
Lecture 10
Basic Graph Algorithms

Department of Computer Science
Hofstra University

Lecture Goals
 Compare the Graph ADT with other ADTs
 Define basic notions associated with graphs
 Implement graphs using an adjacency matrix representation and an

adjacency list representation
 We introduce two classic algorithms for searching a graph—depth-

first search and breadth-first search.
 we introduce a depth-first search based algorithm for computing the

topological sort of an acyclic digraph.

ADT of Graph

Unstructured structures

Sets

Sequential, linear structures

Arrays, linked lists
Hierarchical structures

TreesUseful for
 iterating over all elements,
 accessing via index Can indicate common structure in key

 for example, the prefix in tire

Principle: Basic objects & Relationships between them

Graph is a generalization of this principle

Basic objects: vertices, nodes

Relationships between them: edges, arcs, links

Examples of Graphs

Basic objects: websites
Relationships between them: hyperlinks

Basic objects: people
Relationships between them: friends

Basic objects: cities
Relationships between them: nonstop flights

Basic objects: tasks
Relationships between them: dependencies

Some general questions related to graphs:
 How to create a graph?
 Are two vertices adjacent?
 Is the graph dense? sparse?
 How far are two vertices in the graph?
 How many components are there in the graph?
 Can we find a vertex with particular key value?

Graph Definitions
Basic objects: vertices, nodes

Relationships between them: edges, arcs, links

1

2
5

4

3

V

E

6

Undirected

1

2
5

4

3

6

Directed

10
5

3
4

17

Weighted

What are the neighbors of the
vertex 4?
A. 3,4,5,6
B. 3,5,6
C. 3,6
D. 5

Path: sequence of vertices and edges that depicts hopping along graph

For which pair of vertices is there a path in the graph
starting at the first and ending at the second?
 A. vertex 1 and vertex 3
B. vertex 4 and vertex 6
C. vertex 6 and vertex 5

Size of graph: |V| + |E|
|V|: number of vertices
|E|: number of edges

edges are symmetric

start point

end point

cost

Neighbor: u is a neighbor of v if:
there is an edge from u to v
 OR
there is an edge from v to u

What's the maximum number of edges in
a directed and undirected graph with n vertices?
 Assume there are no self-loops (i.e. edges

from a node back to itself).
 Assume there there is at most one edge from

a given start vertex to a given end vertex.

n*(n-1) n*(n-1)/2

Implementing Graphs in Java
Basic objects: vertices, nodes
Relationships between them: edges, arcs, links

Label by integers

public abstract class Graph {
 private int numVertices;
 private int numEdges;

 public Graph() {
 numVertices = numEdges = 0;
 }

 public int getNumVertices() {
 return numVertices;
 }

 public int getNumEdges() {
 return numEdges;
 }

 public void addVertex() {
 implementAddVertex();
 numVertices++;
 }

 public abstract void implementAddVertex();

 public abstract List<Integer> getNeighbors(int v);
}

size of a graph data associated with any graph

methods that ought to be
available with any graph.

leave implementation of key
functionalities to subclasses

For example, which cities we can reach with nonstop flight?

public class GraphAdjMatrix extends Graph {
private int[][] adjMatrix;

 public void implementAddEdge(int v, int w) {
 adjMatrix[v][w] = 1;
 }
 public void implementAddVertex() {
 int v = getNumVertices();
 if (v >= adjMatrix.length) {
 int[][] newAdjMatrix = new int[v * 2][v * 2];
 for (int i = 0; i < adjMatrix.length; i++) {
 for (int j = 0; j < adjMatrix.length; j++) {
 newAdjMatrix[i][j] = adjMatrix[i][j];
 }
 }
 adjMatrix = newAdjMatrix;
 }
 }}

Graph Representation: Adjacency Matrix

0

1
4

3

2

5

V = {0, 1, 2, 3, 4, 5}

0
1
2
3
4
5

0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0

How long does it take to test
whether there is an edge between
vertex v and vertex w in the graph?

O(1)

 Algebraic representation of graph
structure.

