilation in software build 

systems with Makefile
 Deadlock detection in operating systems.
 Course scheduling in universities.



Topological Sort by DFS Post-Order 
Traversal

 Perform DFS Post-Order Traversal starting from a node with 
no incoming edges to get an ordered list of nodes, then reverse 
the node order to get a Topological Sort
 Upon finishing traversal starting from one node, restart from another 

unvisited node with no incoming edges
 This results in one of multiple possible Topological Sorts

 Intuition: DFS Post-Order Traversal outputs nodes from the 
deepest (furthest away from the starting node) to the starting 
mode, hence the reverse order is a  Topological Sort



Topological Sort Example
 Run depth-first search
 Return vertices in reverse postorder. Postorder

0

1

4

52

6

3

topological sort

dfs(0)
dfs(1)
dfs(4)
4 done

1 done
dfs(2)
2 done
dfs(5)
check 2

5 done
0 done
check 1
check 2
dfs(3)

check 2
check 4
check 5
dfs(6)
check 0
check 4

6 done
3 done
check 4
check 5
check 6
done

0
1
2
3
4
5
6

v marked[ ]

F
F
F  
F  
F  
F  
F T

T

T
T

T
T
T

Java execution stack

4 1 2 5 0 6 3

3 6 0 5 2 1 4

stack top

pop from the stack → reversed postorder

not a reachability problem

0



Example 1: Topological Sort
 Starting from node A: 
 Pre-order traversal is “A B F I J 

K E C G D H”. 
 Post-order traversal is “I K J F E 

B G C H D A”. 
 A topological sort is reverse 

order of Post-order traversal: “A 
D H C G B E F J K I”.

 Starting from a different node 
will give you a different 
topological sort, but all of them 
must start with A, since it must 
precede all the other nodes based 
on the DAG. 

 Any post-order traversal must 
visit A last, since all of A’s 
neighbors must be visited before 
visiting A.

Topological Sort Visualized and Explained
https://www.youtube.com/watch?v=7J3GadLzydI 

https://www.youtube.com/watch?v=7J3GadLzydI


Example 2: Topological Sort

 Starting from node 5:
 Pre-order traversal is “5 2 3 1 0 4”. 
 Post-order traversal is “1 3 2 0 5 4”. 
 A topological sort is reverse order of Post-

order traversal: “4 5 0 2 3 1”.
 Starting from node 4:

 Pre-order traversal is “4 0 1 5 2 3”
 Post-order traversal is “0 1 4 3 2 5”. 
 Another topological sort is reverse order of 

Post-order traversal: “5 2 3 4 1 0”.
 Starting from node 0:

 Pre-order traversal is “0 5 2 3 1 4”
 Post-order traversal is “0 1 3 2 5 4”. 
 Another topological sort is reverse order of 

Post-order traversal: “4 5 2 3 0”.
 You may try starting any other node.



Example 3: Topological Sort
 Starting from node A, post-order traversal is  “H, E, B, D, A, 

G, F, C”; Topological Sort is “C, F, G, A, D, B, E, H”
 Quiz: Starting from node C, post-order traversal is  “  ”; 

Topological Sort is “   ”

[61B SP24] Lecture 26 - MSTs (continued), Directed Acyclic Graphs
https://www.youtube.com/watch?v=HtXDt0gDvk4 

Graph
Topological Sort. All edges point to the right 
hence all precedence constraints are satisfied 

https://www.youtube.com/watch?v=HtXDt0gDvk4


Cycles and undirected edges 

 Why is topological sort not possible for graphs having cycles?
 Imagine a graph with 3 vertices and edges = {1 to 2 , 2 to 3, 3 to 1} 

forming a cycle. Now if we try to topologically sort this graph starting 
from any vertex, it will always create a contradiction to our definition. 
All the vertices in a cycle are indirectly dependent on each other hence 
topological sortfails.

 Why is topological sort not possible for graphs with undirected 
edges?
 Special case of a cycle. Undirected edge between two vertices u and v 

means, there is an edge from u to v as well as from v to u. Because of 
this both the nodes u and v depend upon each other and none of them 
can appear before the other in the topological sortwithout creating a 
contradiction.



Topological Sort: Java Implementation

} returns all vertices in
“reverse DFS postorder”

public class DepthFirstOrder {
private boolean[] marked;
private Stack<Integer> reversePostorder;

public DepthFirstOrder(Digraph G) {
reversePostorder = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)

if (!marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v) {
marked[v] = true;
for (int w : G.adj(v))

if (!marked[w]) dfs(G, w);  
reversePostorder.push(v);

}

public Iterable<Integer> reversePostorder()
{ return reversePostorder; }

Proposition. A digraph has a topological sort 
iff no directed cycle. 
Pf.  
 If directed cycle, topological sort 

impossible. 
 If no directed cycle, DFS-based 

algorithm finds a topological sort.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. 
Solution. DFS. See next slide.



Directed Cycle Detection
 Run depth-first search from every unmarked vertex. 
 Keep track of vertices currently in recursion stack of 

function for DFS traversal with onStack[ ] array. 
 If we reach a vertex that is already in the recursion 

stack, then we found a cycle in the tree, and we’re done
 Retrieve the cycle using edgeTo[ ] array.