 Fast to test for edges.
 Fast to add/remove edges.
 Slow to add/remove vertices.
 Requires a lot of memory.

relabel vertices starting at 0 to use as index
start point

end point

row index

Column index

array entry > 1:
- multiple edges,
- or weighted edges

Symmetric entry
5 edges in graph

→ 5 nonzero entries in adjacency matrix

1 2 3 4 5

0 0

expand the 2-d array

The grid (2-d array) is indexed by the vertices labels and
stores information in a particular location based on whether
these two vertices have an edge between them or not

sparse
Graph Implementations
https://www.youtube.com/watch?v=2guA5uMEmZQ

v*2 instead of v+1 to
amortize cost of adding
new vertices in the future.

https://www.youtube.com/watch?v=2guA5uMEmZQ

Graph Representation: Adjacency List

0

1
4

3

2

5

0 → {1}

1 → null

2 → {3}

3 → null

4 → {3}

5 → {3, 4}

 Easy to add vertices.
 Easy to add/remove edges.
 May use a lot less memory than

adjacency matrices.

public class GraphAdjList extends Graph {
private Map<Integer, ArrayList<Integer>> adjListsMap;

 public void implementAddVertex() {
 int v = getNumVertices();
 ArrayList<Integer> neighbors = new ArrayList<Integer>();
 adjListsMap.put(v, neighbors);
 }

 public void implementAddEdge(int v, int w) {
 (adjListsMap.get(v)).add(w);
 }
}

Motivation for new representation:
 want to avoid storing information on

edges that aren't in the graph
 Edges connect a vertex to its neighbors

vertex → {neighbors}

Neighbour can be reached by one hop

- Sparse graph: O(1) edges for each vertex
- most applications use sparse graphs

Is it also fast?

Yes. Operations are all O(1)

Some Practices
1

2
5

4

3

6

0 How much storage is required to represent a
graph as a matrix? (Big-O, Tightest Bound)
A. |V| B. |E|
C. |V|+|E| D. |V|2
E. |E|2

0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0

0 1 2 3 4 5 6
0
1
2
3
4
5
6

What would change if undirected?

Symmetric matrix, hence half of the
matrix is redundant, but still O(|V|2)

0 0 1 1 0 0 0
0 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

0 1 2 3 4 5 6
0
1
2
3
4
5
6

How much storage is required to represent a graph
as an adjacency list? (Big-O, Tightest Bound)
A. |V| B. |E|
C. |V|+|E| D. |V|2
E. |E|2

0 → {3}

1 → {2}

2 → {0}

3 → {4}

4 → null

5 → {4}

6 → {4, 5}

O(|V|)

O(|E|)

Much more efficient for
sparse graphs!

For dense graphs with lots of
edges, |E| will be as large as |V|2

Symmetric matrix

Find the Neighbors
0

1
4

3

2

5

Neighbors: vertices that are adjacent.

In degree: number of incoming edges.

Out degree: number of outgoing edges.

0
1
2
3
4
5

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0

0 0
0 → {1}

1 → null

2 → {3}

3 → null

4 → {3}

5 → {3, 4}

Which implementation makes finding
the out degree more efficient?

Which implementation makes
finding the in degree more efficient?

outgoing edge

incoming edge

there is edge in between

count the number of
nonzero slots

return the size of list

count the number of
occurrences in all lists

For dense graphs without multiple edges between pairs of vertices, |E|
is O(|V|2). so the adjacency matrix representation is faster. For sparse
graphs, |E| = O(|V|) so both representations have the same performance.Matrix: O(|V|) List: O(1)

Matrix: O(|V|) List: O(|E| + |V|)

0 1 2 3 4 5

Coding getOutNeighbors (outgoing)

public class GraphAdjList extends Graph {

 private Map<Integer,ArrayList<Integer>> adjListsMap;

 public List<Integer> getOutNeighbors(int v) {
 return adjListsMap.get(v);
 return new ArrayList<Integer>(adjListsMap.get(v));
 }
}

public class GraphAdjMatrix extends Graph {

 private int[][] adjMatrix;

 public List<Integer> getOutNeighbors(int v) {
 List<Integer> neighbors = new ArrayList<Integer>();
 for (int i = 0; i < getNumVertices(); i++) {
 for (int j=0; j< adjMatrix[v][i]; j++)
 if (adjMatrix[v][i] > 0)
 neighbors.add(i);
 }
 return neighbors;
 }
}

1

2
5

4

3

6

0

0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0

0 1 2 3 4 5 6
0
1
2
3
4
5
6

0 → {3}

1 → {2}

2 → {0}

3 → {4}

4 → null

5 → {4}

6 → {4, 5}

// list to return

// return v’s list

Returning the array pointer allows the caller to
modify the list contents. Not good encapsulation.

// return a COPY of v’s list

What does this change do?
A. It's a change in the code but will not materially affect the output.
B. It allows multiple edges between two vertices.
C. It will have some other effect on the code behavior.

array entry > 1:
- multiple edges

2

getOutNeighbors(6)

getOutNeighbors(0)

Coding 2-Hop Neighbors (outgoing)
1

2 3

0
public class GraphAdjList extends Graph {

 private Map<Integer,ArrayList<Integer>> adjListsMap;

 public List<Integer> getDistance2 (int v) {
 List<Integer> distance2 = new ArrayList<>();

 // Loop through oneHop and get the neighbors of each
 for(int u : getOutNeighbors(v)){
 distance2.addAll(getOutNeighbors(u));
 }
 return distance2;
 }
}

public class GraphAdjMatrix extends Graph {

 private int[][] adjMatrix;

 public List<Integer> getDistance2 (int v) {
 List<Integer> distance2 = new ArrayList<Integer>();

 // Loop through oneHop and get the neighbors of each
 for(int u : getOutNeighbors(v)){
 distance2.addAll(getOutNeighbors(u));
 }
 return distance2;
 }
}

0 → {1, 2}

1 → {3}

2 → {1, 3}

3 → null

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0
1
2
3

Find all two-hop neighbors from given vertex

0 1 2 3

Coding 2-Hop Neighbors (Matrix Multiplication)

1

2 3

0

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0
1
2
3

0 1 2 3

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

2

= matrix whose entries are two-hop neighbors!

Matrix multiplication for finding two-hop neighbors

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

=

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

0*0 + 1*0 + 1*0 + 0*0 = 0

0*1 + 1*0 + 1*1 + 0*0 = 1

0*1 + 1*0 + 1*0 + 0*0 = 0

0*0 + 1*1 + 1*1 + 0*0 = 2

0*0 + 0*0 + 0*0 + 1*0 = 0

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

0
1
2
3

0 1 2 3

For all the vertices in the graph

Dot product

Matrix multiplication is well studied and optimized in
software and hardware, and can be done very fast

Node 3 is a two-hop neighbor of
node 0 along two different paths

Coding 2-Hop Neighbors (Matrix
Multiplication)

 Consider the multiplication of the first row of the left matrix
wit the last column of the right matrix:
 0*0 + 1*1 + 1*1 + 0*0 = 2.

 This means that there are two 2-hop paths from 1 to 3:
 Path 01 3 consisting of two edges 01 & 1 3, corresponding to

the first term of 1*1
 Path 02 3 consisting of two edges 02 &2 3, corresponding to

the second term of 1*1

1

2 3

00 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

0 1 1 0
0 0 0 1
0 1 0 1
0 0 0 0

=

0 1 0 2
0 0 0 0
0 0 0 1
0 0 0 0

Path 01 3

Path 02 3

Summary of Digraph Representations
In practice. Use adjacency-lists representation.
 Algorithms based on iterating over vertices adjacent from v.
 Real-world graphs tend to be sparse (not dense).

proportional to V proportional to V2

representation space
insert edge
from v to w

edge from
v to w?

iterate over vertices
adjacent from v?

adjacency matrix V 2 1 V

adjacency lists E + V 1 outdegree(v) outdegree(v)

† disallows parallel edges

sparse (E = 200) dense (E = 3000)

Two graphs (V= 50)

1

DFS vs. BFS

Represent Problems as Graphs: Maze Exploration

intersection passage

Goal. Explore every intersection in the maze.

Maze graph. Vertex = intersection. Edge = passage.

Depth-First Search (DFS)
DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent to v.

Goal. Systematically traverse a graph.

Typical applications.
 Find all vertices connected to a given source vertex.
 Find a path between two vertices.

87

9

10 11

0

6

4

21

5

3

Java execution stack is used to keep track of where to search next

0
1
2
3
4
5
6
7
8
9

10
11

v marked[]

F
F
F
F
F
F
F
F
F
F
F
F

edgeTo[]

–

–
–
–
–
–
–
–
–
–
–
–

T 0

0
5
6
4

0

Data structures.
 Boolean array marked[] to mark vertices.
 Integer array edgeTo[] to keep track of paths.