0

1

4

52

6

3

0
1
2
3
4
5
6

v marked[ ]

F
F
F  
F  
F  
F  
F 

onStack[ ]

T

T
T

T
T
T

F
F
F  
F  
F  
F  
F 

T

T
T

T
T
T

edgeTo[ ]

–   

–
–
–
–
–
–

0
2
1
3

0

dfs(0)
dfs(1)
dfs(4)
4 done

1 done
dfs(2)
dfs(3)

      check 4
dfs(5)
check 2

done

Java execution stack

 set onStack[v] to T 
when dfs(v) is called

 set onStack[v] to F 
when dfs(v) returns

 Vertex 2 is marked and onStack
 Found the cycle
 Save the cycle using edgeTo[ ] to a stack

2 3 5 2

stack top

The other cycle can be 
detected when node 6 is 
visited

https://favtutor.com/blogs/detect-cycle-in-directed-graph

https://favtutor.com/blogs/detect-cycle-in-directed-graph


Directed Cycle Detection Application: Cyclic Inheritance

The Java compiler does cycle detection.

public class A extends B
{

...
}

public class B extends C
{

...
}

public class C extends A
{

...
}

%javac A.java
A.java:1: cyclic inheritance  
involving A
public class A extends B { }

^
1 error



Directed Cycle Detection Application: Spreadsheet Recalculation

Microsoft Excel does cycle detection.



Kahn’s algorithm for Topological Sort

 The algorithm works by repeatedly finding vertices with no 
incoming edges, removing them from the graph, and updating the 
incoming edges of the remaining vertices. This process continues 
until all vertices have been ordered.
 Add all nodes with in-degree 0 to a queue.
 While the queue is not empty:

 Remove a node from the queue.
 For each outgoing edge from the removed node, decrement the in-degree of the 

destination node by 1.
 If the in-degree of a destination node becomes 0, add it to the queue.

 If the queue is empty and there are still nodes in the graph, the graph 
contains a cycle and cannot be topologically sorted.

 The nodes in the queue represent the topological sortof the graph.
 Time Complexity: O(V+E). 

 The outer for loop will be executed V number of times and the inner for 
loop will be executed E number of times.

https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/







Video Tutorials: DFS and BFS
 Breadth-first search in 4 minutes (for a tree)
 https://www.youtube.com/watch?v=HZ5YTanv5QE 

 Depth-first search in 4 minutes (for a tree)
 https://www.youtube.com/watch?v=Urx87-NMm6c 

 Graph Traversals - Breadth First and Depth First (for an 
undirected graph)
 https://www.youtube.com/watch?v=bIA8HEEUxZI 

https://www.youtube.com/watch?v=HZ5YTanv5QE
https://www.youtube.com/watch?v=Urx87-NMm6c
https://www.youtube.com/watch?v=bIA8HEEUxZI


Quiz 1

 Write out the adjacency matrix and adjacency list for 
the directed graph. 

A

B

D

E

F

C

G

Acknowledgement: https://sp24.datastructur.es/ 

https://sp24.datastructur.es/


Adjacency Matrix 

To

A

B

D

E

F

C

G



Adjacency List 

A

B

D

E

F

C

G

B,   D

C

F

B,   F,   E

F

F



Quiz 2

 Write out the adjacency matrix and adjacency list for the 
undirected graph. 

A

B

D

E

F

C

G



Adjacency Matrix 

A

B

D

E

F

C

G



Adjacency List 

A

B

D

E

F

C

G

B, D

A, C, D

B, F

A, B, E, F

D, F

F

C, D, E, G



A

B

D

E

F

C

G

DFS Pre-Order:

DFS Post-Order:

Stack:

Quiz 3: Pre-Order & Post-Order 
Traversals

We use a stack-based implementation instead of recursive function calls as shown in 
Slide 35 Topological Sort Details  



A

B

D

E

F

C

G

DFS Pre-Order:
A

DFS Post-Order:

Stack: A  



A

B

D

E

F

C

G

DFS Pre-Order:
A, B

DFS Post-Order:

Stack: A, B 



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C

DFS Post-Order:

Stack: A, B, C 



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:

Stack: A, B, C, F 



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F

Stack: A, B, C  



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F, C

Stack: A, B  



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F, C, B

Stack: A  



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D

DFS Post-Order:
F, C, B

Stack: A, D 



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B,

Stack: A, D, E 



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E

Stack: A, D  



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E, D

Stack: A,  



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E, D, A 

Stack: 



A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E, G

DFS Post-Order:
F, C, B, E, D, A, G

Toplogical Sort (reverse of DFS 
Post-Order):
G, A, D, E, B, C, F

Stack: 

* if we allow DFS to restart on unmarked 
nodes, G would be added to the stack 
(and ultimately the last element in both 
the preorder and postorder traversals)



A

B

D

E

F

C

G

BFS:

Queue: A

Quiz 4: BFS



A

B

D

E

F

C

G

BFS:
A

Queue: B D



A

B

D

E

F

C

G

BFS:
A B

Queue: D C



A

B

D

E

F

C

G

BFS:
A B D

Queue: C E F



A

B

D

E

F

C

G

BFS:
A B D C

Queue: E F



A

B

D

E

F

C

G

BFS:
A B D C E

Queue: F



A

B

D

E

F

C

G

BFS:
A B D C E F

Queue:



A

B

D

E

F G

BFS:
A B D C E F

Queue: G

C



A

B

D

E

F

C

G

BFS:
A B D C E F G

Queue:
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