 (edgeTo[w] == v) means that edge v-w taken
to discover vertex w

dfs(0)
 dfs(6)
 dfs(4)
 dfs(5)
 dfs(3)
 3 done
 5 done
 4 done
 6 done
 dfs(2)
 2 done
 dfs(1)
 1 done
0 done

T

T
T

T
T
T

Depth-First Search: Java Implementation

public class DepthFirstPaths {

}

private boolean[] marked;
private int[] edgeTo;
private int s;

public DepthFirstPaths(Graph G, int s) {
...
dfs(G, s);

}

private void dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v))

if (!marked[w])
{

edgeTo[w] = v;
dfs(G, w);

}
}

recursive DFS does the
work

marked[v] = true if vconnected to s

find vertices connected to s

initialize data structures

edgeTo[v] = previous vertex on
path from s to v

 Code for directed graphs identical to undirected one.

Depth-First Search Application: Flood Fill

Solution.
 Build a grid graph.
 Vertex: pixel.
 Edge: between two adjacent gray pixels.
 Blob: all pixels connected to given pixel.

Problem. Flood fill is a flooding algorithm that determines and alters the area
connected to a given node in a multi-dimensional array with some matching
attribute.

https://en.wikipedia.org/wiki/Flood_fill

https://en.wikipedia.org/wiki/Flood_fill

Reachability Application: Mark–Sweep Garbage Collector

Every data structure is a digraph.
 Vertex = object.
 Edge = reference.
 Roots: Objects known to be directly accessible by program (e.g., stack).
 Reachable objects: Objects indirectly accessible by program (starting at a

root and following a chain of pointers).
roots

Mark–sweep algorithm. [McCarthy, 1960]
Mark: mark all reachable objects.
Sweep: if object is unmarked, it is garbage (so
add to free list).
Memory cost. Uses 1 extra mark bit per object
(plus DFS stack).

Recall from Lecture 2-classes and objects in
java

public class Location
{
 // Code omitted here
 public static void main(String[] args)

{
 Location loc1 = new Location(40.7, -73.6);
 Location loc2 = new Location(51.7 , -1.2);
 loc1 = loc2;
 loc1.latitude = 35.2;
 System.out.println(loc2.latitute + ”, " + loc2.longitude);

loc1 @1

loc2 @2

Location Object

40.7

-73.6

Latitude

Longitude

Location Object

51.7

-1.2

Latitude

Longitude

@1

@2

@2

35.2

$ 35.2, -1.2

After assignment loc1 = loc2, the
Object Location(40.7, -73.6) is
unreachable and should be
garbage-collected.

Breadth-First Search (BFS)
BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unmarked neighbors to the queue,
and mark them.

0

4

2

1

5
3

0
1
2
3
4
5

v marked[] edgeTo[] distTo[]

–
–
–
–
–
–

0
–
–
–
–
–

1
1
2
2
1

0
0
2
2
0

Queue

F
F
F
F
F
FT

T

T

T
T
T

s.distTo[v] stores the distance from s to v

0

2

1

5

3

4

distTo[v] = distTo[edgeTo[v]] + 1;

Breadth-First Search: Java Implementation
public class BreadthFirstPaths {

private boolean[] marked;
private int[] edgeTo;
private int[] distTo;
…

}

private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);
marked[s] = true;
distTo[s] = 0;

while (!q.isEmpty()) {
int v= q.dequeue();
for (int w : G.adj(v)) {

if (!marked[w]) {
q.enqueue(w);
marked[w] = true;
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;

}
}

}
}

initialize FIFO queue of
vertices to explore

found new vertex w via edge v–w

Every undirected graph is a
digraph (with edges in both
directions).

 Code for directed graphs identical to undirected one.
 Function G.adj(v) returns all neighbors in the edge arrow direction.

 DFS. Put unvisited vertices on a stack.
 BFS. Put unvisited vertices on a queue.

Breadth-First Search Properties
Proposition. BFS examines vertices in increasing distance (number of edges) from s.

Proposition. In any connected graph, BFS computes shortest paths (fewest number
of edges) from s to all other vertices in time proportional to E + V.

Pf. [correctness] Queue always consists of zero or more vertices of distance k from
s, followed by zero or more vertices of distance k + 1.

4

2

1

5
3

graph G

4

3

dist = 2dist = 1

1

5

0 2

dist = 0

0

level-order

Pf. [running time] Each vertex connected to s is visited once, and all its edges are
checked.

s

Breadth-First Search Application: Web Crawler

Goal. Crawl web, starting from some root web page, say www.hofstra.edu.

Solution. [BFS with implicit digraph]
 Choose root web page as source s.
 Maintain a Queue of websites to explore.
 Maintain a SET of marked websites.
 Dequeue the next website and enqueue

any unmarked websites to which it links.
18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41 29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

http://www.princeton.edu/

Multiple-Source Shortest Paths Problem
Given a digraph and a set of source vertices, find
shortest path from any vertex in the set to each
other vertex, assuming all edges have weight 1.

Ex. S = { 1, 7, 10 }.
 Shortest path to 4 is 7 → 6 → 4.
 Shortest path to 5 is 7 → 6 → 0 → 5.
 Shortest path to 12 is 10 → 12.
 …

How to implement multi-source
shortest paths algorithm?

Use BFS, but initialize by
enqueuing all source vertices.

dist = 2dist = 1dist = 0

1

7

10

6

9

12

dist = 3

0

8

4

11

5

2

3

Connectivity Queries Problem
 Vertices v and w are connected if there is a path between them.
 In undirected graph, the relation "is connected to" is an equivalence
relation:
 Reflexive: v is connected to v.
 Symmetric: if v is connected to w, then w is connected to v.
 Transitive: if v connected to w and w connected to x, then v

connected to x.
 Goal. Preprocess undirected graph to answer queries of the form is v
connected to w? in constant time while using adjacency list.
 A connected component is a maximal set of connected vertices.
 Given connected components, can answer queries in constant time.

public class CC

boolean

int

int

CC(Graph G)

connected(int v, int w)

count()

id(int v)

find connected components in G

are v and w connected?

number of connected components

component identifier for v

87

9

1110

0

6

4

21

5

3

3 connected components

0

id[]

1
2
3
4
5
6
7
8
9

10
11

0
0
0
0
0
0
1
1
2
2
2

0

v

Finding Connected Components with DFS
Goal. Partition vertices into connected components.

87

9

10 11

0

6

4

21

5

3

Java execution stack

dfs(0)
 dfs(6)
 dfs(4)
 dfs(5)
 dfs(3)
 3 done
 5 done
 4 done
 6 done
 dfs(2)
 2 done
 dfs(1)
 1 done
0 done
dfs(7)
 dfs(8)
 8 done
7 done
dfs(9)
 dfs(10)
 dfs(11)
 11 done
 10 done
9 done

0
1
2
3
4
5
6
7
8
9

10
11

v marked[]

F
F
F
F
F
F
F
F
F
F
F
F

id[]

–

–
–
–
–
–
–
–
–
–
–
–

T 0

0
0
0
0

0
T

T
T

T
T
T

T

T

T
T
T

0

2
2
2

1
1

Initialize all vertices v as unmarked.
For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

Connected components

Can also use BFS

Connected Components Application: Particle Detection

Given grayscale image of particles, identify "blobs."
 Vertex: pixel.
 Edge: between two adjacent pixels with grayscale value > 70.
 Blob: connected component of 20-30 pixels.

black = 0
white = 255

Particle tracking. Track moving particles over time.

Precedence Scheduling Problem
Goal. Given a set of tasks to be completed with precedence
constraints, in which order should we schedule the tasks?

0. Algorithms
1. Complexity Theory
2. Artificial Intelligence
3. Intro to CS
4. Cryptography
5. Scientific Computing
6. Advanced Programming

tasks

Digraph model. vertex = task; edge = precedence constraint.

precedence constraint graph

0

1

4

52

6

3

feasible schedule

Topological sort. Redraw DAG(Directed acyclic graph) so all edges point upwards.

DAG

Graph traversal with DFS: pre-order, post-
order

function preOrderTraversal(node) {
 if (node !== null) {
 visitNode(node);
 preOrderTraversal(node.left);
 preOrderTraversal(node.right);
 }
}

function postOrderTraversal(node) {
 if (node !== null) {
 postOrderTraversal(node.left);
 postOrderTraversal(node.right);
 visitNode(node);
 }
}

function preOrderTraversal(node) {
 if (node !== null) {
 visitNode(node);
 foreach(c ∈ node.children) {
 preOrderTraversal(c);}
 }
}

function postOrderTraversal(node) {
 if (node !== null) {
 foreach(c ∈ node.children) {
 postOrderTraversal(c);}
 visitNode(node);
 }
}

Recall: Binary Tree traversal with DFS: pre-order, post-order

Graph traversal with DFS: pre-order, post-order

Topological Sort

 topological sortfor Directed Acyclic Graph (DAG) is a linear
ordering of vertices such that for every directed edge u-v,
vertex u comes before v in the ordering, i.e., all pair-wise
precedence constraints are satisfied.

The first vertex in topological sortis
always a vertex with an in-degree of 0 (a
vertex with no incoming edges), i.e., 4 or
5. Possible topological sorts include
“5 4 2 3 1 0”, “4 5 2 3 1 0”, “4 5 0 2 3 1”,
“5 2 3 4 1 0”, etc.

https://www.geeksforgeeks.org/topological-sorting/

https://www.geeksforgeeks.org/topological-sorting/

Topological
Sort

Example

Topological Sort Applications

 Task scheduling and project management.
 Dependency resolution in package management systems.
 Determining the order of compilation in software build

systems with Makefile
 Deadlock detection in operating systems.
 Course scheduling in universities.

Topological Sort by DFS Post-Order
Traversal

 Perform DFS Post-Order Traversal starting from a node with
no incoming edges to get an ordered list of nodes, then reverse
the node order to get a Topological Sort
 Upon finishing traversal starting from one node, restart from another

unvisited node with no incoming edges
 This results in one of multiple possible Topological Sorts

 Intuition: DFS Post-Order Traversal outputs nodes from the
deepest (furthest away from the starting node) to the starting
mode, hence the reverse order is a Topological Sort

Topological Sort Example
 Run depth-first search
 Return vertices in reverse postorder. Postorder

0

1

4

52

6

3

topological sort

dfs(0)
dfs(1)
dfs(4)
4 done

1 done
dfs(2)
2 done
dfs(5)
check 2

5 done
0 done
check 1
check 2
dfs(3)

check 2
check 4
check 5
dfs(6)
check 0
check 4

6 done
3 done
check 4
check 5
check 6
done

0
1
2
3
4
5
6

v marked[]

F
F
F
F
F
F
F T

T

T
T

T
T
T

Java execution stack

4 1 2 5 0 6 3

3 6 0 5 2 1 4

stack top

pop from the stack → reversed postorder

not a reachability problem

0

Example 1: Topological Sort
 Starting from node A:
 Pre-order traversal is “A B F I J

K E C G D H”.
 Post-order traversal is “I K J F E

B G C H D A”.
 A topological sort is reverse

order of Post-order traversal: “A
D H C G B E F J K I”.

 Starting from a different node
will give you a different
topological sort, but all of them
must start with A, since it must
precede all the other nodes based
on the DAG.

 Any post-order traversal must
visit A last, since all of A’s
neighbors must be visited before
visiting A.

Topological Sort Visualized and Explained
https://www.youtube.com/watch?v=7J3GadLzydI

https://www.youtube.com/watch?v=7J3GadLzydI

Example 2: Topological Sort

 Starting from node 5:
 Pre-order traversal is “5 2 3 1 0 4”.
 Post-order traversal is “1 3 2 0 5 4”.
 A topological sort is reverse order of Post-

order traversal: “4 5 0 2 3 1”.
 Starting from node 4:

 Pre-order traversal is “4 0 1 5 2 3”
 Post-order traversal is “0 1 4 3 2 5”.
 Another topological sort is reverse order of

Post-order traversal: “5 2 3 4 1 0”.
 Starting from node 0:

 Pre-order traversal is “0 5 2 3 1 4”
 Post-order traversal is “0 1 3 2 5 4”.
 Another topological sort is reverse order of

Post-order traversal: “4 5 2 3 0”.
 You may try starting any other node.

Example 3: Topological Sort
 Starting from node A, post-order traversal is “H, E, B, D, A,

G, F, C”; Topological Sort is “C, F, G, A, D, B, E, H”
 Quiz: Starting from node C, post-order traversal is “ ”;

Topological Sort is “ ”

[61B SP24] Lecture 26 - MSTs (continued), Directed Acyclic Graphs
https://www.youtube.com/watch?v=HtXDt0gDvk4

Graph
Topological Sort. All edges point to the right
hence all precedence constraints are satisfied

https://www.youtube.com/watch?v=HtXDt0gDvk4

Cycles and undirected edges

 Why is topological sort not possible for graphs having cycles?
 Imagine a graph with 3 vertices and edges = {1 to 2 , 2 to 3, 3 to 1}

forming a cycle. Now if we try to topologically sort this graph starting
from any vertex, it will always create a contradiction to our definition.
All the vertices in a cycle are indirectly dependent on each other hence
topological sortfails.

 Why is topological sort not possible for graphs with undirected
edges?
 Special case of a cycle. Undirected edge between two vertices u and v

means, there is an edge from u to v as well as from v to u. Because of
this both the nodes u and v depend upon each other and none of them
can appear before the other in the topological sortwithout creating a
contradiction.

Topological Sort: Java Implementation

} returns all vertices in
“reverse DFS postorder”

public class DepthFirstOrder {
private boolean[] marked;
private Stack<Integer> reversePostorder;

public DepthFirstOrder(Digraph G) {
reversePostorder = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)

if (!marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v) {
marked[v] = true;
for (int w : G.adj(v))

if (!marked[w]) dfs(G, w);
reversePostorder.push(v);

}

public Iterable<Integer> reversePostorder()
{ return reversePostorder; }

Proposition. A digraph has a topological sort
iff no directed cycle.
Pf.
 If directed cycle, topological sort

impossible.
 If no directed cycle, DFS-based

algorithm finds a topological sort.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. See next slide.

Directed Cycle Detection
 Run depth-first search from every unmarked vertex.
 Keep track of vertices currently in recursion stack of

function for DFS traversal with onStack[] array.
 If we reach a vertex that is already in the recursion

stack, then we found a cycle in the tree, and we’re done
 Retrieve the cycle using edgeTo[] array.

0

1

4

52

6

3

0
1
2
3
4
5
6

v marked[]

F
F
F
F
F
F
F

onStack[]

T

T
T

T
T
T

F
F
F
F
F
F
F

T

T
T

T
T
T

edgeTo[]

–

–
–
–
–
–
–

0
2
1
3

0

dfs(0)
dfs(1)
dfs(4)
4 done

1 done
dfs(2)
dfs(3)

 check 4
dfs(5)
check 2

done

Java execution stack

 set onStack[v] to T
when dfs(v) is called

 set onStack[v] to F
when dfs(v) returns

 Vertex 2 is marked and onStack
 Found the cycle
 Save the cycle using edgeTo[] to a stack

2 3 5 2

stack top

The other cycle can be
detected when node 6 is
visited

https://favtutor.com/blogs/detect-cycle-in-directed-graph

https://favtutor.com/blogs/detect-cycle-in-directed-graph

Directed Cycle Detection Application: Cyclic Inheritance

The Java compiler does cycle detection.

public class A extends B
{

...
}

public class B extends C
{

...
}

public class C extends A
{

...
}

%javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }

^
1 error

Directed Cycle Detection Application: Spreadsheet Recalculation

Microsoft Excel does cycle detection.

Kahn’s algorithm for Topological Sort

 The algorithm works by repeatedly finding vertices with no
incoming edges, removing them from the graph, and updating the
incoming edges of the remaining vertices. This process continues
until all vertices have been ordered.
 Add all nodes with in-degree 0 to a queue.
 While the queue is not empty:

 Remove a node from the queue.
 For each outgoing edge from the removed node, decrement the in-degree of the

destination node by 1.
 If the in-degree of a destination node becomes 0, add it to the queue.

 If the queue is empty and there are still nodes in the graph, the graph
contains a cycle and cannot be topologically sorted.

 The nodes in the queue represent the topological sortof the graph.
 Time Complexity: O(V+E).

 The outer for loop will be executed V number of times and the inner for
loop will be executed E number of times.

https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/

Video Tutorials: DFS and BFS
 Breadth-first search in 4 minutes (for a tree)
 https://www.youtube.com/watch?v=HZ5YTanv5QE

 Depth-first search in 4 minutes (for a tree)
 https://www.youtube.com/watch?v=Urx87-NMm6c

 Graph Traversals - Breadth First and Depth First (for an
undirected graph)
 https://www.youtube.com/watch?v=bIA8HEEUxZI

https://www.youtube.com/watch?v=HZ5YTanv5QE
https://www.youtube.com/watch?v=Urx87-NMm6c
https://www.youtube.com/watch?v=bIA8HEEUxZI

Quiz 1

 Write out the adjacency matrix and adjacency list for
the directed graph.

A

B

D

E

F

C

G

Acknowledgement: https://sp24.datastructur.es/

https://sp24.datastructur.es/

Adjacency Matrix

To

A

B

D

E

F

C

G

Adjacency List

A

B

D

E

F

C

G

B, D

C

F

B, F, E

F

F

Quiz 2

 Write out the adjacency matrix and adjacency list for the
undirected graph.

A

B

D

E

F

C

G

Adjacency Matrix

A

B

D

E

F

C

G

Adjacency List

A

B

D

E

F

C

G

B, D

A, C, D

B, F

A, B, E, F

D, F

F

C, D, E, G

A

B

D

E

F

C

G

DFS Pre-Order:

DFS Post-Order:

Stack:

Quiz 3: Pre-Order & Post-Order
Traversals

We use a stack-based implementation instead of recursive function calls as shown in
Slide 35 Topological Sort Details

A

B

D

E

F

C

G

DFS Pre-Order:
A

DFS Post-Order:

Stack: A

A

B

D

E

F

C

G

DFS Pre-Order:
A, B

DFS Post-Order:

Stack: A, B

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C

DFS Post-Order:

Stack: A, B, C

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:

Stack: A, B, C, F

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F

Stack: A, B, C

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F, C

Stack: A, B

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F, C, B

Stack: A

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D

DFS Post-Order:
F, C, B

Stack: A, D

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B,

Stack: A, D, E

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E

Stack: A, D

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E, D

Stack: A,

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E, D, A

Stack:

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E, G

DFS Post-Order:
F, C, B, E, D, A, G

Toplogical Sort (reverse of DFS
Post-Order):
G, A, D, E, B, C, F

Stack:

* if we allow DFS to restart on unmarked
nodes, G would be added to the stack
(and ultimately the last element in both
the preorder and postorder traversals)

A

B

D

E

F

C

G

BFS:

Queue: A

Quiz 4: BFS

A

B

D

E

F

C

G

BFS:
A

Queue: B D

A

B

D

E

F

C

G

BFS:
A B

Queue: D C

A

B

D

E

F

C

G

BFS:
A B D

Queue: C E F

A

B

D

E

F

C

G

BFS:
A B D C

Queue: E F

A

B

D

E

F

C

G

BFS:
A B D C E

Queue: F

A

B

D

E

F

C

G

BFS:
A B D C E F

Queue:

A

B

D

E

F G

BFS:
A B D C E F

Queue: G

C

A

B

D

E

F

C

G

BFS:
A B D C E F G

Queue:

	Lecture 10�Basic Graph Algorithms
	Lecture Goals
	ADT of Graph
	Examples of Graphs
	Graph Definitions
	Implementing Graphs in Java
	Graph Representation: Adjacency Matrix
	Graph Representation: Adjacency List
	Some Practices
	Find the Neighbors
	Coding getOutNeighbors (outgoing)
	Coding 2-Hop Neighbors (outgoing)
	Coding 2-Hop Neighbors (Matrix Multiplication)
	Coding 2-Hop Neighbors (Matrix Multiplication)
	Summary of Digraph Representations
	DFS vs. BFS
	Represent Problems as Graphs: Maze Exploration
	Depth-First Search (DFS)
	Depth-First Search: Java Implementation
	Depth-First Search Application: Flood Fill
	Reachability Application: Mark–Sweep Garbage Collector
	Recall from Lecture 2-classes and objects in java
	Breadth-First Search (BFS)
	Breadth-First Search: Java Implementation
	Breadth-First Search Properties
	Breadth-First Search Application: Web Crawler
	Multiple-Source Shortest Paths Problem
	Connectivity Queries Problem
	Finding Connected Components with DFS
	Connected Components Application:	Particle Detection
	Precedence Scheduling Problem
	Graph traversal with DFS: pre-order, post-order
	Topological Sort
	Topological Sort Example
	Topological Sort Applications
	Topological Sort by DFS Post-Order Traversal
	Topological Sort Example
	Example 1: Topological Sort
	Example 2: Topological Sort
	Example 3: Topological Sort
	Cycles and undirected edges
	Topological Sort: Java Implementation
	Directed Cycle Detection
	Directed Cycle Detection Application: Cyclic Inheritance
	Directed Cycle Detection Application: Spreadsheet Recalculation
	Kahn’s algorithm for Topological Sort
	Slide Number 47
	Slide Number 48
	Video Tutorials: DFS and BFS
	Quiz 1
	Adjacency Matrix
	Adjacency List
	Quiz 2
	Adjacency Matrix
	Adjacency List
	Quiz 3: Pre-Order & Post-Order Traversals
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Quiz 4: BFS
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78

